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Despite the global and local daylight changes naturally occurring in natural scenes, the human visual system usually
adapts quite well to those changes, developing a stable color perception. Nevertheless, the influence of daylight in
modeling natural image statistics is not fully understood and has received little attention. The aim of this work was
to analyze the influence of daylight changes in different high-order chromatic descriptors (i.e., color volume, color
gamut, and number of discernible colors) derived from 350 color images, which were rendered under 108 natural
illuminants with Correlated Color Temperatures (CCT) from 2735 to 25,889 K. Results suggest that chromatic and
luminance information is almost constant and does not depend on the CCT of the illuminant for values above
14,000 K. Nevertheless, differences between the red-green and blue-yellow image components were found below
that CCT, with most of the statistical descriptors analyzed showing local extremes in the range 2950 K–6300 K.
Uniform regions and areas of the images attracting observers’ attention were also considered in this analysis and were
characterized by their patchiness index and their saliency maps. Meanwhile, the results of the patchiness index do
not show a clear dependence on CCT, and it is remarkable that a significant reduction in the number of discernible
colors (58% on average) was found when the images were masked with their corresponding saliency maps. Our
results suggest that chromatic diversity, as defined in terms of the discernible colors, can be strongly reduced when
an observer scans a natural scene. These findings support the idea that a reduction in the number of discernible
colors will guide visual saliency and attention. Whatever the modeling is mediating the neural representation of
natural images, natural image statistics, it is clear that natural image statistics should take into account those local
maxima and minima depending on the daylight illumination and the reduction of the number of discernible colors
when salient regions are considered. © 2017 Optical Society of America

OCIS codes: (330.1690) Color; (330.1720) Color vision.
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1. INTRODUCTION

Natural image statistics have deserved a lot of attention during
the last years supporting the idea that the Human Visual
System (HVS) evolved to be adapted to the natural environ-
ment [1]. Different studies have characterized the properties
of the natural images with the aim to understand our visual
coding [2]. Important results in color vision encoding have
been derived from the use of this strategy. The transformation
of the cones’ responses into opponent chromatic channels can
be justified by the reduction of visual redundancy [3,4]. Also,
color and space properties of receptive fields [5] and cortical
cells [6] are from redundancy analysis and obtained, for in-
stance, from independent components analysis.

The color signal of objects depends on the spectral reflec-
tance of their surfaces and the spectral power distribution
(SPD) of the light impinging on it. Global temporal variations
in the SPD, as a result of the sun’s location and weather

conditions, have been characterized and expressed in terms
of Correlated Color Temperature (CCT) [7]. However, more
abrupt local variations of illumination may be included in natu-
ral images due to their complex spatial structures, including
occlusions, mutual reflections, and shading [8]. Despite these
global and local daylight changes naturally occurring in natural
scenes, the HVS usually adapts quite well to those changes, de-
veloping a stable color perception [9].

The influence of daylight in modeling natural image statis-
tics is not fully understood and has received little attention;
only the chromatic diversity and color gamut expanded under
different daylights have been analyzed by some authors.
Martinez-Verdú et al. [10] established the variations of the
number of colors for the object–color solid as a function of
the spectral composition of daylights are small. Although the
spectral composition of the illuminant in natural scenes
also varies across the scene, and the application of the
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color-difference formulas in these non-ideal conditions will
produce only approximate results, Linhares et al. [11] consid-
ered it unlikely to influence the results critically. Masaoka et al.
[12] proposed the number of discernible colors depends on the
color appearance model, color space, and color difference limen
used. Their results show that the number of discernible colors
without a Von Kries color adaptation peaks at CCTs around
4000 K in CIELAB and CIE94 color spaces, and an increasing
trend is found for CCTs in CIECAM02 and CAM02-UCS
spaces in the range 2000 K–10,000 K, but they conclude
the variations of this dependence were determined mainly
by the chromatic adaptation transformation used.

Nascimento and Masuda [13] found a clear dependence of
naturalness (how natural colors appear to observers) and pref-
erence (how pleasant the colors are) with illuminant CCT.
Their results suggested that the most natural colors were pro-
duced under a CCT of 6040 K and the most preferred colors
under a CCT of 4410 K. In addition, Nieves et al. [14] studied
how color edges in natural scenes were influenced by natural
illumination obtaining slight changes with CCT, but without
differences between the postreceptoral responses to daylight
variation. Nevertheless, the invariance in the spatial ratio of
cone excitations arising from the color signal with changes
in illumination may provide the basis of color constancy [15].

