
Designing a practical system for spectral imaging
of skylight

Miguel A. López-Álvarez, Javier Hernández-Andrés, Javier Romero, and Raymond L. Lee, Jr.

In earlier work [J. Opt. Soc. Am. A 21, 13–23 (2004)], we showed that a combination of linear models and
optimum Gaussian sensors obtained by an exhaustive search can recover daylight spectra reliably from
broadband sensor data. Thus our algorithm and sensors could be used to design an accurate, relatively
inexpensive system for spectral imaging of daylight. Here we improve our simulation of the multispectral
system by (1) considering the different kinds of noise inherent in electronic devices such as charge-
coupled devices (CCDs) or complementary metal-oxide semiconductors (CMOS) and (2) extending our
research to a different kind of natural illumination, skylight. Because exhaustive searches are expensive
computationally, here we switch to a simulated annealing algorithm to define the optimum sensors for
recovering skylight spectra. The annealing algorithm requires us to minimize a single cost function, and
so we develop one that calculates both the spectral and colorimetric similarity of any pair of skylight
spectra. We show that the simulated annealing algorithm yields results similar to the exhaustive search
but with much less computational effort. Our technique lets us study the properties of optimum sensors
in the presence of noise, one side effect of which is that adding more sensors may not improve the spectral
recovery. © 2005 Optical Society of America
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1. Introduction

No one nowadays would attempt to analyze naked-
eye atmospheric phenomena such as rainbows, halos,
glories, or coronas without using instruments. Day-
light and skylight spectra, for example, are normally
measured with spectroradiometers, which are com-
plex and expensive instruments that provide only one
spectrum per measurement. Thus when one mea-
sures skylight, the illumination arrives from either a
small or large angular subtense of the sky, depending
on the instrument field of view. Because researchers
could benefit from high-resolution angular maps of
skylight’s spectral power distribution (SPD), we need
to measure many skylight spectra simultaneously
across the sky dome. Multispectral imaging systems
let us do so.

In recent years the development and design of mul-

tispectral color-image acquisition devices has re-
ceived much attention in color science. By extending
our past research on sky color,1–4 we offer here a
theoretical optimum design of a multispectral system
with 3–5 channels that can recover the SPD of the
skylight incident on it. Our optimum multispectral
system must estimate the spectral skylight radiance
at each pixel of the image based on the response of the
system’s channels. This is a classic inverse problem
that requires a mathematical estimation algorithm.
We opt for a linear model based on a principal com-
ponents analysis (PCA) described in Section 2.

In the future, we plan to build a multispectral sys-
tem for imaging skylight by using liquid-crystal tun-
able filters (LCTFs) and a linear monochrome camera
with high dynamic range. Therefore our simulated
system must model the behavior of the optimum sen-
sors realistically, including the effects of sensor noise
(see Section 3).

Any search for an optimum set of Gaussian sensors
(those whose spectral sensitivities are Gaussian func-
tions of wavelength) intended to recover skylight
spectra with a multispectral imaging system depends
on several factors: the spectral response of its sen-
sors, the type and number of sensors, and the noise
that always affects any electronic device. To include
all these factors in an exhaustive search is a highly
demanding computational task. Our alternative ap-
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proach greatly reduces computing time with a simu-
lated annealing algorithm that minimizes a cost
function (see Section 4). To this end, we propose a
single cost function that evaluates the quality of our
recovered skylight spectra: the colorimetric and spec-
tral combined metric or CSCM function.

In Section 5 we present the results of both recov-
eries for two different sets of skylight spectra. One
dataset was measured in Granada, Spain, and was
used as a training set both in the PCA and in the
simulated annealing algorithm. The second dataset
was measured in Owings, Maryland, and was used to
test the accuracy of our simulated spectral imaging
system.

