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In spectral imaging, spatial and spectral information of an image scene are combined. There exist several
technologies that allow the acquisition of this kind of data. Depending on the optical components used in
the spectral imaging systems, misalignment between image channels can occur. Further, the projection of
somesystemsdeviates fromthat of aperfect optical lens systemenoughthat adistortion of scene content in
the images becomes apparent to the observer. Correcting distortion andmisalignment can be complicated
for spectral image data if they are different at each image channel. In this work, we propose an image
registration and distortion correction scheme for spectral image cubes that is based on a free-form defor-
mation model of uniform cubic B-splines with multilevel grid refinement. This scheme is adaptive with
respect to image size, degree of misalignment, and degree of distortion, and in that sense is superior to
previous approaches. We support our proposed scheme with empirical data from a Bragg-grating-based
hyperspectral imager, for which a registration accuracy of approximately one pixel was achieved. © 2014
Optical Society of America
OCIS codes: (110.4234) Multispectral and hyperspectral imaging; (100.2980) Image enhancement;

(150.1488) Calibration.
http://dx.doi.org/10.1364/AO.53.003764

1. Introduction

Multi- or hyper-spectral image acquisition techniques
have drawn increasing attention in both industry and
science in recent years [1–3]. A multi- or hyper-
spectral image cube combines spatial and spectral in-
formation of the scene content [4]. Usually, a spectral
image cube can be considered as a stack of images
with varying spectral content. The distinction be-
tween multi- and hyper-spectral image cubes is often
based on the number of spectral channels acquired by
the system. However, for our work this distinction is

not critical, and in what follows we therefore simply
refer to spectral image cubes or spectral data.

In an optimal spectral imaging system, the image
content is free of spatial distortion and image mis-
alignment among image channels. A correct align-
ment means that pixels in each image channel
correspond to the same physical region of the scene
being imaged [5]. An image free of spatial distortion
is that produced by an optimal rectilinear lens sys-
tem, for which scene content is projected without
deformation on the image sensor.

However, in real imaging systems, image distor-
tion is always present to some extent due to imper-
fect optical components. The most common forms of
distortion are radially symmetric and related to the
symmetry properties of the lens system. If image
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distortion varies among image channels, it ulti-
mately leads to image misalignment. Spatial mis-
alignment in multichannel image data can also be
due to many other reasons. For instance, spectral im-
ages acquired by rotating different color glass filters
in front of a camera lens [6] cause pixel misalignment
among spectral channels. This is mostly due to the
mechanical mounting of the filters in the wheel,
causing variation in image projection for individual
filters [7]. Another source of misalignment is linked
to the presence of uncorrected transversal chromatic
aberrations, which causes a deviation of lens magni-
fication that depends on the wavelength of light that
passes the optical system [7,8]. Also, the usage of dif-
ferent optical components to acquire various spectral
image channels can cause misalignment. Multisen-
sor systems [9] or the multiple Bragg-grating-based
hyperspectral imager (Hyperspectral Camera V-EOS
by Photon etc.) [10] considered in this work are exam-
ples in which this applies.

It becomes clear that image distortion and image
misalignment are closely linked when it comes to
multichannel image data. A review of literature re-
veals a large variety of potential solutions for both
problems. For instance, radial and tangential distor-
tion can be modeled and corrected by Brown’s distor-
tion model [11,12]. Misalignment can be corrected by
image registration, for which Zitova and Flusser give
an extensive overview [13]. However, a solution that
accounts for both effects is preferable.

In this work, we concentrate on a method that be-
longs to the category of elastic registration models
based on B-splines [14]. The free-form deformation
modelofmultileveluniformcubicB-splinesused inthis
paper can correct imagemisalignment and account for
image distortion of arbitrary kind. Model parameters
are obtained in a fitting process that is performed once
for a calibration image scene.Onceobtained, themodel
canbeapplied to correct arbitrary spectral images cap-
tured in similar conditions. The approach is adaptive
with respect to image size, degree of misalignment,
and degree of distortion, which is superior to previous
approaches applied to the same problem. A detailed
comparison of this approach with a related work by
Špiclin et al. [15] can be found in Section 4.