The aim of the present work was not only to analyze the
influence of daylight changes in high-order statistics descriptors
related with chromatic diversity (color volume and gamut, and
number of discernible colors) but also to study their influence
related to the regions of the images containing uniform areas or
eye fixations in visual search. The dependence of the chromatic
statistics descriptors on the salient regions was also considered.
For that purpose, we used 350 color images, classified in seven
semantic categories (forests and parks, fields, shores, moun-
tains, beaches, rivers and waterfalls, and fruits and flowers),
which were rendered under 108 natural illuminants with CCT
from 2735 to 25,889 K.

2. METHODS

A. Images
We have used 350 RGB 400 × 400 pixels color images that
were collected by the authors and also selected from the
SUN Database [16]. The pictures were classified into seven se-
mantic categories depending on their image content: Forests
and Parks, Fields, Shores, Mountains, Beaches, Rivers and
Waterfalls, and Fruits and Flowers. Every RGB image was
normalized to the range (0, 1), and its CIE tristimulus values
were found and simulated under a set of 108 daylights SPD
characterized by their respective CCTs in the visible range
[400–700] nm. The simulation was made using the
Bradford chromatic adaptation algorithm:0
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Figure 1(a) shows examples of the same picture reproduced
under three different illuminants (2735, 6478, and 25,889 K).

Daylights were measured in Granada, Spain, from sunrise to
sunset under different atmospheric conditions, and cover a vast
range of CCTs from 4800 K up to 30,000 K [7]. The simulated
daylight SPDs were obtained with SBDART, a software tool to
compute plane-parallel radiative transfer energy in clear and
cloudy conditions within the Earth’s atmosphere and at the
surface [19] to cover CCTs below 4800 K.

Finally, the simulated pictures were transformed to CIELAB
to benefit from the uniform color spaces to match the color
properties of the environment with their visual representation
[20]. Additional details about the validation and accuracy of the
Bradford transform can be found in the Appendix section.

B. Data Analysis
The high-order statistical descriptors were the Patchiness Index
(PI), the color gamut (CG), the color volume (CV), and the
number of discernible colors (NdC) as described below. The
NdC will be analyzed also in terms of the salient content in
images.

1. Patchiness Index
The term “patchiness” was introduced by Yoonesi et al. [21] for
describing the proportion of the image that contains uniform
areas. An image with large uniform areas or with a lot of uni-
form areas will have a higher patchiness than an image with rare
and small uniform regions. Patchiness is defined as the portion

Fig. 1. (a) Three examples of the same picture simulated under dif-
ferent illuminants (2735, 6478, and 25,889 K). (b) Color gamut in
the CIELAB �a�; b�� plane and corresponding best-fitting ellipses and
(c) corresponding color volume of the pictures shown on the left.

Research Article Vol. 56, No. 19 / July 1 2017 / Applied Optics G121



of pixels falling within a � threshold in the bandpass-filtered
version of the image, averaged across multiple filter scales.

In this work the L�, a�, and b� planes of the images were
filtered with isotropic log-Gabor filters defined in the Fourier
domain as

LGF�f ;θ�� exp
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where f and θ are the polar coordinates of any point, R is the
radius vector, F is the central spatial frequency, and σ is the
spatial frequency bandwidth of the log-Gaussian function.
These filters were not only used because they remove to zero
the dc level of the image and represent quite well the cortical
cells response, but also they are range independent; their re-
sponses are determined by the relations among pixels instead
of the range of the input signal, and in that way, the calculation
of the patchiness index for L�, a�, and b� channels of an image
doesn’t depend on the different signal levels of them. For that
reason, when they are applied to noise-free images, the same
value of patchiness is produced and uncorrelated Gaussian
noise σ was added to each CIELAB plane set to 10% of the
mean of the signal to avoid it [21].