2. Estimating Skylight Spectra from Broadband
Sensor Data

The spectral response of CCD camera sensors is often
assumed to be linear.5–7 If we make this assumption
for our multispectral imaging system, we can model
its sensors’ response using

�k ��
�min

�max

E(�)Rk(�)d�, (1)

where �k is the response of kth sensor, E��� is the
illuminant spectrum (skylight in our case), and Rk���
is the kth sensor’s spectral sensitivity. If we sample
the visible spectrum at N different wavelengths, Eq.
(1) is

�k � �
m�1

N

E(�m)Rk(�m). (2)

In an earlier paper,2 we measured 1567 skylight
spectra in Granada, Spain (37° 10�N, 3° 36� W, ele-
vation 680 m) at many different solar elevations;
each spectrum ranged from 380 � 780 nm in 5 nm
steps. This dataset allowed us to obtain 81 eigenvec-
tors from a principal components analysis8,9 (PCA).
The eigenvectors Vn��m� can then be used in a linear
model to reconstruct a given skylight spectrum by

E(�m) � �
n�1

N

�nVn(�m). (3)

This PCA-based linear reconstruction method has
been used widely5,6,8–16 and gives good results com-
pared with other estimation methods (such as Wie-
ner’s method, spline interpolation, modified discrete
sine transform, nonnegative matrix factorization, or
direct transformations).12,16,17

The weight �n of each principal component in the
linear combination is calculated from a camera’s sen-
sitivity (or sensor response) spectra. If we substitute
Eq. (3) in Eq. (2) and express it in matrix form, then

� � RTV� � ��, (4)

where � is a vector of k rows containing the k sensors’
responses, R is an N � k matrix containing the spec-
tral sensitivities of the k sensors at N sampled wave-
lengths (superscript T denotes its transpose), V is a
N � n matrix containing the first n eigenvectors used
in reconstructing N wavelengths, and � is a vector of
n rows that contains the coefficients of Eq. (3)’s linear
combination. Then � is a k � n matrix that directly
transforms the coefficients � into the sensor re-
sponses �. By calculating �’s pseudoinverse (denoted
by superscript �), we obtain the coefficients for the
linear estimate of the camera sensor responses, and
then we can recover the skylight spectrum

ER(�m) � V���. (5)

So with a combination of k sensors and n eigenvec-
tors, we can estimate skylight spectra using Eq. (5).
Note that k and n need not be equal, although we find
that this often gives the best results.

3. Influence of Noise

Any real imaging system is of course affected by
noise,5 a fact not explicitly accounted for in Eqs. (1)–
(5). Yet noise can be represented there as an additive
term that changes the ideal noise-free sensor re-
sponses to

�noise � � � �, (6)

where � is a k-row vector of uncorrelated components
that affect each sensor separately. There are various
sources of noise,18 with thermal noise being the most
common. This consists of random, normally distrib-
uted white noise (i.e., affecting every wavelength
equally) that is additive and whose variance in-
creases with temperature. Another noise source in
electronic systems is shot noise, whose source is cur-
rent fluctuations in semiconductor devices due to the
quantum character of electrons. Although shot noise
is insignificant compared with thermal noise in
metal-oxide semiconductor (MOS) devices such as
CCDs, it too is normally distributed. Flicker noise is
also common, and it varies inversely with camera
electric frequency (the temporal frequency at which
pixels charges are read). Finally, quantization noise
is present in every analog-to-digital (A�D) conversion
and is the loss of least-significant digits when quan-
tizing scene radiances to a given number of bits (i.e.,
to a fixed number of discrete levels).

In this study, we simulate thermal and shot noise
as random, normally distributed noise with standard
deviations of 1%, 3%, or 5% of the maximum sensor
response (these noise levels correspond to signal-to-
noise ratios (SNRs) of 40 dB, 30 dB, and 26 dB, re-
spectively). Quantization noise is given as that  due  to
A�D conversion at resolutions of 8, 10, or  12 bits. This
slightly degraded performance closely approximates
the behavior of a real multispectral imaging system.
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4. Searching for Optimum Sensors

Various methods have been proposed for selecting the
optimum filters or sensors for a multispectral imag-
ing system.5–7,14,17,19 However, no consensus exists
about what “optimum” means in such a system. For
us, one set of sensors is clearly better than another if
its reconstructed skylight spectra are more accurate
when tested by some metric. The key question is what
metric to use.