This paper is organized as follows. Section 2 intro-
duces the image registration model for spectral im-
age data proposed in this work. Real image data,
acquired from a calibration scene, are used to obtain
the model parameters. The model is then applied to a
test scene, and registration performance is evaluated
analytically. This part of the work is described in
Section 3. In Section 5, we discuss our findings and
summarize the most relevant conclusions extracted
from the results.

2. Spectral Image Registration Model

Let C be an unregistered and distorted spectral im-
age cube, which contains a sequence of image data
matrices fIλ ∈ M�r; c�jλ � 1; 2;…wg, where M�r; c�
denotes the set of r × c matrices, with r × c being

the image resolution and w the number of spectral
channels. Further, let C0 be the corresponding refer-
ence spectral image cube fIλ0 ∈ M�r; c�jλ � 1; 2;…wg,
whose images are spatially aligned and free of distor-
tion. The domain of image coordinates is Ω �
f�x; y� ∈ N2j0 ≤ x ≤ r − 1; 0 ≤ y ≤ c − 1g.

Registrationanddistortion correction is theprocess
of aligning each image Iλ spatially to its reference
image Iλ0. The problem to be solved is finding a dis-
placement matrix set D � fZλ � �zλ�x; y��r×cj�x; y� ∈
Ω; λ � 1; 2;…wg, containing displacement vector
fields Zλ for every image channel, such that Iλ��x; y��
zλ�x; y�� � Iλ0�x; y�.
Without loss of generality we consider further only

the registration and distortion correction of one arbi-
trary spectral image channel I to its reference image
I0. The corresponding displacement vector field Z can
be decomposed into horizontal and vertical displace-
ment fields Zu � �zu�x; y��r×c and Zv � �zv�x; y��r×c,
such that

I��x� zu�x; y��; �y� zv�x; y��� � I0�x; y�: (1)

We assume horizontal and vertical displacements to
be independent and therefore illustrate in what fol-
lows only the case of horizontal displacement.

A. Displacement Representation by Uniform
Cubic B-Splines Modeled Surface

The surface characterizing a displacement field can
be described in parametric form as Q�s; t� � �x�s; t�;
y�s; t�; z�s; t��, with �s; t� being the surface parameters
in the range [0,1], and z being the displacement at
pixel position �x; y�. We model the surface using uni-
formcubicB-splines [14]. Theprojection of the surface
on the xy plane is divided into nr × nc patches of size
δ × δ, and the surface Q is divided into nr × nc subsur-
faces fQμνjμ � 0; 1;…nr − 1; ν � 0; 1;…nc − 1g. Each
subsurface is controlled by 4 × 4 B-spline control
points. The whole surfaceQ is controlled by �nr � 3� ×
�nc � 3� control points fpij � �xij; yij; zij�jxij � �i−1�·
δ; yij � �j−1� · δ; i� 0;1;…nr�2; j� 0;1;…nc�2g, lo-
cated on a uniform grid of spacing δ × δ, where
�xij; yij� are known spatial coordinates. Note that we
set the coordinate of the top-left pixel of the image
domain Ω as (0,0), so we allow negative values of
the coordinates whose spatial location is beyond this
point in upward and leftward directions.

Figure 1(a) illustrates an example of a surface that
consists of 3 × 3 subsurfaces. These subsurfaces are
controlled by 6 × 6 control points located on a uni-
form grid [illustrated in Fig. 1(b)].

Each subsurface Qμν, modeled by uniform cubic
B-splines, can be represented as

Qμν�s; t� �
X3
i�0

X3
j�0

pμ�i;ν�jBi�s�Bj�t�

�

0
B@
P3

i�0

P3
j�0 xμ�i;ν�jBi�s�Bj�t�P3

i�0

P3
j�0 yμ�i;ν�jBi�s�Bj�t�P3

i�0

P3
j�0 zμ�i;ν�jBi�s�Bj�t�

1
CA; (2)
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where fpμ�i;ν�j � �xμ�i;ν�j; yμ�i;ν�j; zμ�i;ν�j�jμ � ⌊x∕δ⌋;
ν � ⌊y∕δ⌋; i; j � 0; 1; 2; 3g are the control points on a
4 × 4 grid that controls the shape of Qμν, and Bi�s�
and Bj�t� are the ith and jth uniform cubic B-spline
basis functions evaluated at s and t. They are defined
as [14,16,17]

