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In this paper, we introduce an innovative parameter that allows us to evaluate the so-called “relevant colors” in
a painting; in other words, the number of colors that would stand out for an observer when just glancing at a
painting. These relevant colors allow us to characterize the color palette of a scene and, on this basis, those dis-
cernible colors that are colorimetrically different within the scene. We tried to carry out this characterization
of the chromatic range of paints according to authors and styles. We used a collection of 4,266 paintings by 91
painters, from which we extracted various parameters that are exclusively colorimetric to characterize the range
of colors. After this refinement of the set of selected colors, our algorithm obtained an average number of 18 rel-
evant colors, which partially agreed with the total 11–15 basic color names usually found in other categorical color
studies. ©2020Optical Society of America

https://doi.org/10.1364/AO.378659

1. INTRODUCTION

Millions of colors are usually accepted as being the order of
magnitude of the number of discernible colors (NDC) in natu-
ral images [1]. It is obvious that an observer will not be able to
differentiate such a great number of colors when he or she is
looking at either a natural or an artificial scene. Although several
color-naming approaches have been introduced to categorize
color names and their corresponding color ranges [2–5], the link
between the NDC and a more realistic estimation of these colors
that are simultaneously perceived in a scene has not been fully
studied and remains a conundrum.

There are very few studies that deal with the colorimetric
characterization of the relevant colors that appear in a scene.
From a graphic design point of view, it would be interesting
to previously know the most adequate palette of colors for
each scene, so algorithms have been designed to extract the
so-called “color themes” [6,7]. Contrary to our proposal where
the determination of the relevant colors algorithm is adapted to
the chromatic content of each image, the algorithm proposed
by Lin and Hanrahan [6] allows the automatic extraction of
the thematic colors but with a limit of five per image. A similar
extraction of perceptually plausible color themes from fabric
color images [8] has also been tried. These authors used salience
maps of textured samples to locate the dominant colors, thus
allowing them to characterize the hue distribution in textile
samples. But once again, the algorithm limits the extracted
colors to just five (even the psychophysical experiment, which is
designed to confirm the model, is limited to five extracted colors

that the observers can choose as being the descriptive ones in
each sample). Recently, Rafegas et al. [9] have proposed a color
representation of images that achieves color contrast enhance-
ment by using more than three channels, if required, and by
maximizing the contrast with respect to the most representative
color of each channel. The authors grouped red–green–blue
(RGB) image colors by extracting local maxima of the histogram
and defined the “color pivots” as the most predominant colors
in the image. In a previous paper, we heuristically touched on
the study of those colors that may attract visual attention during
the observation of natural scenes, and we introduced the term
“remarkable salient colors,” which defined the discernible colors
that were salient [10]. As the colors were salient, a plausible set of
locations describing how observers tend to perceive a scene was
not clearly connected with a presumably small fraction of the
huge NDC.

Various spatial parameters, such as the fractal dimension, the
power spectrum, entropy, and complexity, have been studied in
depth in the computational analysis of paintings [11–13]. As
far as color distribution and color ranges in paintings are con-
cerned, Graham and Redies [14] point out that there is a lack of
research in this field. Mureika [15] has studied the fractal dimen-
sion of paintings by Jackson Pollock and has established that the
best system for studying the representation of color is CIELAB.
Marchenko et al. [16] used the concepts of the temperature
of colors, color contrast, and color palette to distinguish the
differences between modern art and medieval art. Pinto et al.
[17] have analyzed the influence of color temperature of the
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illuminants in the color gamut of paintings. Kim et al. [18] have
found variations in the number of colors found in medieval art
and in the rest of the posterior styles, with medieval art having
the least number. Montagner et al. [19] have compared the color
gamut found in a group of natural scenes and in 44 paintings by
various painters. Their results show differences in the calculated
slopes of the ellipses used to characterize the color gamut in the
CIELAB color space. Nascimento et al. [20] have shown that the
color gamuts painters use tends to coincide with the aesthetic
preferences of the observers of the paintings. Lee et al. [21] have
analyzed the chromatic contrast in large number of paintings
and have found an increased diversity in the chromatic contrast
in the last two centuries. Romero et al. [22] have compared the
color gamuts of Renaissance and baroque painters and have
found certain differences in the color volume, in the NDC, and
in the average L* value, with these differences being greater for
the Renaissance painters.