For our problem, essentially two kinds of metrics
exist: colorimetric and spectral.20 Colorimetric met-
rics formulated by the CIE (Commission Interna-
tionale de l’Éclairage), include CIELUV, CIELAB,
CIE94, and CIEDE2000.21,22 These metrics quantify
distances in their respective quasi-uniform color
spaces and approximate color differences observed by
the human eye. To calculate such metrics, we only
need to know the tristimulus values23 of a given color
signal. Note that any skylight color can be quantified
by spectrally convolving its SPD with each of three
CIE color-matching functions (we use functions for
the 2° 1931 CIE standard observer). Integrals of the
three convolved spectra yield the particular skylight
color’s tristimulus values. This trichromatic match-
ing has a major consequence: we cannot distinguish
between metamers, which are color stimuli with the
same tristimulus values but different SPDs. Spectral
metrics are those that measure the distance between
two spectral curves, such as root-mean-square error
(RMSE) or goodness-fit coefficient2 (GFC, which uses
Schwartz’s inequality, a widely accepted20,24 index of
similarity between two spectra). These metrics dis-
tinguish between metamers but do not consider hu-
man vision. Some new metrics have been proposed for
comparing spectra that take into account properties
of the human visual system, such as weighted RMSE
(WRMSE) with the diagonal of Cohen matrix R.20

Viggiano proposed a spectral comparison index25

(SCI), a metric whose properties have been studied by
others.20,24,25 Another metric widely used in solar ra-
diation measurements is the percentage of the inte-
grated irradiance error26 (IIE(%)) across the visible
spectrum.

Some authors6 have searched for optimum sensors
using only one of the metrics described above. Be-
cause their results depend on the metric used, they
are not particularly useful in selecting sensors for our
planned multispectral system. Imai et al. suggest
that “mononumerosis” should be avoided when eval-
uating the quality of spectral matches.20 By this term
they mean that several metrics should be used to

assess color reconstruction from both colorimetric
and spectral standpoints. Day14 used thresholds for
RMSE and CIEDE2000 metrics when searching for
optimum sensors; Hernández-Andrés et al.1 used
GFC, CIELUV, and IIE(%) in a similar way.

As explained below, we must use a single cost func-
tion when developing a simulated annealing algo-
rithm. This approach may seem to contradict the
recommendations of Imai et al.20 Yet it does not, be-
cause we actually construct a simple single-cost func-
tion or metric that combines several metrics at once.
We use GFC as a spectral metric, CIELAB as a col-
orimetric cost function (denoted by 	E*ab, the dis-
tance between two colors in the CIE’s uniform color
space L*a*b*), and IIE(%) as a metric for comparing
the spectral curves of natural illuminants. In princi-
ple, our new metric should approach zero for near-
perfect matches (in contrast with GFC, which tends
to unity for perfect matches) and give approximately
the same weight to the GFC, CIELAB, and IIE(%)
metrics. As defined in Section 1, our combined CSCM
metric is calculated by

CSCM � Ln(1 � 1000(1 � GFC)) � 	E*ab � IIE(%).
(7)

Equation (7) defines a combined metric that is zero
for perfect matches, and thus is a good candidate for
developing an annealing search algorithm. The chief
advantage of this metric is that it quantifies the fol-
lowing: spectral mismatches among metamers, per-
ceptual differences in color matches, and differences
in such integrated radiometric quantities as irradi-
ance or radiance. Though this metric may not avoid
“mononumerosis,” it clearly combines the properties
of various metrics relevant to skylight spectra.

Table 1 shows the means and standard deviations
(SDs) for our Granada skylight spectra obtained us-
ing the linear method described above for the 3 best
sensors (as described later) and 3 eigenvectors at
various noise levels (always with 12
bit quantiza-
tion). Note that the GFC, CIELAB, and IIE(%) terms
are roughly equal in each row of Table 1, thus justi-
fying our weights for them in Eq. (7).

Now that Eq. (7) quantitatively defines our opti-
mum sensor, we next turn to developing a search
algorithm. Whenever possible, one should do an ex-
haustive search to find a multispectral system’s op-
timum sensors. Yet such a search can demand
excessive computer time because the number of pos-
sible filter sets can be enormous. We perform our

Table 1. Means and Standard Deviations (SD) for 1567 Skylight Spectra Measured in Granada, Spain, Using 3 Sensors, 3 Eigenvectors, and 12-Bit
Quantization in Recovering Spectra at Different Signal-to-Noise Ratios (SNR)