B0�s� � �1 − s�3∕6;
B1�s� � �3s3 − 6s2 � 4�∕6;
B2�s� � �−3s3 � 3s2 � 3s� 1�∕6;
B3�s� � s3∕6: (3)

At an arbitrary pixel position �x; y�, the displace-
ment z is computed as

z � f �x; y� �
X3
i�0

X3
j�0

zμ�i;ν�jBi�s�Bj�t�; (4)

where zμ�i;ν�j is the third component of control point
pμ�i;ν�j. Further, s � �x∕δ� − ⌊x∕δ⌋, t � �y∕δ� − ⌊y∕δ⌋,
μ � ⌊x∕δ⌋, and ν � ⌊y∕δ⌋.

Given this definition, the displacement z at every
location �x; y� is a weighted combination of the
16 control points in the local neighborhood.

Equation (2) can also be expressed in matrix
notation [18]:

Qμν � sMPμνMTtT

�

0
BB@
sMXμνMTtT

sMYμνMTtT

sMZμνMTtT

1
CCA; (5)

where s� �1; s; s2; s3�, t � �1; t; t2; t3�, Pμν � �pμ�i;ν�j�4×4,
Xμν � �xμ�i;ν�j�4×4, Yμν � �yμ�i;ν�j�4×4, Zμν � �zμ�i;ν�j�4×4,
i; j � 0; 1; 2; 3, and

M � 1
6

2
6664

1 4 1 0
−3 0 3 0
3 −6 3 0
−1 3 −3 1

3
7775: (6)

The C2 continuity of the uniform cubic B-splines
guarantees smoothness of the displacement surface
formed by individual subsurfaces. Further, due to the
local control property of the B-splinemodel, changing
the value of one control point only affects a local sur-
face (the neighboring 4 × 4 subsurfaces) [16,19]. This
property allows efficient implementation of multi-
level grid refinement (as described in Section 2.B).

B. Displacement Surface Fitting

The above definitions allow for modeling horizontal
and vertical displacements of arbitrary image coordi-
nates. The displacement surface for each image chan-
nel is obtained by fitting the previously defined
uniform cubicB-spline functions to a set of key-points,
which are pixels with known displacement values.
The coordinates of these key-points in the (registered
and undistorted) reference image I0 are f�x0n; y0n� ∈
Ωjn � 0; 1;…nk − 1g, with nk being the number of
key-points. So, again for the case of horizontal dis-
placement, key-points extracted from theuncorrected
image I are defined as K � f�xn; yn; zn�jzn � x0n − xn;
n � 0; 1;…nk − 1g with �xn; yn� being the spatial coor-
dinates of the pixel in I corresponding to the pixel in I0
with spatial coordinates �x0n; y0n�, and zn being the
horizontal displacement value of the key-point. The
residual displacement at each key-point location is
then defined as the difference between the key-point
displacement value and the displacement surface
value at the key-point location:

Δzn � zn − f �xn; yn�; (7)

where �xn; yn; zn� ∈ K, f is as defined in Eq. (4),
and n � 0; 1;…nk − 1.

We apply an iterative multilevel refinement of the
cubic B-spline model in the fitting process to mini-
mize the residual key-point displacement, leading

Fig. 1. (a) Example surface with 3 × 3 patches and the corre-
sponding 6 × 6mesh of control points and (b) xy plane of the control
point grid in (a).
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to a progressive fit of the displacement surface. The
process follows the order depicted in Fig. 2, and is
described as follows:

• Initialization
A set of 16 control points with zero z component

value are placed on an initial grid of 4 × 4 with spac-
ing δ�0� � 2�log2 maxfr;cg�, with r, c being the number
of rows and columns of the image data. These points
control the initial surface Q00 of size δ�0� × δ�0�, which
is at least equivalent to the size of the image
domain Ω.