Six spatial frequencies were used and the filtered images
were then converted to binary images using an arbitrary fixed
threshold set to �0.07 from the mean. The use of a fixed
threshold was based on its robustness to noise. The portion
of pixels falling within the upper and lower threshold bounds
was measured, and the patchiness index was calculated as the
average of these values across the six filter scales.

2. Color Gamut and Color Volume
The color volume of each natural scene, defined as the palette
of all available colors at all available intensities, was determined
for all the illuminants. The color gamut was obtained by pro-
jecting the color volume into the plane �a�; b�� of CIELAB
color space. The limits, shape, and orientation of the gamut
for each image and each illuminant were characterized by
the properties of an ellipse fitted to the data based on a least
squares criterion. Area, axis ratio, and angular position were also
estimated for each color gamut.

Figures 1(b) and 1(c) show examples of the color gamut
with its best fitted ellipse and the color volume, respectively,
of the same picture reproduced under illuminants 2735,
6478, and 25,889 K.

3. Number of Discernible Colors
The general principle behind the estimation of the number of
discernible colors is to segment the color space in just notice-
able subvolumes and to count the number of these containing
the color representation of at least one pixel. The estimation
of the number of discernible colors depends on the counting
method (square-packing, ellipse-packing, or convex-hull) [12].
We used in this work the square-packing method that assumes
a unit cube to be one discernible color in a Euclidean color
space. The L�, a�, and b� values of each pixel of the picture
were rounded to the nearest integer greater than or equal to
the pixel value. In that way all the values falling inside the same
cube are grouped in the upper corner of it.

4. Saliency Maps of Color Images
In addition to the high-order statistical descriptors, salience
maps for all images were also computed. The saliency map
is a biologically plausible model for bottom-up overt attention
proposed by Koch and Ullman in 1985 [22]. In the review of
the model by Itty et al. [23], the visual saliency maps are topo-
graphical codifications of fixation position in visual search over
the entire scene based on different image features such as
luminance, orientation, or color.

In the Tian, Wan, and Yue [24] color saliency model, which
is used in this work, five saliency maps are obtained from every
picture in the Hue-saturation-Intensity color space (HIS).
These maps correspond to the following features: Contrast
of hue, contrast of saturation, contrast of intensity, dominance
of warm color, and dominance of brightness and saturation.
Harel [25] implementation of the map normalization operator
N�·� is applied to the features maps to globally promote them
with a small number of strong peaks of activity (conspicuous
locations) and suppress them with numerous comparable peak
responses. The saliency map is a weighted linear combination
of the five conspicuity maps normalized. Figure 2 summarizes
the framework of the Tian, Wan, and Yue color saliency model
we use.

3. RESULTS

A. Patchiness Index
The average values of PI for all CCTs and for all semantic cat-
egories were 0.940� 0.003, 0.93� 0.01, and 0.92� 0.01,
for the L�, a�, and b�, respectively. As Table 1 shows, the order
of CIELAB planes attending PI is L� > a� > b�, when the se-
mantic categories of images are sorted by their PI values.
Nevertheless, the values of the three planes are so similar that
this order is not significant. Results show that when the seman-
tic categories are arranged following an increasing or decreasing
order of PI in one of the channels, there is no order in the other
two channels.

Fig. 2. Framework of Tian, Wan, and Yue [24] color saliency
model.
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Although the three components L�, a�, and b� do not show
a meaningful variation of PI with CCT, all values are quite sim-
ilar above a CCT of 7950 K [Figs. 3(a)–3(c)]. PI values for
a� component, Fig. 3(b) shows almost constant variations
around 0.92 and above a CCT of 4083 K. Figure 3(c) shows
that the behaviors of all the categories in channel b� are similar
to other descriptors presenting a local maximum in the range
2414–5611 K (except for Coasts category).

B. Color Gamut and Color Volume
Figure 4 shows the contour of color gamuts for the seven
semantic categories of natural images simulated under two

extreme illuminants (CCTs of 2735 and 25,889 K). At each
CCT, all the categories have similar distribution of the color
gamut (“Coasts,” “Mountains,” and “Beaches and fruits” have
a smaller range in the a� channel). For both illuminants, the
gamuts are elongated in the yellow-blue direction (except
for “Forests and parks,” “Flowers and fruits,” and “Rivers
and falls” at 2735 K) and the areas are bigger (except for
“Mountains” and “Rivers and falls”) at 25,889 K. Besides, at
2735 K the gamut centers are clearly shifted to red and yellow
components (positive values in both axes) (8.59,38.35) but
they are near centered in a� and shifted to blue components
(negative value of b� ) at 25,889 K (−1.69, −18.19).