SNR GFC � SD �E*ab � SD IIE�%� � SD
LN(1 � 1000

(1 � GFC)) � SD CSCM � SD

40 dB 0.9993 � 0.0012 0.7 � 0.5 1.3 � 0.7 0.4 � 0.3 2.4 � 1.1
30 dB 0.9987 � 0.0016 0.9 � 0.5 3.2 � 1.9 0.7 � 0.4 4.8 � 2.2
26 dB 0.9981 � 0.0023 1.3 � 0.7 5.0 � 3.5 0.9 � 0.5 7.3 � 4.1
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study using 3–5 sensors that are Gaussian functions
of wavelength.6,7,10,17 These sensors are similar to
commercial ones and could also be made using a
LCTF. We vary sensors’ peak sensitivities from 380
� 780 nm in 5 nm steps, a spectral resolution ade-
quate for both colorimetry and radiometry. We also
vary the sensors’ FWHM (full width at half maxi-
mum) from 10 � 300 nm in 10 nm steps. Finally, we
perform linear spectral recoveries using 3, 4, and 5
eigenvectors. To appreciate the computational bur-
den involved, note that �1010 different sets must each
be evaluated to find the optimum set for a 3–sensor
system, a search that requires several days on exist-
ing personal computers. This huge number grows if
we try to find the best 4 or 5 sensors, for which the
task is now unfeasible because the numbers of pos-
sible sets increase by factors of 103 and 106, respec-
tively.

Faced with such daunting computational chal-
lenges, we turn to simulated annealing algorithms
that greatly speed the finding of optimum solutions to
a system with many different sets of sensors. If we
slightly relax our requirements for recovery accuracy,
an annealing algorithm can give a nearly optimum
solution after testing only �105 sets of sensors. In-
deed, an annealing algorithm gives ever-better solu-
tions the longer we let it run, in contrast with an
exhaustive search in which simulation time is not a
variable that can be chosen a priori.

Simulated annealing algorithms have been widely
used as search algorithms in physics27,28 and in the
design of multispectral imaging systems,6,17 but typ-
ically they evaluate only a single metric such as
CIELAB 	E*

ab or spectral RMSE. Such algorithms
are based on simulating the process of annealing
(slow cooling after heating) of a thermodynamic sys-
tem (e.g., a gas) that is always in thermal equilib-
rium. The algorithm searches for the minimum
energy state when temperature decreases with time,
or at least for a local minimum from which the system
will not move without an enormous energy perturba-
tion, a condition not found in thermal equilibrium.
We must construct a rule for changing the existing
state, calculate its energy, and accept it as the system
state with a probability given by Bolztmann’s factor
e�	E�KT. In our case, energy is replaced with Eq. (7)’s
CSCM cost function, and this substitution makes
clear why the CSCM must be a single function that
equals zero for perfect matches. The state is repre-
sented by a given set of sensors (the peak sensitivities
and FWHM of which determine the energy of the
state), and the rule of state-changing will statistically
favor those states whose energy is close to that of the
current state.

We have compared the efficiency of the simulated
annealing algorithm with an exhaustive, yet feasible,
search across 3 sensors. We performed the exhaustive
search together with the simulated annealing search
using (1) the CSCM as a single cost function and (2)
various random additive noise levels, always with
12 bits for quantization noise (Table 2). In most cases

the annealing algorithm found the same optimum
solution as the exhaustive search. In all other cases,
the two algorithms’ solutions were quite similar, and
the shapes of the sensors sensitivity curves were
nearly identical. This suggests that the local mini-
mum given by the annealing algorithm is usually
equivalent to that obtained by the exhaustive search.

5. Results

In this section we present the best sensors obtained
with the simulated annealing algorithm in various
cases. We first examine the influence of the cost func-
tion by restricting ourselves to just 3 sensors. Then
we use CSCM exclusively to study the influences of
noise, number of sensors, and number of eigenvectors
on sensor spectral sensitivities. Our larger goal is to
determine general properties of the sensors for our
planned multispectral imaging system.

As noted above, some authors use only one metric
in their simulated annealing algorithms to find the
best sensors for a multispectral system.6,17 Connah et
al. found that using RMSE as a cost function pro-
duced sensors evenly distributed across the visible
spectrum.6 When they used CIELAB, they obtained
sensors with sensitivity spectra similar to those of
human cones.

