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Abstract: We have analyzed the performance of simulated
multispectral systems for the spectral recovery of reflec-
tance of printer inks from camera responses, including
noise. To estimate reflectance we compared the perform-
ance of four algorithms which were not comparatively
tested using the same data sets before. The criteria for
selection of the algorithms were robustness against noise,
amount of data needed as inputs (training set, spectral
responsivities) and lacking of use of dimensionality reduc-
tion techniques. Three different sensor sets and training
sets were used. We analyzed the differences in the span-
ning of the subspaces found for the three training sets,
concluding that the ink reflectances have characteristic
features. The best performance was obtained using the
kernel and the radial basis function neural-net-based
algorithms for the training set composed of printer inks
reflectances, whereas for the other two training sets (com-
posed of samples from the ColorChecker DC and Vhrel’s
reflectances’ set) the quality of the recovered samples was
more uniform among the algorithms. We also have per-

formed an optimization to choose the best sensor set for
the multispectral system with a reduced number of
sensors. � 2012 Wiley Periodicals, Inc. Col Res Appl, 39, 16 – 27,

2014; Published online 31 July 2012 in Wiley Online Library (wileyonli-

nelibrary.com). DOI 10.1002/col.21763
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INTRODUCTION

The usefulness of having access to the spectral informa-

tion of an image on a pixel-by-pixel basis is well known

in a wide range of different applications.1 In recent years

spectral imaging has been a quite active field of research.

The problem of obtaining spectral reflectances or radian-

ces with enough spatial accuracy can be tackled essen-

tially by two different approaches: the most immediate

approach is possibly the design of a capture device that

works with a high number of spectral bands and provides

the spectral data directly with a reasonable sampling

interval in wavelength, as in ultra and hyperspectral

systems (more than 30 spectral bands, using narrow-band

filters, tunable filters, or diffractive devices coupled to a

monochrome imaging sensor2); a less straightforward and

less accurate but also less expensive and easier to imple-

ment strategy is to obtain an estimation of the spectral

information from a reduced number of sensor responses

(color camera plus one or two color filters) using a suita-

ble estimation algorithm, as in multispectral systems.3
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Spectral estimation from sensor responses in the multi-

spectral approach is a typical example of an ill-posed

problem, as the number of sensor responses (usually from

3 to 9) is always lower than the number of spectral bands

which are estimated.

In the last 20 years, several spectral estimation algo-

rithms have been proposed for dealing with this problem,

some based on real sensor responses and some on compu-

tational simulations of sensor responses.4–10 Most of them

have been tested including the addition of noise to the

sensor responses to mimic the behavior of real capture

devices.

Such multispectral capture systems have been tested in

several applications, from artworks study and reproduc-

tion11 to food quality inspection,12 and there are new

potential fields of use for these technologies continuously

arising.13 Among them, there is the field of spectral print-

ing14 and spectral characterization of printing devices for

color correction or color quality assessment of printed

samples.

The basic working tools for spectral printing applica-

tions are the reflectances of the printer ink samples. For

industrial printing applications it is particularly interesting

to use devices that can measure various samples, spatially

distributed over the substrate, simultaneously and accu-

rately. The printing industry demands fast, simple, and

accurate color quality evaluation of the printing process.

Usually, print inspection is performed either visually or

using a spectrophotometer or colorimeter to measure the

color of the printed samples and compare it with a refer-

ence. The quantified difference is aimed to be less than a

defined threshold, commonly based on a minimum per-

ceptible color difference. It is obvious that this field offers

potential applications for multispectral capture devices.

This is especially true when we take into account that for

many printing companies the use of hyperspectral systems

would be unattainable for reasons of economy and speed.

None of the previous studies in the multispectral field, to

our knowledge, tackles the design of a suitable multispec-

tral capture system for the spectral estimation of printer

inks, although in Ref. 15 some printed samples are used

for the estimation of spectra from tristimulus values. Mul-

tispectral capture systems used specifically for inline col-

orimetric quality control of printed samples on paper offer

the advantages of allowing simultaneous measurements of

many samples using a relatively simple and economic de-

vice. The subspaces spanned by the set of printer ink

reflectances are different from those spanned by other

widely used collections of samples, as we will show in

the next section.