The data obtained from the ellipses fitted to the colors of
each scene and illuminants were averaged in the seven semantic
categories. The distributions of the angles, axis ratios, and areas
for different CCTs are represented separately for all the catego-
ries in Figs. 5(a)–5(c). Figure 5(a) shows the change of the angle
of each ellipse along its positive axes. The values from 0° to 90°
indicate an ellipse whose major axis is rotated to the right of
coordinate b� and values from 90° to 180° indicate an ellipse
rotated toward the left of coordinate b�. All the angles calcu-
lated for all the natural scenes under 108 illuminants are greater
than 90°. And all the categories have local maxima in the range
3671–7406 K so for those temperatures the ellipses are more
tilted to green. This effect does not mean that greens are more
used than reds; rather, it means that the saturation balance fa-
vors greens over reds [26].

Figure 5(b) shows the changes with CCT of the axis ratios of
the ellipses. The categories “Forests and parks” and “Flowers
and fruits” present a distribution of colors more symmetrical
than in the other categories (smaller values of axis ratio).
The categories obtaining high ratios show a strong dependence
with the illuminant CCT. All the categories show a local maxi-
mum in the range 6118–7209 K showing a more asymmetrical
behavior towards the yellow-blue direction (b� component) at
this CCT. For CCTs higher than 10,000 K, the ratio axis of all
the categories presents the same dependence on illuminant
CCTs, approaching a more symmetrical distribution of color
with temperature.

Table 1. Patchiness Index (PI) in the Seven Semantic
Categories Sorted by the Patchiness Index in L� Plane

L� a� b�

Coasts 0.95 0.93 0.94
Fields 0.94 0.94 0.91
Flowers and fruits 0.94 0.91 0.90
Rivers and falls 0.94 0.92 0.94
Beaches 0.94 0.93 0.94
Forests and parks 0.94 0.92 0.89
Mountains 0.91 0.94 0.91
Natural images 0.94 0.92 0.92

Fig. 3. Patchiness index for (a) L�, (b) a�, and (c) b�, respectively,
categories as a function of illuminant CCTs.

Fig. 4. Seven semantic categories color gamut contours under two
different illuminants of CCTs 2735 K (solid lines) and 25,889 K
(dashed lines). Chromatic coordinates of the corresponding whites
are also shown for reference (crosses).
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Figure 5(c) shows the changes with temperature of areas
of the ellipses expressed in CIELAB units. The range of areas
of the ellipses is 180–1085 for all the categories except for
“Flowers and fruits,” which is 1280–2735. Similar ellipse areas
mean similar gamut limits but not necessarily similar color ga-
muts because the colors are not uniformly distributed within
each ellipse. [26]. The area of all the categories show a similar
response with illuminant CCT, having a local minimum in the
range 5084–7209 K and being near constant for CCTs higher
than 10,000 K.

Finally, Fig. 5(d) shows the changes with temperature of
color volume in CIELAB units. All the categories present local
minima at 3903 K and local maxima in the range of temper-
atures 6339–6478 K. Again for CCTs higher than 12,000 K,
the color volume is nearly constant. The categories obtaining
high volumes show a strong dependence on illuminant CCT
compared to the other ones. The local maxima in color volume
at the same daylight CCTs that color gamut have local minima
are due to the L� component.

C. Number of Discernible Colors
Figure 6 shows the process followed to mask the original images
with their saliency maps. The original CIELAB images are first
converted to HSI images and the integrated saliency map is
calculated. Next the salient objects are extracted from their
background segmenting the integrated saliency map, and a
thresholding method [27] with threshold the average of the in-
tegrated saliency map is used. A region of interest (ROI) map is
applied to the segmented saliency map to remove noise [28],
and finally HSI images are masked with ROI maps and
converted back to CIELAB image format.