As Table 3 shows, using only a single metric pro-
duces sensors that work well according to that metric
but that perform poorly according to the other met-
rics. In particular, CIELAB alone should not be used
as a cost function because its small 	E*ab errors come
at the price of large GFC and IIE(%) errors. Thus we
use the CSCM, which strikes a balance between the
three different metrics.

In a second round of simulations, we looked for the
best set of 3, 4, and 5 sensors to recover our Granada
skylight spectra using the linear model with 3, 4, and
5 eigenvectors at various noise and quantization lev-
els.

Figure 1 shows that for a given number of sensors,
the peak sensitivities and FWHM are similar at dif-
ferent noise levels for the 3–5 eigenvectors used in each
linear reconstruction of a skylight spectrum. This be-
havior is desirable in a practical multispectral system.
As other authors have noted,7,10 sensor sensitivity
curves tend to sharpen when the noise is high (i.e., low
SNR). This occurs because sharper sensors make the
matrix � more robust to noise by decreasing its condi-
tion number. Not surprisingly, the curves also sharpen
as we increase their number (i.e., as we approach a
narrow-band hyperspectral imaging system).

Table 4 compares the mean values of the metrics
used in this study for our Granada skylight spectra
recovered with the best sets of sensors. Both Table 4
and its graphical representation in Fig. 2 show that
for low noise (i.e., high SNR), recovered skylight spec-
tra are more accurate if we (1) increase the number of
sensors and (2) match the number of eigenvectors and
sensors.15 The former effect occurs because we can
sample the visible spectrum more reliably with 5 sen-
sors than with 3, although differences in the metrics
are not large.
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Something similar occurs when we quantize at ei-
ther 12, 10, or 8 bits, as seen in Fig. 3 for the case of
5 sensors, 5 eigenvectors, and an SNR of 30 dB. Re-
sults improve if we use 12 bits rather than 8 bits, but
the difference is small. Thus we can use a cheaper
and faster 8
bit A�D converter without significantly
degrading system accuracy. In fact, the most impor-
tant step in building a multispectral imaging system
is to optimize the sensors for the remote-sensing task
at hand rather than to increase their number or
quantization levels, both of which will increase sys-
tem cost and response time.

For high-noise (low SNR) sensors, increasing the
number of eigenvectors from 3 to 5 is always pref-

erable, whereas adding more sensors simply in-
creases system noise. This can be appreciated by
noting that a system with more sensors likely has
more connections, more transistors in the CCD, and
more memory cells. All these elements individually
contribute noise, and so each raises the total noise
level. As other authors have noted,1,7,10 spectral re-
coveries do not improve significantly in noise-free
simulations if the number of sensors increases
from, say, four to seven (the particular numbers of
sensors depend on system hardware and on the
shapes of the skylight spectra). If we add noise to
such simulations, using more sensors increases the
noise in matrix �. This noise propagates through-

Table 2. Comparison of Exhaustive and Simulated Annealing Searches for the Granada Skylight Spectra Recovered with 3 Sensors at 12-Bit
Quantization for Different SNRa

SNR Search
Number of

Eigenvectors

Peak Sensitivities (nm) FWHM (nm)

CSCM � SD
1st

Sensor
2nd

Sensor
3rd

Sensor
1st

Sensor
2nd

Sensor
3rd

Sensor

40 dB Exhaustive 3 380 465 615 250 80 210 2.4 � 1.1
Annealing 380 460 630 180 80 120 2.4 � 1.1

Exhaustive 4 380 465 635 280 70 190 2.4 � 1.2
Annealing 380 465 635 280 70 190 2.4 � 1.2

Exhaustive 5 395 475 630 260 60 250 2.5 � 1.2
Annealing 395 475 630 260 60 250 2.5 � 1.2

30 dB Exhaustive 3 380 465 595 170 90 120 4.8 � 2.2
Annealing 380 465 595 170 90 120 4.8 � 2.2

Exhaustive 4 395 470 620 250 80 190 5.0 � 2.3
Annealing 395 470 620 230 70 180 5.0 � 2.3

Exhaustive 5 395 465 615 250 80 190 4.9 � 2.1
Annealing 395 465 615 250 80 190 4.9 � 2.1

26 dB Exhaustive 3 395 460 550 100 60 90 7.3 � 4.1
Annealing 395 460 550 100 60 90 7.3 � 4.1

Exhaustive 4 385 460 605 200 70 150 7.1 � 3.2
Annealing 385 460 605 200 70 150 7.1 � 3.2

Exhaustive 5 395 470 605 220 70 160 6.7 � 3.0
Annealing 400 465 605 200 70 160 6.9 � 2.8

aCases where the annealing and exhaustive searches found the same solution are in bold type.