The main aim of our work is to study the influence of

several factors on the estimation quality of printer inks

reflectances such as: the inclusion of noise in the camera

responses, training set selection, type of estimation algo-

rithm, and finally the optimum sensor selection for the

task. We do not intend to tackle the task of sensor design

for ink reflectance estimation, but rather test which sen-

sor set among several representative ones would perform

better. We have simulated additive noise in the camera

responses, and compared the performance of the spectral

estimation algorithms for noise-free and noisy camera

responses. We used three different training sets, one

composed of ink reflectances (specific for our task,

although not specifically optimized for spectral estima-

tion) and the other two of widely used reflectance sets in

the field of spectral estimation. Using these reflectance

data and some dimensionality reduction techniques, we

have been able to prove that ink reflectance spectra are

not well reproduced using other reflectance sets’ basis

functions. We selected four state of the art spectral esti-

mation algorithms: pseudoinverse,6 kernel,10 projection

onto convex sets (POCS),16 and radial-basis-function neu-

ral network (RBFNN),17 and also introduced some addi-

tional constraints and modifications from the original pro-

posals, described in detail in ‘‘Spectral Estimation Algo-

rithms’’ section. To our knowledge, the performance of

these set of algorithms for a highly specific task as ink

reflectance spectral estimation has not been previously

analyzed comparatively. Finally, we studied the possibil-

ity of finding an optimal subset of sensors for ink reflec-

tance estimation to reduce the complexity of the capture

device. The results of our computations shed some light

on the feasibility of the spectral estimation approach and

how it could be optimized. We are convinced that our

results could be of use for future practical developments

of a multispectral system specifically designed for spec-

tral printing applications and inline print color quality

assessment.

METHODS

Simulation of Camera Responses and Noise

We have simulated the multispectral capture by using

different sensor sets (see ‘‘Sensor Sets’’ section for details

of the sensors) according to Eq. (1):

ri;nj
¼
Xk2

k¼k1

SðkÞEðkÞqiðkÞ þ ni;j ¼ ri þ ni;j (1)

where S(k) is the spectral reflectance of the sample, E(k)

is the spectral power distribution of the light source used

to illuminate it (described in ‘‘Light Source and Training

Samples’’ section), qi(k) is the spectral response of sensor

i and [k1,k2] is the spectral range covered by the sensor

set. We have introduced a global term of additive noise

ni,j in Eq. (1) to model representative noise sources in real

capture devices. The modeled noise term includes shot

noise and flicker noise, which depend on the magnitude

of the camera response. Quantization noise (assuming 10

bits per channel, which is a typical value for a commer-

cial digital camera)18,19 has been introduced by rescaling

and rounding camera responses to the nearest integer in

the range [0–1024]. The distribution of noise values cov-

ers the shot and flicker noise but not the thermal noise or

the dark-current noise, resulting in an estimated averaged

SNR of 30 dB, which is a representative value for multi-
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spectral image capture devices.13 Thermal noise and dark

current noise are not considered because they are rela-

tively easy to reduce by cooling the camera or performing

dark image subtraction. In this study, we are computing

camera responses only for spectral estimation purposes.

For this specific task, it has been proven that the perform-

ance decreases when the overall SNR decreases.13 The

key factor affecting performance is the overall SNR, then,

and not the specific type of noise included in it.

We have generated a set of j ¼ 100 different noise val-

ues for each ri noise-free camera response.20 These noise

values are normally distributed with a standard deviation

ri, which depends on the noise-free camera response ri as

described in Eq. (2).

ri ¼ 0:01riw

ffiffiffiffiffiffi
ri

riw

r
(2)

where riw is the camera response for sensor i correspond-

ing to the light source used to illuminate a perfect white.

We have found that the parameter 0.01 in Eq. (2) models

appropriately the noise behavior of a real capture device.