The domain of displacement vector fields is aligned
with the upper left corner of Q00. In each iteration,
the grid spacing is divided by two, resulting in at
most log2�δ�0�� refinements steps.
• Termination condition
The iterative process terminates under two cir-

cumstances. First, if the maximal number of refine-
ment steps log2�δ�0�� is reached, and second, if there
is no residual displacement at any key-point location
larger than a desired threshold [calculated from
Eq. (7)]. In this work, we use one pixel as such.
• Grid fitting
The process of grid fitting is that of finding the z

components of the 16 neighboring control points of
each subsurface Qμν. These z components are ob-
tained using a least-square approach that minimizesP

3
i�0

P
3
j�0 z

2
μ�i;ν�j. The resulting fitted surface then

minimizes the deviation of f in Eq. (4) from zero over
the domain Ω [17].

We illustrate the calculation of z�l�ij for an arbitrary

controlpointp�l�ij initeration l × �l � 1; 2;…�.Letusde-
note the key-points that are located in the 4δ�l� × 4δ�l�

neighborhood of p�l�ij as K�l�
ij �f�xc;yc;zc�∈Kji−2≤ �xc∕

δ�l��<i�2;j−2≤ �yc∕δ�l��<j�2g. Control points p�l�ij
control the subsurfaces in this neighborhood, and
key-points K�l�

ij determine the value of p�l�ij . We call

K�l�
ij the proximity key-point set of p�l�ij . Correspond-

ingly, the value of z�l�ij is updated according to the

residual displacement of thekey-points in theproxim-
ity key-point set Kij:

z�l�ij � z�l−1�ij �
P

cW
2
cΔz0cP

cW
2
c

; (8)

where Wc � Ba�s�Bb�t�, a � i� 1 − ⌊xc∕δ�l�⌋, b�
j�1−⌊yc∕δ�l�⌋, s� �xc∕δ�l��− ⌊xc∕δ�l�⌋, t��yc∕δ�l��−
⌊yc∕δ�l�⌋, �xc; yc; zc� ∈ Kij, and Δz0c is defined as

Δz0c �
WcΔzcP

3
k�0

P
3
l�0 �Bk�s�Bl�t��2

; (9)

whereΔzc is the residualdisplacementof �xc; yc; zc�de-
fined in Eq. (7).
• Grid refinement
As mentioned above, the grid spacing is halved at

each iteration. The refinement is achieved by break-
ing each parametric range s and t at its midpoint and
inserting a new control point between each pair of
adjacent control points, resulting in a split of each
surface into four equal subsurfaces [18,20]. The split-
ting does not alter the shape of the B-spline surface.
As surface Qμν with control points Pμν is split into
fQ�1�

μν ;Q
�2�
μν ;Q

�3�
μν ;Q

�4�
μν g (subsurface index from upper-

left to lower-right), the parametric cubic B-spline
surface function for each subsurface becomes

Q�i�
μν � sMP�i�

μνMTtT; (10)

where i � 1;…4. According to [20], the new control
points of each subsurface P�i�

μν can be computed as
P�i�
μν � αleftPμνα

T
right, given

αleft �
(
A1 if i � 1; 3

A2 if i � 2; 4

αright �
(
A1 if i � 1; 2

A2 if i � 3; 4
; (11)

A1 �

2
666664

1
2

1
2 0 0

1
8

3
4

1
8 0

0 1
2

1
2 0

0 1
8

3
4

1
8

3
777775 A2 �

2
666664

1
8

3
4

1
8 0

0 1
2

1
2 0

0 1
8

3
4

1
8

0 0 1
2

1
2

3
777775 : �12�

Figure 3 shows an example of the grid refinement
of surface Q00. Before refinement, the surface is con-
trolled by 4 × 4 control points. After refinement, the
surface is split into four subsurfaces. Each subsur-
face is controlled by 4 × 4 control points, and the four
subsurfaces together are controlled by 5 × 5 control
points.

Not using a fixed number of control points with
this multilevel approach allows a high degree of
model adaptation to different image sizes and vary-
ing degrees of misalignment and distortion.