Table 3. Comparison of Best 3 Sensors Found Using Annealing Searches with Various Metrics, 3 Eigenvectors, and the Granada Skylight Spectraa

Cost
Function

Peak Sensitivities (nm) FWHM (nm)

GFC � SD
	E*ab

� SD
IIE�%�
� SD

CSCM
� SD

1st
Sensor

2nd
Sensor

3rd
Sensor

1st
Sensor

2nd
Sensor

3rd
Sensor

GFC 400 470 645 50 40 60 0.9994 � 0.0012 0.8 � 0.6 1.3 � 0.7 2.5 � 1.1
	E*ab 445 525 605 30 40 50 0.9923 � 0.0131 0.3 � 0.2 2.3 � 1.6 4.3 � 2.3
IIE(%) 470 475 720 20 250 290 0.9972 � 0.0040 1.3 � 0.8 0.7 � 0.5 3.2 � 1.4
CSCM 380 460 630 180 80 120 0.9993 � 0.0012 0.7 � 0.5 1.3 � 0.7 2.4 � 1.1

aSNR � 40 dB, and quantization is at 12 bits. The best result for each metric appears in bold type, when it alone was the annealing
algorithm’s cost function.
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out the mathematical path described in Section 2
and degrades system performance more than the
additional sensors improve it.7,10

Several steps are needed to implement a working
multispectral system such as those simulated here.
First, we must establish a priori the accuracy re-
quired of the system. Second, we must reduce noise
by all practical means (e.g., cooling the CCD and
subtracting its dark noise). Finally, we must decide
how many sensors our system will have, select a pre-
ferred A�D converter, and calculate both the system’s
desired response times and cost.

Naturally our system must work for spectra other
than those used to calculate the original dataset’s
eigenvector matrix V. Thus we extend our analysis to
skylight spectra measured at another site in Owings,
Maryland. Using 12
bit quantization and the best set
of sensors found for each case (see Table 4), we ana-
lyze metrics for these new spectra in bold-type rows
in Table 4. It too shows small errors for the recovered
spectra, demonstrating that both our spectral recov-
ery method and optimum sensors can be used to de-
velop a reliable system for imaging skylight spectra.
Note that although mean GFC and CIELAB 	E*ab

are similar for the Owings spectra, mean IIE(%) is

Fig. 1. Each row shows the spectral sensitivity curves of the best
3-, 4-, or 5-sensor systems, respectively (the numbers of eigenvec-
tors and sensors are equal in each case). Solid curves represent
sensors for SNR � 40 dB, while dashed curves represent sensors
for SNR � 26 dB.

Fig. 2. Means for the CSCM metric for 1567 skylight spectra
measured in Granada, Spain, using 3–5 sensors and 3–5 eigenvec-
tors at 12
bit quantization for various SNR.

Fig. 3. Effects of quantization noise: mean values for metrics of
the Granada skylight spectra using 5 sensors and 5 eigenvectors
for SNR � 30 dB.
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always less for the smaller Owings dataset than for
the larger one from Granada. This occurs because the
Owings spectra are from a limited range of solar el-
evations and are spectrally similar to most of the
Granada data. Both factors make the Granada eig-
envectors well matched to those that we could calcu-
late independently for Owings. The few spectra
measured at low solar elevations in Granada exert
relatively little influence on the PCA eigenvectors,
and these Granada spectra are the ones that increase
the mean Granada IIE(%). Yet even the least accu-
rate recoveries of skylight spectra at Owings (see Fig.
4) show relatively small differences between the orig-
inal and recovered spectra.