Spectral Estimation Algorithms

We have selected four different algorithms which are

representative of different strategies for estimating spec-

tral reflectance from few sensor responses. Our selection

of algorithms includes the Pseudoinverse,6 kernel,10

POCS,16 and RBFNN.17 Although POCS has been used to

analyze hyperspectral images previously, to the authors

knowledge the only instances of previous studies, which

describe the way to use it for spectral estimation (specifi-

cally, for obtaining metamers of spectra from sensor or

visual responses), are Refs. 16 and 21. The well-known

Wiener algorithm8 has also been used widely for spectral

estimation, and it has been shown that it can be consid-

ered as a particular instance of the more general kernel

approach.10 In a preliminary study22 using ink reflectances

as training set, we found that it did not outperform kernel,

RBFNN and POCS and that is why we have not included

it for this work.

We have taken the following factors into account in

our selection of algorithms.

Robustness Against Noise. Most of the selected algo-

rithms have demonstrated some degree of robustness

against noise when real camera responses or simulated

noisy camera responses were provided as input.9,10,23 An

exception is the pseudoinverse approach which has been

shown to decrease performance significantly for noisy

data.24 The RBFNN algorithm is also slightly more sensi-

tive to noise even if it is trained with noisy data, because

the introduction of noise interferes with the estimation

process by making it more difficult to find the optimal set

of weights and appropriate network configuration. The

POCS has not been tested previously with noisy camera

responses for spectral estimation, so our results will pro-

vide some insight in assessing its robustness against

noise.

Amount of Data Needed as Input (e.g., Sensor Spectral
Responsivity or Training Set of Reflectances). The POCS

algorithm needs the spectral responsivity of the sensor set

as input, which can be a drawback if the capture system

is not fully characterized from a spectral point of view

(calibration). None of the other algorithms require the

spectral responsivity, but all of them except POCS need a

set of reflectances for which the sensor responses are

known (training set), and so they make use of a priori

information. In general, the problem of spectral estimation

can be seen as a problem of fitting spectral information

using camera responses. Therefore, most of the

approaches used in this work need a training set to obtain

the optimal fit. From a slightly different perspective, spec-

tral estimation can be seen as a mapping process between

camera responses and reflectances or radiances. In fact,

algorithms that provide this kind of ad hoc mapping (for

instance neural networks17) have recently been applied to

the problem of spectral estimation as well.23 The fact that

most algorithms need a training set poses the question of

adequate sample selection and the influence of the process

of building an adequate training set on the spectral esti-

mation quality.25 Nevertheless, a training set is not always

necessary. The POCS approach can be used for spectral

estimation by incorporating some positivity and smooth-

ness constraints without any a priori information about

reflectances. The smoothness constraint is not included in

the original proposal of the POCS algorithm21; however,

we have introduced it in our implementation as it has

shown to improve estimation quality. The POCS algo-

rithm uses as input the spectral responsivity of the sensor

sets and tries to find optimal spectra that match the pro-

jections of the experimental data (test reflectance samples)

onto the sensors, and therefore, are metamers for this sen-

sor set. See ‘‘Detailed description of the implementation’’

section for details on the implementation of each of the

algorithms.

Dimensionality Reduction of the Spectral Data. Some

estimation algorithms use dimensionality reduction techni-

ques for the spectral data, either based on linear models

(such as principal component analysis PCA,26 independent

component analysis ICA,27 non-negative matrix factoriza-

tion (NMF)28], or by introducing some nonlinearities in

the standard linear approach.29 The dimensionality reduc-

tion techniques are useful for dealing with the fact that

the spectral estimation problem is ill-posed due to the

imbalance between the relatively few number of camera

responses and the relatively high number of data (bands)

needed in the spectral signals. The Imai–Berns,5 Malo-

ney–Wandell,4 and Shi–Healey7 methods are instances of

spectral estimation methods which incorporate dimension-

ality reduction techniques. None of the four selected algo-

rithms in our study incorporates dimensionality reduction

techniques, for two main reasons: first, in a preliminary

study22 none of these algorithms was found to offer better

estimation performance than the ones selected for this

study; and second, we think that to perform the dimen-

sionality reduction properly, some work has to be dedi-
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cated to an appropriate selection of samples which are not

necessarily included in the training set.

Detailed Description of the Implementation. In what

follows, we will refer to the set of training camera

responses as qT; the set of training reflectances will be

denoted by RT; the set of training color signals (training

reflectances illuminated by the light source described in

‘‘Light Source and Training Samples’’ section) will be

CT; the estimated reflectance (only one at a time, as we

are using the ‘‘leave-one-out’’ cross validation method,30

see ‘‘Training Set 1 and Full Spectral Range’’ section for

details) will be called R and the estimated color signal C.