Fig. 2. Flow-chart of the multilevel grid refinement of the uni-
form cubic B-spline fitting process.
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C. Key-Point Extraction

Key-points are pixels in the image cube with known
displacement values (see Section 2.B). Theoretically,
key-points can be extracted from arbitrary scene con-
tent, as long as the displacement values are known.
If spectral image channel registration is to be per-
formed, correspondence of key-points for all spectral
images has to be ensured.

We use the spectral scene cube of a printed checker-
board pattern attached to a flat board as the reference
object (see Fig. 4, lower left) for key-point extraction.
Here, key-points are defined as the corners where
checker patches intersect. The Harris corner finder
[21] is used to locate the corners in a neighborhood
of �2∕3�d × �2∕3�d around an initial position, where
d is the spacing between neighboring black patches.
To define the initial positions, four outer corners of
black squares are manually selected in the first spec-
tral image I1 to span a quadrangular region of maxi-
mum size. The intermediate initial positions of the
other corners in that image are then computed from
the four manually selected corners by dividing the
quadrangle uniformly in partitions that correspond
to the number of vertical and horizontal patches.
For the other spectral image channels Iλ × �λ �
2; 3;…w� the initial key-point positions are set to
the real key-point positions in Iλ−1.

One might ponder locating the corners using the
Harris corner finder on the entire image rather than

in a predefined search window as described above.
We found this approach to not be very robust to ob-
tain correspondence for corners in all spectral image
channels. Locating corners from predefined search
windows ensures correspondence and equal numbers
of extracted corners in each spectral image channel.

To perform image registration without distortion
correction, an arbitrary Iλ can serve as reference im-
age I0, to which all other images are registered. If dis-
tortion correction is to be performed, the problem
occurs that a reference image, free of distortion, is
usually not available. However, this limitation can
be circumvented in practice for many applications.
Recall from Section 2.B that I0 is not strictly required
for displacement surface fitting, but rather the key-
point coordinates in I0, which are f�x0n; y0n� ∈
Ωjn � 0; 1;…nk − 1g. If the system magnification
factor is known and the calibration scene was aligned
perpendicular to the optical axis of the system, the
checkerboard grid spacing in image pixel units
can be determined. Based on the premise that in a
distortion-free imaging system the checkerboard pat-
tern is rectilinearly projected, a coordinate grid can be
spanned over the image domain. This grid can then be
aligned with the calibration scene image data.

3. Experiments and Results

In what follows, we introduce the spectral image ac-
quisition device considered in this work. Further, the
performance of the proposed approach for image
registration and distortion correction is illustrated
for several experiments. The spectral image channel
registration is verified numerically and by simulat-
ing image captures of a conventional RGB camera.

Fig. 4. Illustration of the acquisition setup (up), calibration
target (lower left), and test scene (lower right). The numbered
red squares in the test scene depict locations (1–5) for which
the spectral image channel registration was verified numerically
(see Section 3.B).

Fig. 3. Example of the multilevel grid refinement process: one
refinement step for a sample patch Q00.
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Also, distortion correction is analyzed quantitatively
for a test scene.

A. Bragg-Grating-Based Hyperspectral Imager

In this study, we have used a volumetric Bragg-
grating-based camera (Hyperspectral Camera V-EOS
by Photon etc. [10]). With this device, spectral data
from 400 to 1000 nm can be acquired with a spatial
image resolution of 1392 × 1040 pixels. A volumetric
Bragg grating is an optical element for which the re-
fraction index varies periodically. The modulation of
the refraction index causes light diffraction that af-
fects only anarrow region of the electromagnetic spec-
trum. Depending on the incidence angle of light and
themodulation period of the grating, the element acts
as a tunable spectral filter [22–24]. Due to the volu-
metric nature of the grating, scene radiance from
an image scene can be altered such that a spectral fil-
tering occurs in one spatial dimension of the image,
whereas the other dimension is not affected. Result-
ing from that is an image in which the intensity at
each pixel is corresponding to a specific spectral part
of the scene radiance. The functional behavior of the
pixel location and central wavelength of the filter can
be obtained in a calibration process (if the incident an-
gle of light on the grating for each image pixel in the
scene and the grating modulation frequency are
known). By rotating the grating and imposing a
modulation of the filter function at each pixel location
in the image, it is possible to acquire a set of images
that sample the scene radiance with high spectral ac-
curacy. As the functional relation of pixel location and
spectral tuning is known, the image cube can be
rearranged such that a resulting image cube contains
in each channel only the spectral signature of the im-
age content that corresponds to a certain wavelength.
The calibrationand rectification procedure to obtain a
spectral cube is provided by the manufacturer. To
achieve the wide spectral range from 400 to 1000 nm,
two volumetric gratings with different grating modu-
lation periods are mounted in the device to acquire
400–640 nm and 650–1000 nm, respectively.