Figure 7(a) shows the changes in CCT of the number of
discernible colors using the square-packing method of the seven
semantic categories and the average value for the set of all the
natural images used. Due to the method used, the distribution
we get is similar to the distribution of the color volume of each
category. All categories present a quick increase in their color
volumes below the local maxima around 6339–6478 K. The
number of discernible colors is fairly constant for temperatures
higher than 9600 K.

Figure 7(b) shows the changes in temperature of the number
of discernible colors of the masked images. Results suggest also
an increasing trend in the number of discernible colors found
below the local maxima at 6339 K–6478 K (except “Forests
and parks,” “Fields,” and “Flowers and fruits,” for which
maxima are at higher temperatures). The number of discernible
colors of the salient regions is fairly constant for CCTs higher
than 14,000 K.

In Table 2, the range of the number of discernible colors is
shown for each category and for original images and salient re-
gions; the percentage of reduction of the average number of

Fig. 5. (a) Best fitted ellipse angle, (b) axes ratio, (c) area, and (d) color volume obtained for all semantic image categories and CCT of the
illuminants.

Fig. 6. Masking original images with their integrated saliency maps
process: (a) original image, (b) integrated saliency map, (c) integrated
saliency map segmented, (d) ROI map, and (e) masked image with
ROI map.
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discernible colors between the salient regions and the original
images is also computed. When the salient regions of the origi-
nal images are considered instead of them, a reduction of num-
ber of discernible colors between 44% and 63% is obtained.
Obviously the number of discernible colors in the salient re-
gions should be below the corresponding number when the
whole image is considered (as the salient region will contain
less number of pixels). To check the proportion of this reduc-
tion corresponding to a salient region, every computed ROI
map was flipped horizontally and vertically and rotated
180°. The images were subsequently masked again with the
transformed maps and the number of discernible colors
were computed for those new areas. The results show that

the reduction in the number of discernible colors for the salient
regions is always 10%–17% above the number obtained when
salient regions are not considered in the computation, i.e., us-
ing the rotated and flipped mask, even considering that the
number of pixels in both computations was kept constant; this
result is general for all semantic categories except beaches where
the number is almost constant.

4. DISCUSSION AND CONCLUSIONS

The aim of this work was not only to analyze the influence of
daylight CCTs changes in different high-order chromatic de-
scriptors (color volume, color gamut, and number of discern-
ible colors) but also to study its influence related to the regions
of the images containing uniform areas (as described by patchi-
ness values) and the constraint imposed by saliency maps
simulating potential observers’ eye fixations during a visual
search task.

Based on the definition of patchiness, as a descriptor of the
uniform areas in a scene, the chromatic channels should have
greater patchiness values than the luminance component; in
addition, changes in chromatic a� and b� components re-
present more faithfully the layout of object surfaces than the
luminance component that usually supports shadows and shad-
ings. Patchiness results in Yoonesi et al. [21] support the idea
that spatial resolution of postreceptoral channels has evolved
to reflect patchiness. The order of CIELAB planes attending
Patchiness Index is L� < b� < a�, which is the same order
of postreceptoral channels to sensitivity of shadows and shading
[29–31], and spatial resolution [32,33]. Nevertheless, the
differences found for the three color channels across different
daylight CCTs are not relevant to clearly establish a conclusion
about this dependency, particularly if noise is not described and
computed. Although the images’ data set was classified in seven
semantic categories, all the statistics descriptors analyzed have
similar behavior with CCT.

The analysis of the best fitting ellipses describing the color
gamut of all natural scenes reveals shapes that are elongated in
the b� direction [20,34,35] and tilted to negative values of a�

(i.e., greenish component) [26]. The shift to negative values of
both chromatic axes of the gamut centers with CCTs justifies
why images look more bluish when CCT is high.

Pointer and Attridge [36] estimated the number of discern-
ible colors at about 2.28 million using the square-packing
method under illuminant D65 in the CIELAB color space
and idealized object–color solid. Nevertheless, we got a number
of discernible colors between 4705 and 25,726 using daylight
and the same color space and counting method. Linhares et al.
[11] estimated the number of discernible colors at about
2.7 × 105 considering the three components of CIEDE2000
color space, suggesting the reduction of number of discernible
colors of the natural images from the total estimated is due to
the natural spectral reflectances that are different from the ideal-
ized ones.