The corresponding camera responses from which the

spectral information is estimated will be called q.

Pseudoinverse algorithm6

Given a set of training spectra CT and the corresponding

set of camera responses qT, a recovery transformation ma-

trix D is defined by:

D ¼ CT3q0þT (3)

where qT+ is the pseudoinverse of qT. For full rank matri-

ces, the pseudoinverse is defined as:

qþT ¼ ðq0T3qTÞ�1
3q0T (4)

where q0T is the transpose of qT. An estimate Cpi of a test

spectra is obtained from the corresponding camera

responses by applying the transformation D, that is,

Cpi ¼ D3q (5)

For instance, if the number of sensors is 12 and we

have 159 spectral signals in the training set, then CT is of

dimensions (81 3 159), assuming 5 nm sampling with

spectral range of the signals from 380 to 780 nm (this

will not always be the case, see ‘‘Results and Discussion’’

section for details); qT is of dimensions (12 3 159), D is

of dimension (81 3 12), and q is a (12 3 1) vector of

camera responses. We finally obtain an estimate Cpi of

dimension (81 3 1). The reflectances are obtained from

the estimated color signals by discounting the illumina-

tion. This is a feasible and practical approach for our

application related to printed samples, since the illumina-

tion will be known for the acquisition of real camera

responses. Also, we have found an increase in estimation

quality if reflectances are obtained from recovered color

signals instead of being estimated directly. The pseudoin-

verse is a very simple nonparametric algorithm, for which

the estimation quality only depends on the training and

test data set.

Kernel algorithm10

In the kernel algorithm, direct estimation of reflectances

leads to a better estimation performance, as compared to

estimation of color signals (as proposed for the pseudoin-

verse approach). In this method, the camera responses are

transformed onto a feature space via the kernel function,

and in this space ridge regression estimation is performed

to obtain the estimated reflectances. Alternatively, the

method can be described as performing a backprojection

of camera responses to spectral space, a correlation with

the training set and a computation of a set of coefficients

to recombine the training set spectra.10

The first step is to calculate the Gaussian kernel matri-

ces K and j, according to Eqs. (24) and (25) of refer-

ence:10

Kjm ¼ exp �ðCTj � CTmÞ03W03W3ðCTj � CTmÞ
2r2

� �
(6)

where CTj and CTm are column vectors formed by the

color signals corresponding to samples j and m of the

training set, and W is a matrix containing the spectral

responsivities of the sensors (each column corresponding

to a channel responsivity). In case of a real camera sys-

tem, the kernel method does not require the spectral

responsivities as an input. For this work, however, W is

introduced for computing the camera response simula-

tions. The parameter r is defined as the effective area of

the kernel.

The second kernel function, matrix j, is calculated for

each estimated sample i as:

jj ¼ exp �
ðqj � qiÞ03ðqj � qiÞ

2r2

 !
(7)

where jj represents a column of the matrix j, and j is the

index of training samples, varying from 1 to 159 in our case.

This kernel matrix creates a feature space with the same

dimension as the number of samples, according to Ref. 10.

After obtaining the kernel matrices, the estimation for

sample i is calculated as follows:

Rk ¼ RT3ðK þ cIÞ�1
3j0 (8)

The parameters c ¼ 0.001 and r ¼ 75 were found by

brute force optimization to optimize estimation quality. c
is a regularization term introduced in the recovery equa-

tion to prevent instabilities in the matrix inversion. The

optimal parameters vary much depending on the training

set, which makes the algorithm lose generality in compar-

ison with the nonparametric algorithms, although at the

same time allows for a better estimation quality, as we

will show in ‘‘Results and Discussion’’ section.