In this work, we only used spectral data in the
range from 430 to 1000 nm. The reason for this is
that in our acquisition configuration, 400–420 nm
image channels require very long exposure times
and result in generally rather noisy image data that
are of less interest for our studies. The scene setup
used for this work is illustrated in Fig. 4 and consists
of the imaging device and scene illumination from
two incandescent light bulbs (Philips PF308) with
500 W each.

When analyzing rectified image cubes after acquis-
ition, the uncorrected image content shows a barrel-
shaped distortion pattern at each image channel that
is introduced by the optical components of the cam-
era, consisting of a zoom lens, a collimating and fo-
cusing lens, various mirrors, and the volumetric
Bragg gratings. The distortion effect is further
coupled with a wavelength-dependent image mis-
alignment. A sample image of the 700 nm channel

with the automatically extracted key-point grid is
illustrated in Fig. 5. In Fig. 6, the same image scene
is illustrated with an overlay of the reference key-
point grid in the corresponding reference image.

The illustrated key-points are those visible in all
image channels. Key-points close to the edges of
the image might not be visible in all image channels
or corrupted by noise and are therefore excluded.

B. Verifying the Spectral Image Channel Registration
Numerically

In a correctly registered image cube, image objects
are located at the same spatial position in all spectral
image channels. A simple way to verify image regis-
tration is therefore to track object points over the
spectral dimension of the cube.

For our analysis, we did that for five locations in a
specifically designed test scene, illustrated in the
lower right of Fig. 4. Locations 1–4 are the intersec-
tions of black squared patches close to the image cor-
ners, and location 5 is the intersection of black
patches in the image center. These corner locations
are extracted by applying the automatic corner ex-
traction approach described in Section 2.C. Figure 7
illustrates the x and y coordinates for locations 1–5
and every image channel of the uncorrected and cor-
rected image cube of the test scene.

From this figure, we have some interesting obser-
vations. Between the image channels of 640 and
650 nm in the uncorrected cube, a rather large dis-
placement takes place (for instance, for location 1,
Δx � 6.9 pixels and Δy � 17.3 pixels). The misalign-
ment is due to the change in grating that occurs
between those channels; i.e., images below 650 nm
are acquired using the first grating, and images from

Fig. 5. Key-point extraction for the 700 nm image channel: the
left image illustrates the uncorrected calibration scene with an
overlay of automatically extracted key-points connected by green
lines. In the right image, the extracted key-points are illustrated
without the corresponding image.

Fig. 6. Sample image of the 700 nm channel with overlay of refer-
ence key-points (left) and reference key-points without the corre-
sponding image (right).
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650 nm on are acquired using the second grating. The
amount of misalignment due to the different gratings
used is expected to be the same at every spatial lo-
cation in the image. However, when comparing the
displacement of location 1 with locations 2–5, it
can be observed that the amount of displacement de-
pends on the spatial location (i.e., is different for the
five spatial locations). The reason for this is that
what is measured from the image is the displacement
composed not only by a global translation due to gra-
ting misalignment, but also by local distortion of the
test scene content.

In summary, from this experiment we can see that
the maximal deviation among the selected five loca-
tions is reduced from 17 pixels in the uncorrected
cube to one pixel in the corrected cube. A significant
reduction of misalignment is therefore achieved with
the proposed free-form deformation model in all
evaluated regions of the test scene.