6. Conclusions

We have shown that linear methods based on PCA
allow accurate recovery of skylight spectra from
broadband camera sensors. We propose CSCM as a
single metric that takes into account three different
accuracy standards: spectral, colorimetric, and total
integrated irradiance. Our CSCM metric can easily
be used instead of CIELAB or RMSE alone in search
algorithms. We have presented a simulated anneal-
ing algorithm, using CSCM as a single cost function,
as a fast method for searching a limited number of
Gaussian sensors to construct an optimum multi-
spectral imaging system. We have simulated some
common noise sources present in any digital imaging
system in order to mimic noise in real images. We
have shown that increasing the number of sensors
does not necessarily improve the accuracy of recov-

ered spectra if sensor noise is high because each sen-
sor’s individual noise contributions degrade the
overall quality of the spectral reconstruction. Thus
the optimum number of sensors depends on noise
levels inherent to the given multispectral system.

Skylight has complicated spectra with different ab-
sorption bands that depend on species such as water
vapor, molecular oxygen, ozone, and aerosols, and the
relative strength of these bands varies daily and even
hourly. Yet despite this ever-changing spectral detail,
we find that a linear recovery algorithm using only a

Table 4. Means for the Granada Skylight Spectral Recoveries Using the Best Sets of 3 to 5 Sensors for Various SNR Levels and 12-Bit Quantizationa

SNR
Number of

Sensors
Number of

Eigenvectors GFC � SD 	E*ab � SD IIE�%� � SD CSCM � SD

40 dB 3 3 0.9993 � 0.0012 0.7 � 0.5 1.3 � 0.7 2.4 � 1.1
3 5 0.9988 � 0.0023 1.0 � 0.6 0.9 � 0.6 2.5 � 1.2
4 3 0.9994 � 0.0011 0.8 � 0.6 1.2 � 0.7 2.4 � 1.2
4 4 0.9997 � 0.0003 0.6 � 0.3 1.2 � 0.5 2.0 � 0.7
5 3 0.9993 � 0.0012 0.8 � 0.5 1.1 � 0.7 2.3 � 1.2
5 5 0.9998 � 0.0002 0.3 � 0.2 1.1 � 0.8 1.6 � 0.8
5 5 0.9990 � 0.0002 0.2 � 0.1 0.5 � 0.4 1.5 � 0.5

30 dB 3 3 0.9987 � 0.0016 0.9 � 0.5 3.2 � 1.9 4.8 � 2.2
3 5 0.9939 � 0.0067 1.6 � 0.7 1.7 � 1.4 4.9 � 2.1
4 3 0.9990 � 0.0017 0.9 � 0.4 3.5 � 2.1 4.9 � 2.4
4 4 0.9991 � 0.0008 0.9 � 0.5 3.5 � 1.4 4.9 � 1.8
5 3 0.9985 � 0.0017 1.1 � 0.6 2.8 � 1.6 4.7 � 2.0
5 5 0.9991 � 0.0009 0.8 � 0.4 3.3 � 2.1 4.6 � 2.3
5 5 0.9984 � 0.0009 0.7 � 0.3 1.7 � 1.3 3.3 � 1.6

26 dB 3 3 0.9981 � 0.0023 1.3 � 0.7 5.0 � 3.5 7.3 � 4.1
3 5 0.9867 � 0.0132 2.0 � 0.7 2.4 � 2.1 6.9 � 2.8
4 3 0.9986 � 0.0017 1.2 � 0.6 5.9 � 2.9 7.9 � 3.2
4 5 0.9902 � 0.0014 2.0 � 0.8 2.7 � 2.2 6.9 � 3.1
5 3 0.9976 � 0.0025 1.4 � 0.7 5.7 � 3.1 8.2 � 3.5
5 5 0.9988 � 0.0012 1.1 � 0.5 6.1 � 2.6 7.9 � 3.1
3 5 0.9970 � 0.0018 1.6 � 0.7 1.9 � 1.4 4.9 � 2.6

aRows in bold type are the means for 242 skylight spectra measured in Owings recovered with the best set of sensors at 12
bit
quantization.

Fig. 4. Original skylight spectrum (solid curve) measured in
Owings, Maryland, and recovered (dotted curve) spectrum for
SNR � 40 dB with 5 sensors, 5 eigenvectors, and 12
bit quantiza-
tion for the 90th percentile of the CSCM.

5694 APPLIED OPTICS � Vol. 44, No. 27 � 20 September 2005



few optimum Gaussian sensors returns high-quality
reconstructions of skylight spectra, even with sensor
noise. In future work, we will use a LCTF and a
monochrome camera to build the sensors simulated
here in order to study their actual performance in
recovering skylight spectra.
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