POCS algorithm16

The POCS algorithm works iteratively by computing nor-

malized projections of the initial estimates onto the respon-

sivities of the sensor set (multiplied by the Spectral Power

Distribution (SPD) of the illumination). Further, the initial

estimate is corrected in each step by decreasing the differ-

ence between the projection and the sensor response, main-

taining a positivity constraint. As a final step, the estimate is

smoothed to suppress spikes in the estimated spectral reflec-

tances. POCS provides as final output a metamer of the test

spectrum for the sensor responsivity set. The algorithm is

parametric because the number of iterations influences the

performance. We will now describe the computational steps

in our implementation of this algorithm.
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First, we compute a weighted responsivity matrix by

multiplying each sensor responsivity by the SPD of the

illumination (WSPD). We also calculate the square of the

Euclidean norm Nj for each column j of the matrix WSPD.

The algorithm is initialized by the ‘‘first estimate’’ vector

F1; in our case selected as the SPD of the illumination.

Then, for each iteration n and each sensor j, we compute

the ratio Gj as follows:

Gj ¼
F0n3WSPDj � q0ij

Nj
�W0SPDj (9)

In Eq. (9) qij is the sensor response corresponding to

sample i for sensor j. Afterwards, we correct the initial

estimate by subtracting Gj from Fn. We then introduce

the positivity constraint by setting all negative values of

the new estimate to zero. Smoothing of the estimate is

performed by local averaging. The smoothing post-proc-

essing step was not introduced in the original proposal of

the algorithm.16 The algorithm converges iteratively to

the best estimate RPOCS for each sample. It shall be noted,

that this algorithm does not need any training data. The

quality of estimation, however, depends on the number of

iterations used in the algorithm, which we found to be

approximately 400 for our data set. We also see possible

enhancements in alternative implementations for the

smoothing part of the algorithm and alternative candidates

for the initial estimate. The optimization of such factors

for our particular application will be a matter of future

work.

RBFNN algorithm17

The underlying idea of this neural networks approach to

spectral estimation is to obtain a mapping between cam-

era responses and spectral reflectances, based on a neural

network with an appropriate structure and weight distribu-

tion of neurons. The RBFNN was implemented using the

Matlab Neural Network toolbox with a Gaussian Radial

Basis Function. We set the mean square error goal to zero

and fixed the spread of the Gaussian function to a rather

large number of 40 neurons for our data, aiming in esti-

mation of smooth functions. We allowed the heuristics of

the Radial Basis Function to add a maximum number of

30 neurons during the training process. The training pro-

cess links normalized training camera responses, which

are the input of the network, to training normalized reflec-

tances at the output by adapting the neuronal weight vec-

tors to satisfy the specified error goal. The outlined pa-

rameters were already found to perform well in a previous

work with a restricted set of sensors.22 The final structure

of the network consists of 6–12 neurons in the input layer

(the same as the number of sensor responses), 30 neurons

in the hidden layer and 52–81 neurons in the output layer

(the same as the dimensionality of the spectral signals).

As outlined above, the training process is performed for

normalized camera responses and normalized reflectances

in the range from 0 to 1. The estimation is performed in

the same manner for camera responses normalized to the

same range as the training data, leading to normalized

estimated reflectances. To obtain reflectances in the origi-

nal range, the estimated reflectances can be scaled back

to the initial range using the normalization parameters of

the training. The RBFNN algorithm has the drawbacks of

being very sensitive to an adequate selection of the train-

ing set (see ‘‘Light source and Training samples’’ section

where this factor is discussed using our data) and also of

being somewhat computationally demanding, due to the

iterative training process. However, once the network is

trained, spectral estimation is a very fast process.

Sensor Sets

We have used three different sensor sets to simulate

the multispectral system camera responses. The first one

(sensor set A) is composed of 12 equidistant gaussian fil-

ters with 40 nm FWHM, and equi-spaced peak wave-

lengths between 370 and 800 nm [Fig. 1(a)]. The two

additional sensor sets are composed of the transmittances

of real multi-bandpass filters (Optics Balzer AG, Liech-

tenstein) combined with a typical CCD sensor spectral

responsivity. Sensor set B is composed of 12 bandpass fil-

ters covering the full spectral range [from 380 to 780 nm,

see Fig. 1(b)]. Sensor set C is composed of six bandpass

filters with a reduced spectral range between 430 and 685

nm [Fig. 1(c)]. Sensor sets B and C correspond to NEC

lPD8821CZ-A, included in the camera Aleos 7300-60 of

Chromasens GmbH, (Germany).