C. Verifying the Spectral Image Channel Registration by
Simulated Image Capture

To allow visual assessment of the improvement in
image registration, we simulated the capture of a
conventional three-channel RGB camera from spec-
tral radiance data. For discrete data, the integral im-
aging process can be written in matrix form as
follows: a camera response at pixel location �x; y� is
simulated as

p�x;y� � Yr�x;y�; (13)

where p�x;y� ∈ R3 are camera responses correspond-
ing to radiance r�x;y� ∈ Rw at spatial location �x; y�.
The 3 ×w matrix of spectral responsivities of the
RGB camera system is Y, andw is the dimensionality
of spectral data.

In Figs. 8 and 9, the simulated capture of the cal-
ibration and test scene is shown for the uncorrected
and corrected image cubes. A zoom view is provided
for a better illustration of the image quality.

We can see that the color fringe effect, visible in the
images rendered from the corrected cubes, is reduced
clearly. Another visual effect of the correction is that
image sharpness is increased for the corrected image.
We measured sharpness from gray-scale images, ob-
tained by transformation of the simulated three-
channel �R;G;B� images using color transformation
IGS � 0.2989R� 0.5870G� 0.1140B. This particu-
lar instance of RGB to gray-scale transformation re-
fers to the rgb2gray function of the Image Processing
Toolbox of the numerical computing environment
MATLABR2012b byMathWorks, Inc. The numerical
measure of image sharpness, defined as the sum of
the gradient image divided by the number of image
pixels, indicates an increase in sharpness of 1.24%
over the whole image.

D. Verifying the Distortion Correction

As mentioned before, apart from being used to cor-
rect channel misalignment, the proposed approach
can also correct image distortions at each spectral
image channel. Since we could not ensure a perfect
perpendicular alignment of the calibration scene
with the optical axis of the acquisition system in our
setup, we determined an approximation of grid coor-
dinates that served as the reference key-point
coordinates f�x0n; y0n� ∈ Ωjn � 0; 1;…nk − 1g. The
approximation was achieved by using the manually
selected four outer corners in I1 of the calibration
scene and the computed intermediate initial posi-
tions of image coordinates where black patches of
the checkerboard pattern intersect (see Section 2.C).
We have found for our data that this approximation
produced satisfactory results.

To assess image distortion, we followed the simple
approach of identifying straight lines of scene objects
from the image data. Visual assessment of the ren-
dered images of uncorrected and corrected cubes of
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Fig. 7. Locations 1–5 in the test scene (the spatial locations of five
center points of the checkerboard pattern) are traced over the spec-
tral dimension. The blue curve illustrates the trace for the uncor-
rected cube, the red for the corrected cube.

Fig. 8. Color image rendered from the spectral image cube of
the calibration scene: before (left) and after (right) correction.
The zoom view illustrates the color fringe effect due to channel
misalignment.
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the calibration scene in Figs. 8 and 9 illustrates the
correction of the barrel-like distortion. The black
fringes close to the extremes of the rendered images
from corrected cubes (right side in Figs. 8 and 9) cor-
respond to the zero-padding of undefined image coor-
dinates, resulting from the warping process.

Visual assessment is prone to be biased by the sub-
jectivity of the observer, and evaluating the distortion
correction on a rendered image does not assure distor-
tion correction at each channel of the image cube.
Therefore, we used the black rectangle in the test
scene enclosing the checkerboard patterns (see Fig. 4)
for a quantitative analysis of distortion.

We defined a measure to characterize the degree of
distortion in the test scene. This measure is the rel-
ative area difference d, calculated as

d � 100% ×
�
Areal

Atheo
− 1

�
; (14)

where Areal is the area bounded by the distorted rec-
tangle (including the linewidth of the rectangle).
Atheo is the rectangular area enclosed by the four cor-
ners of the distorted rectangle.

The distortion measure d was computed for each
image channel of the test scene cube and is illus-
trated in Fig. 10. From this figure it can be seen that
the amount of pixels exceeding the theoretical rec-
tangle size is reduced from approximately 3% in

the uncorrected cube to approximately 1% in the cor-
rected cube.