Color is always the fundamental aspect in execution of a
painting, with each painter having his or her own characteristic
color gamut. So, for example, painting styles such as impres-
sionism or fauvism remain clearly in our minds due to the use
of vivid colors of high clarity and saturation [23]. With other
styles, such as the baroque, the colors used in a painting are
fundamental to the composition. Nevertheless, various authors
have shown that color is not sufficient in itself as a means of
automatically categorizing a painting style [24,25]. In any case,
as Graham and Field [26] have explained, “color plays a crucial
role in the creation of art and a complete theory of how the
regularities in art are related with the human visual system must,
without any doubt, include color.”

Computer vision algorithms have tried, from both the theo-
retical and practical points of views, to extract the colors that
describe an image. The most commonly used have been based
on clustering techniques such as k-means and fuzzy logic [27];
although the implementation of these algorithms is simple, they
are not efficient because they need to somehow pre-estimate
the number of clusters or colors from the start to function well.
The analysis of maximum peaks of the frequency histograms for
values that describe the chromatic characteristics of an image,
such as hue, saturation, and value, has also been used to deter-
mine those pixels that have a greater relevance and associate
them with significant regions in the color of the image [2,28].
The color quantization algorithms also attempt to extract the
representatives of the colors of the image. However, generally
speaking, these color quantization proposals are focused more
on achieving the compression of the image without altering
the quality and good reproduction in different devices [29,30].
It is also worth pointing out that algorithms known as “color-
naming algorithms,” which attempt to establish a discrete color
characterization of the number of colors that appear in an image,
are based on the “basic color term” concept introduced by Berlin
and Kay [31]. From then on it has been found that, depending
on the color lexicon, between 11 and 15 are the color names
that are needed to define all of the linguistic color categories
[32–34]. More recently, Griffin and Mylonas [35] have collected
an impressive 20,000 unconstrained names for 600 color stim-
uli. By introducing a categorical measurement of the distance
between two close colors, they have estimated that 27 categori-
cally distinct regions can be fitted within the RGB color space.

That number agrees with the use of only around 30 color names
in spoken English [36] and the 50 distinct categorical territories
in color space found earlier by Chapanis [37]. Nevertheless, as
pointed out by Witzel and Gegenfurtner [38], “the origin of
color categories. . . and observed patterns may result from the
complex interaction of multiple constraints and determinants.”

The aim of this study is to estimate a reliable color palette of
a painting based on the novel notion of “relevant colors,” which
will be defined as the categorically discernible colors describing
the chromatic diversity of that painting. The computational
algorithm is tested with a public image data set that contains
thousands of paintings from different painters and styles. The
derived color palettes are also compared with a color-naming
approach. Besides the average gamut found in all paintings, we
also analyzed the NDC, the number of relevant colors (NRC),
and the chromatic gamut ellipses.

2. METHODS

A. Image Data Set

We used a collection of 4,266 paintings by 91 painters from
the public database of Khan et al. [25]. This collection is a good
selection of the most relevant painters in Western art and covers
painting styles from the Renaissance (15th and 16th centuries)
to abstract expressionism (20th century). All of the images are
publicly available on request at Ref. [39]. The images were used
as they were included in the original database, which means
that no additional calibration and/or post-processing was used.
Other larger collections with public access have been used by
other authors, such as Sigaki et al. [13]; nevertheless, we consider
the collection we used to be sufficient for our aims.

B. Color Analysis

By using a digital image of a painting, we have been able to
convert its RGB values into CIELAB values with the D65 illu-
minant. We thus obtained three values for every pixel in the
image in a colorimetric representation (L∗, a∗, and b∗ com-
ponents), which is widely accepted and easily connects with
the perceptive attributes and mechanisms of color vision. L∗

represents lightness, a∗ the relative red/green content, and b∗

the relative yellow/blue content of the corresponding colors.
Moreover, the a∗ and b∗ values are able to deduce the hue values,
h∗, and the chroma values, C∗, related to the perceptive attrib-
utes of the same name. In previous papers, Kim et al. [18] and
Lee et al. [21] worked directly with the RGB values of each pixel,
thus avoiding the fact that color is an attribute of human vision
and that its evaluation needs precise psychophysical measures,
such as those used in a representation of color as in CIELAB.
First, we averaged the L∗, a∗, and b∗ values in each painting and
then computed an ellipse that contains 95% of the pixels [19].
From this ellipse, we determined its orientation, area, and semi-
axe ratio, which allowed us to obtain a good characterization of
the distribution and gamut of colors in each painting. This is a
good starting point for the future analysis of influence of painter
and styles. We also determined the percentage of dark colors in
each painting, considering those to be colors with an L∗ value of
less than 30. This fact is important because many painters have
frequently used lightness and darkness to define their work, and
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some authors have even related the number of black pixels in
different image subsections to homogeneity [40].