But color diversity, which is introduced as the number of
discernible colors, could depend on other visual cues.
Amano et al. [37] found that 57%–60% of the variance in
observers’detection performance over scenes could be explained
by local color properties in the CIECAM02 color space, a level

Fig. 7. Number of discernible colors as a function of the illuminant
CCTs for (a) the original images, and (b) the masked images with their
saliency maps.

Table 2. Range of Number of Discernible Colors of the
Original Images, Their Salient Regions, and the Average
Percentage of Reduction between Them

Range of NDC
for Original

Images

Range of NDC
for Salient
Regions

Average
Percentage
of Reduction

(%)

Fields 9500–16,510 4096–6251 63
Mountains 7510–10,890 2875–5095 61
Flowers &
fruits

20,530–35,980 9402–15,260 60

Forests &
parks

26,360–15,210 7716–11,530 56

Coasts 7924–11,820 3458–6536 56
Rivers & falls 9254–14,460 4346–7582 55
Beaches 6291–8750 3495–5224 44
Natural
images

10,890–17,820 5083–8056 58
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closely similar to that explained by the distribution of observers’
fixations. But the ability of an observer to perceptually identify
distinct surfaces in natural scenes by virtue of their color de-
pends not only on the relative frequency of surface colors
but also on the probabilistic nature of observer judgments.
When information-theoretic methods (based on the mutual in-
formation descriptor) are used instead of a deterministic ap-
proach to take into account both differing surface-color
frequencies and observer response uncertainty in the number
of distinct surface colors, estimation was about 7.3 × 103 in
the CIECAM02 color space [38], more than an order of mag-
nitude lower than the number reported by Linhares et al. [11].
When only salient regions of the images were considered an
average reduction of the number of discernible colors of
58% was obtained in our work, being similar to the number
of 5.2 × 103 obtained by Marin-Franch and Foster [38].

Because the number of colors discernible by the HVS is un-
limited and cannot be associated with a single illuminant, color
constancy can be also understood as an adaptive mechanism
for reducing the diversity of distinguishable colors without
common perceptual correspondence with multiple illumina-
tions [10]. On the one hand the significant reduction of dis-
cernible colors in the salient regions could support that idea,
but on the other it is a question of further studies to clarify
the first and parallel stage (top-down process) of the visual
attention mechanisms [22].

Besides these results, most of the computed statistical de-
scriptors hardly depended on illuminant CCTs for tempera-
tures higher than 10,000 K and showed local extremes in
the range 2950 K–6300 K. This range could be related with
the values of the average CCT illuminant established by
Masuda and Nascimento [39] for the most natural and the
most preferred colors (6040 K and 4410 K, respectively), sug-
gesting that effectively other color vision-related topics could be
optimized for those illuminations.

APPENDIX A

In this section, validation of the Bradford Chromatic
Transform (BCT) in scene reproduction under different illu-
minants is provided.

The BCT is a chromatic adaptation-based transform that
models illumination change providing specifically a mapping
of tristimulus values XYZs under a reference source to XYZs
for a target light. We have performed an evaluation of the
BCT simulating a set of hyperspectral scenes under three illu-
minants from our daylight set (CCTs of 2735, 6478, and
25,889 K). These scenes will be considered as the reference
scenes to be compared with the prediction derived from the
BCT. A source daylight illumination of 6478 K is used as a
reference in the BCT Eqs. (1) and (2). Hyperspectral scenes
were obtained from the Nascimento’s set, which is available on-
line at http://online.uminho.pt/pessoas/smcn/hsi_2002/hsi_
2002.html; urban and/or artificial scenes were avoided for this
computation.

The average CIELAB color difference for all scenes used
was 12.5 (4.5 standard deviation) for 2735 K and 14.5 (3.1
standard deviation) for 25,889 K. Figure 8 below shows exam-
ples obtained for two images under 2735 and 25,889 K

illuminations, showing the BCT image in the left column,
and the histogram of CIELAB color differences between the
two illuminant conditions in the right column.

Funding. Ministerio de Economía y Competitividad
(MINECO) (DPI2015-64571-R).
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column) for two scenes under illuminants of 2735 and 25,889 K
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