4. Discussion: Comparison with a Related Work

There exists another work about geometric calibra-
tion of a spectral imaging system using B-splines
by Špiclin et al. [15]. Their imaging system captures
spectral near-infrared information and is based on
an acousto-optic tunable filter and a near-infrared
sensitive camera. While the application of their sys-
tem remains unknown, the description of the optical
components indicates acquisition of small objects of
approximately 30 × 30 mm, and the spectral range of
the acquired data is described to be from 1000 to
1700 nm. The Bragg-grating-based spectral imaging
device considered in this work in contrast is sensitive
in the visible and the near-infrared range of the
electromagnetic spectrum of light (400–1000 nm)
and is used for larger scenes. The B-spline model that
Špiclin et al. use for their system with small FOV
only requires a 4 × 4 × 3 mesh of control points to
achieve subpixel accurate image registration, as
tested on their corrected calibration scene. This con-
figuration is not accurate enough with our device, as
the local image distortion cannot be corrected for at
every spatial location in the image with a small num-
ber of control points. The multilevel grid refinement
that we have used in our approach allows us to obtain
subpixel registration accuracy for the calibration
scene at any key-point location, and maximum
deviation obtained from a test scene of approxi-
mately one pixel. Further, in Špiclin et al.’s study
only a relatively small fraction of image channels
from the spectral cube is required to fit the model.
The underlying assumption that misalignment and
distortion are continuous and smooth over the spec-
tral dimension does not generalize to our device. The
mostly automated scheme of key-point extraction
and model creation for every image channel pre-
sented here, on the other hand, is sufficiently simple
to allow modeling image misalignment and distor-
tion for every image channel of the spectral cube.

5. Conclusions

The free-form deformation model of multilevel uni-
form cubic B-splines seems suitable for channel mis-
alignment and distortion correction of spectral image
cubes. It can correct for arbitrary misalignment and
distortion patterns. In this work, themodel is created
empirically by iteratively fitting the multilevel uni-
form cubic B-spline functions to a set of key-points
that are located as scattered data points over the im-
age domain. The multilevel nature of the fitting proc-
ess makes themodel adaptive to image size, degree of
misalignment, and degree of distortion, and for some
acquisition systems this can be an advantage over
the previous study related to hyperspectral image
cube registration. For extracting key-points from
spectral image data of arbitrary scene content, we
have used a semiautomatic method based on the

Fig. 9. Color image rendered from the spectral image cube of the
test scene: before (left) and after (right) correction. The zoom view
illustrates the color fringe effect due to channel misalignment.
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Fig. 10. Amount of distortion d is quantified for each image
channel of the test cube as the relative area difference between
the area bounded by the distorted rectangle in the test scene
and the rectangular area enclosed by the four corners of the dis-
torted rectangle.
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Harris corner finder that allows subpixel accurate
corner extraction in all image channels.

The performance of the proposed approach was
evaluated with real image data from a Bragg-
grating-based spectral imaging device. The device ac-
quires imagedata in thevisibleandnear-infraredpart
of the spectrumof light, andmisalignment and distor-
tion occur at all image channels to different degrees.
The results of misalignment and distortion correction
were evaluated by several measures. First, the image
channel misalignment was quantified in different
spatial locations of a test scene. For the uncorrected
image cube, this residual was found to be up to 17
pixels. For the corrected cube, less than one pixel mis-
alignment was found. Apart from this, RGB color im-
ages were rendered from the spectral image cube.
Visual assessment indicated that the strong color
fringe effect present in the images obtained from un-
corrected image cubes vanished entirely. Itwas shown
that the correctionalsomanifests inan increase in im-
age sharpnessby1.17%.Toevaluatedistortion correc-
tion, thedeviation of a rectangular image region in the
test scene was quantified, and it could be demon-
strated that the image distortion can be reduced
significantly.

This study was supported by Chromasens GmbH
through UGR grant no. 2936, by the Spanish Minis-
try of Research and Innovation through grant
no. DPI2011-23202, and by a joint agreement be-
tween Tecnalia Corporation and the Fundacin Gen-
eral UGR-Empresa (reference no. C-3368-00). Our
implementation of the B-spline model was inspired
by the publicly available MATLAB implementation
of B-spline-based image registration (MATLAB Cen-
tral File-Exchange File ID: #20057) by Dirk-Jan
Kroon (University of Twente, The Netherlands).
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