C. Computing the Relevant Colors of Paintings

As previously commented, although millions of colors are the
order of magnitude of the color diversity in natural images, it is
implausible that an observer would be able to differentiate such
a huge number of colors in a complex image. Even observing
complex images spatially and chromatically, observers will tend
to count and/or describe only a small fraction of the huge num-
ber of potentially discernible colors. It should be clarified that
the eye is capable of perceiving color changes in really complex
scenarios with a high degree of resolution; Aldaba et al. [41]
have shown that observers are able to discriminate between
original and deliberately modified images with CIELAB color
differences of about only 2.2 1E ∗ab units. However, this does
not mean that observers will able to count all colors producing
that 1E ∗ab error. In a previous paper [10], we linked the term
discernible colors and the salient areas in an image but only
from a heuristic-based computational model. But how can we
estimate the NRC that appear in or describe a color image?

First, as far as the NDC in a painting is concerned, this
has been determined by using the method of Linhares et al.
[1], which divides the CIELAB color space into cube units
of different colors and counts those cubes that contain colors
corresponding to the pixels in the image. The number obtained
is the NDC in the painting, understanding as such those colors
that are placed side by side in an isolated way and may be dis-
criminated by the observer with normal color vision. This detail
is worth pointing out because this situation is rarely found in a
painting if we exclude some paintings with a very simple abstract
composition with a very small number of geometric objects
and a very uniform color (e.g., Piet Mondrian masterpieces).
With this method, values that can be understood as “very”
high (order of thousands) can be obtained; we can see in Fig. 1
an example of the chromatic diversity for one of the paintings
containing as many as 18,829 discernible colors (compared to
just 28 with our algorithm, as we will see further on). Therefore,
we might wonder if the NDC thus obtained would correspond
to that which an observer might determine with a simple visual
inspection of a painting if we asked which were its main colors.
Probably the observer would respond by indicating a reduced
number of colors, less than one or two dozen. As we mentioned
above, in a previous paper when we used natural images [10], we

Fig. 1. Example of the distribution of discernible colors and the relevant colors (solid red dots) obtained in the CIELAB color space.

Fig. 2. Pseudocode of the proposed algorithm to get the NRC. “Thr” means the threshold of 3% for the total pixels in the cube to consider the cube
to be relevant (full details in the text).
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touched on this problem, and we studied how the visual salience
may be a filter that limits the number of colors on which an
observer can fix his or her attention. The study, which was just
computational, showed how the number of “significant” colors
was 40%–55% less than the NDC according to the classic defi-
nition, which gives a much higher number of colors. Therefore,
in this study, we developed a method that determines, at least
colorimetrically, the number of colors that an observer would
consider to be relevant in an image.

Second, we increased the dimensions of the cubes in which we
divide the CIELAB color space, and we established a dimension
while also setting as the parameter the minimum threshold of
colors in each cube, i.e., the minimum percentage of colors
compared to the total that should be within the cube. We have
taken the division of the space into cubes of 20 units in every
CIELAB direction as the criteria to follow, which allows us to
divide the CIELAB space into approximately 125 cubes, setting
a threshold of 3% for the total pixels in the cube to consider the
cube to be relevant. We were aware that certain high chroma
or high luminosity remained unconsidered as relevant colors.
Milojevic et al. [42] found that the most saturated colors can act
as predictors of how an observer would categorize the color dis-
tribution of natural objects. Thus, so we also considered cubes
that had less than 3% total pixels, and at least 0.3% (3/8%) of
the pixels included had the L∗ value higher than 80, or a C∗

value above the 50th percentile of the image. The colors consid-
ered as relevant colors are determined as by the average values of
the colors of the pixels in each selected cube.

Once the relevant colors that appear in a painting have been
determined, the algorithm assigns each pixel in the image with
a relevant color (depending on the Euclidean distance between
this relevant color and the color that should be assigned to the
original pixel). The pseudocode in Fig. 2 summarizes all steps of
the algorithm and at the end how to segment the image depend-
ing on its relevant colors, that is to say what we could understand
to be the colors of the “palette” used by the painter.

D. Color Naming

We compared our results with those obtained by applying
the classic color-naming algorithm used by Párraga et al. [43]
(which is available online at Ref. [44]). Color naming prede-
fines 11 basic colors [31], which correspond in English to the
following terms and their associated RGB digital values: “Black”
[0,0,0], “Blue” [0,0,1], “Brown” [0.5, 0.4, 0.25], “Grey” [0.5,
0.5, 0.5], “Green” [0,0,1], “Orange” [1, 0.8, 0], “Pink” [1,
0.5, 1], “Purple” [0,1,1], “Red” [0,0,1], “Yellow” [0,1,1], and
“White” [1,1,1]. After applying a color-naming-based seg-
mentation, we will compare the relevant colors found using
our proposal with the fundamental colors derived from this
color-naming approach.

3. RESULTS

A. Influence of the Cube Grid Size in the
Computation of Relevant Colors

We first analyzed the influence of the CIELAB partitions (i.e.,
cube grid size) in the number of both discernible and relevant
colors found. To do this, we selected different values of the cube

Fig. 3. (a) Total number of cubes containing a color and (b) NRC
obtained for different grid sizes; (c) NRC derived for different L∗

thresholds (as shown in the inset) and different C ∗ percentiles limiting
the chroma values of each pixel.

grid size (from 10 to 40 CIELAB units) and checked how the
total number of cubes containing a color and the NRC changes.
The results suggest that the influence of the grid size in the
number of non-empty cubes is negligible above 20–25, with
a maximum of relevant colors found for grid sizes of 10–20
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[see Figs. 3(a) and 3(b)]. Thus, we decided to choose 20 as the
optimum grid size to be used in the following computations.

B. Influence of L∗ and Chroma Values in the
Computation of Relevant Colors

Once the value of 20 had been selected as the reference cube
size for counting colors, we then analyzed the influence of the
L∗ and chroma values in the selection of the color palette of
each painting. Figure 3(c) shows an example of the number of
NRC obtained for different threshold values of L∗ (L∗ < 25,
50, 80, 90, or 95) according to the percentile selected, which
limits the chroma value of each pixel (once the threshold value
has been pre-set at 0.3% for the counting of the pixels within
each cube).). For threshold values of L∗ = 25 we can see how,
independently of the value of the chroma, the NRC value is
higher and practically the same as the cubes once the value of
the 20 grid had been set (see the previous section regarding the
grid values). On the other hand, we can see that percentiles for
the chroma of between 25 and 50 do not modify the NRC, so
we finally decided to select a threshold value for L∗ of 80 and
a percentile level of 50 for the chroma as the reference for the
algorithm.

C. Color Statistical Descriptors

Figure 4 shows the frequency histogram for the different color
descriptors in the analyzed paintings. Except, obviously, for the
amount of dark pixels and the area of the discrimination ellipse
obtained, all of the descriptors adjust to a Gaussian envelope.
Chromaticity a∗ and b∗ distributions cluster around positive
values, which are indicative of the large number of red, orange,
and yellow colors in the image data set. The distribution of the
angles of the longer axis of the fitted ellipses (with respect to

the positive a∗ component) shows most values to be around
50◦–100◦; an average value of 74◦ is obtained, which indicates
that, on average, the major axis of the ellipses are rotated to
the right of the b∗ component. The distribution of the ratios
between the major and minor axes of the ellipses varies from
around 0.25 to 0.75, with an average of 0.45 with a relatively
small standard deviation (SD) of 0.07. Finally, the distribu-
tion of the areas of the ellipses of the clusters is below 1× 104

CIELAB units, with maximum values of around 3,000–4,000
CIELAB units.

Table 1 summarizes all of the colormetric parameters
obtained. The NRC average for all of the paintings analyzed
is 18 (with an SD of 6), significantly below the initial aver-
age 45 cubes obtained when counting those that contain a
pixel (i.e., cubes with dimension 20 occupied with a pixel). As
expected, the NRC is clearly below the 17,444 discernible colors
(with an SD of 9,000) on average obtained. All of the chromatic-
ity results (and the distributions of colors as shown in Fig. 5) are
quite similar to the corresponding ones obtained by Montagner
et al. [19], although our a∗ is slightly higher on average (5.5
versus 1 for the paintings analyzed by those authors). Data of the
fitted ellipses are also similar to earlier results with the exception
of the distribution of the areas of the ellipses, which show much
higher values than the values from Montagner et al. [19]. These
differences may originate from the very different painting data
sets used, indicating a much richer chromatic diversity in our
case.

D. Color Palettes of Paintings Derived from Relevant
Colors

Figure 6 shows examples of paintings in which we specify the
NRC obtained for these paintings. This figure also shows the
corresponding colors extracted that make up the palette for the

Fig. 4. Histogram of frequencies for all paintings describing (upper row) the NDC, the NRC, percentage of dark pixels; (middle row) color com-
ponents L∗, a∗, and b∗; and (bottom row) angle, axis ratio, and area for all adjusted chromatic ellipses.
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Table 1. Summary of the Colorimetric Parameters Analyzed

NDC NRC Dark Pixels (%) L∗ a∗ b∗ Angle (Deg) Axis Ratio Area

Mean 17444 18 64 44 5.5 14.5 74 0.45 3400
SD 9000 6 17 11 3.7 4.4 8 0.07 2500

Fig. 5. Encompassed relevant colors and their corresponding L∗, a∗, and b∗ color components for all paintings.

Fig. 6. Examples of segmentation according to the palette of
relevant colors obtained. (Upper rows) The Annunciation (ca.
1432–1434) by Fra Angelico, who is an Italian painter of the early
Renaissance (it contains 20 relevant colors according to the proposed
algorithm); and (lower rows) My Parents (ca. 1977) by David Hockney,
who is an English painter and contributor to the pop art movement (it
contains 24 relevant colors).

painting. This palette allows us to assign the relevant color in the
areas occupied by all of the pixels found within the cube. In a
way, we have managed to achieve a colorimetric segmentation of
the image in question as far as the discernible categorical colors
that appear in the image are concerned. Although the results

Fig. 7. (Upper plots) Examples of segmentation according to the
color-naming algorithm (which obtains 10 and 9 colors for these paint-
ing), and (lower plot) comparison between the frequency histograms
for the relevant colors and the number of colors selected via color
naming for all of the database of Khan et al. [25].

presented here suggest a potential application of the algorithm
for image segmentation, this is not the main aim of this study.
Yet, it could be argued that these categorical colors could not
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have subjective counterparts and are only related to purely
colorimetric criteria.

E. Color-Naming Results

Figure 7 shows a comparison of the color-naming algorithm
results and those we propose in this paper. As we have already
mentioned, the average NRC obtained by our algorithm is
18, whereas the average number of colors obtained by using
the color-naming algorithm for all of the paintings is 7.0
(±1.1 SD). Thus, the categorical number of color terms neces-
sary to describe an image is below the NRC average. The great
advantage of our method is that the relevant colors (the categori-
cal discernible colors) derived are representative of the colors
of each particular image, without being imposed and prefixed
colors, as occurs with the color-naming algorithm (with 11 color
categories being predefined for all of the images). Yu et al. [45]
have tried to resolve this drawback by widening the number of
colors to 39, showing that better results are obtained in applica-
tions related with segmentation for the classification of objects.
This shows the limitations of color naming for this type of task;
however, this topic is not the aim of this study.

Fig. 8. Analysis by styles (the top two paintings are examples
of abstract expressionism, and the ones below are examples of
symbolism).

F. Painting Style Analysis

Figure 8 shows the analysis of the NRC obtained for each of the
categories/styles into which the paintings in the Khan database
[25] can be classified (according to the classification proposed
by the authors). As shown, all of the styles are described by the
NRC around the average of 18 obtained for them all from the
database (the broken red line in this figure). There are only two
styles where the NRC number obtained seems to be distant from
the average values; however, the difference is slight. In the case
of abstract expressionism, the NRC obtained is 23 (±9 SD)
and therefore is higher than the average, not surprising when
we consider that the paintings with this style are those of the
works of Jackson Pollock and Willem de Kooning, which have
a greater chromatic space complexity. As far as the symbolism
style is concerned the opposite occurs, with 14 relevant col-
ors being obtained (±SD), somewhat lower than the global
average; examples of this painting style are the paintings by
Gustave Moreau and Gustav Klimt, which would corroborate
a greater chromatic simplicity in the artistic organization of
the elements in their work. These results agree with the results
of Kim et al. [18], who found that almost all artistic periods
analyzed displayed a significant coincidence except the medieval
period (i.e., the color palette in the medieval age is significantly
different from the other periods and with a preference for a
small number of selected colors). Nevertheless, that medieval art
period is not adequately covered in the image data set used here.

4. DISCUSSION AND CONCLUSIONS

After the refinement introduced in the computation of the cat-
egorical discernible colors, we obtained an average number of 18
relevant colors that could be used to describe the color palettes
of paintings. This represents a huge reduction in the number of
colors in comparison with the initial average number of 17,444
discernible colors or the 43 threshold colors selected after a first
constraint stage in the algorithm. The reduced number of only
18 relevant colors partially agrees with the total of 11–15 basic
color names usually found in other categorical color studies
[31,34]. Our method is able to derive different representative
colors for each painting, is better adapted to the color content
of every image, and does not need the introduction of prede-
fined color categories. The key difference between our “relevant
color” concept and the color-naming approach is not the abso-
lute number but the way we adapt the NRC to the chromatic
content of each painting. The colors behind every basic color
name are always the same independent of the analyzed scene
(i.e., color naming can select the number of names to describe
an image but choosing those names and colors from a fixed color
palette). Moreover, the algorithm can be used to extract the color
palettes of paintings and then to automatically segment images
according to their remarkable color content.

Our proposal for the determination of relevant colors present
in a scene is close to being the result of a task-driven process
(i.e., a top-down process) so that we are simulating how observ-
ers look toward those areas in a scene that are the most relevant,
not only for being colorimetrically discernible but that also
describe the palette (chromatic diversity) of the scene. New
concepts about salient discernible colors and remarkable salient
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colors were introduced in an earlier paper [10] to be used to
automatically create segmented images according to their salient
chromatic diversity. The current proposal does not need to
determine those areas that are visually salient in scene, and
this will be the subject of future research. We plan to analyze
the relationship between these salient areas, their number and
extension, and the number of colors that really attracts the atten-
tion of an observer. Obviously, the NDC (as defined in early
studies [1,19]) would not be the colors that an observer would
use to describe an image in terms of its main colors. By looking
into a picture of a painting it is far-fetched to imagine that an
observer is able to differentiate (and to locate into the painting)
the millions/thousands of colors predicted by the chromatic
diversity of that painting. Although the study of the NDC has
produced a large number of papers, so far little attention has
been paid to the influence of the task of the observer regarding
the determination of the number of colors. The majority of the
theories of the recognition of patterns suggest that our visual
system must have some type of specific mechanism for carrying
out the visual analysis of a scene. To put it in another way, only
once the basic components of visual structure or image have
been processed can the structure or visual pattern be identified.

Regarding the NDC and the number of surfaces reliably
discerned by an observer, Marín-Franch and Foster [46] have
shown that this number of discernible surfaces is much less than
the number associated to the discernible colors, at least in natu-
ral scenes. Nevertheless, this number of 7,300 that they estimate
continues to be much higher than that which an observer would
estimate for the relevant colors in a painting from a simple visual
inspection. We have determined that the equivalent, in num-
bers, of these discernible surfaces that would be relevant colors
is some 18 colors (or 40 if we relax the model and only consider
those cubes that contain a pixel), which would be a plausible
number to be considered by an observer to determine the palette
that appears in the painting. If we take into account the rela-
tionship between the NDC and the expanded volume of the
distribution of the colors found by Foster and Amano [47]
(Eq. (15) in Ref. [47]), together with the 20 dimension for the
discriminable cube used in our algorithm, we would obtain a
comparable result to that predicted according to information
theory. This is in agreement with our hypothesis of introducing
the “relevant color” as a reduced number to describe the palette
of a painter.

Various authors have explicitly expressed the opinion that
there is a gap in the wide range of studies on the gamut of colors
used in painting. Although it has been recognized that the use
of color cannot be the only resource for identifying a style of
painting within the history of art, it is clear that each painter
has used a preferred palette of colors depending on the themes
chosen, the materials used, the techniques employed, and the
personal artistic preferences of the painter. A wider revision has
recently been carried out by Van Geert and Wagemans [48]
showing the complex and diffuse inter-relationship between the
subjective measures associated with the aesthetic apperception
of a painting and the various objective ways that try to quantify
these visual aesthetics.

Do the results that we present in this paper presuppose that
the concept of “relevant colors” should be linked to a categorical

perception of color vision? Not necessarily, but recent neuro-
physiological studies [49,50] have identified the middle frontal
gyrus in both cortex hemispheres as the human ventral V4 y
VO1 areas that exhibit categorical clustering of neural represen-
tation of color and activation to identify color category and hue
differences, which supports our hypothesis. Whether the color
palettes derived here reproduce the subjective color terms used
to describe a painting or their psychophysical counterparts is
still an open question.
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