Sensor set A was built with the aim of examining the

performance of a group of ideal sensors, while sensor sets

B and C correspond to real filters multiplied by a real sen-

sor spectral responsivity and lead to a more realistic model

of a capture system. The main difference between sensor

sets B and C is the spectral range covered by each set and

the number of sensors. Therefore, we will compare the per-

formance of a complex system with a high number of sen-

sors, covering the full spectral range for the visible (sensor

set B), with the performance of a reduced number of sen-

sors not covering that range entirely (sensor set C). In

addition, we considered selecting an optimal subset of six

to eight sensors from sets A and B, leading to an enhanced

segmentation quality. The exhaustive search for sensor

selection is described in the results section.

Light Source and Training Samples

For the simulation of camera responses of each sensor

set [see Eq. (1)] a white LED source with a known spec-

tral power distribution (SPD) was assumed [Fig. 2(a)].

We have selected this light source because it offers suffi-

cient emission in the visible range and because its SPD is

much smoother than other alternatives such as fluorescent

sources. Previous research has shown that spectral estima-

tion with spiky illumination is more difficult than using

illumination sources with smooth spectra.28 Another

advantage of LED over other typical smooth light sources

(i.e., incandescent lamps) is the relatively higher emission

at short wavelengths. Apart from that, LED illumination
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is a very common source in printer quality-control appli-

cation devices.

The importance of an adequate training set selection

for the spectral estimation performance of most recovery

algorithms was pointed out in ‘‘Spectral Estimation Algo-

rithms’’ section (see also Ref. 31). If we want to estimate

the spectral reflectances of inks, the best choice would be

to include a representative selection of data measured

from printed samples in our training set. One way to

investigate the influence of the selection of training sam-

ples on the performance of each algorithm is to use alter-

native training sets containing widely used samples (and

none of them containing printer inks) to compare the

quality of the ink reflectance estimation for different algo-

rithms with a specific training set that contains only data

from printer ink samples. Using additional training sets

will also be useful to demonstrate the characteristic fea-

tures of the printed ink reflectance data, although we do

not attempt to describe such features in detail. Our aim is

to demonstrate that other sets are less optimal for the esti-

mation of printer ink samples.

For our study, we selected three training sets, one com-

posed of ink samples, whereas the other two sets are built

from standard collections of reflectances that do not

include printed samples.

Training set 1 is composed of 160 printer ink samples

with reflectances measured from 380 to 780 nm with a 5-

nm sampling interval using a spectrophotometer (Ocean

Optics HR-4000). Forty-two of these samples were

obtained using a Flexo printing machine with inks from

SunChemical and Hartmann Inc. (UK). The rest of the

samples were selected from a standard printing chart of

offset inks, known as the HKS chart (Hostmannn-Stein-

berg, KþE und Schmincke, Germany). The entire set cov-

ered most of the gamut of existing printer inks, and colors

are roughly regularly distributed in the a*b* color plane,

as illustrated in Fig. 2(b).

Training set 2 is composed of 160 randomly selected

samples from the Macbeth Color Checker DC (Gretag-

Magbeth, X-Rite). This chart is commonly used for digital

camera calibration, but also for multispectral imaging.32,33

It is built by deposition of pigment on a rigid substrate,

and the resulting color patches are assumed to represent

both natural and man-made objects reflectances.

Training set 3 is composed of 160 randomly selected

samples from Vhrel’s set.34 This set includes real meas-

urements from natural and artificial objects.

FIG. 1. Spectral responsivity curves of the three sensor sets used. (a) Sensor set A. (b) Sensor set B. (c) Sensor set C.

FIG. 2. (a) SPD of the LED light source used in the simu-
lations. (b) a*–b* distribution of values of the three training
sets used under the LED light source shown in (a). [Color
figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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In Fig. 2(b), we show a plot of the three training sets

a* and b* values calculated using the LED light source

represented in Fig. 2(a). We can see that the ink training

set covers a wider range of hue values than the other two

conventional sets.

We also evaluated the degree of similarity between the

training sets using spectral reconstruction performed via

three different dimensionality reduction techniques:

PCA,26 ICA,27 and NMF28 with five to eight basis vec-

tors. We found that changing the training set for spectral

dimensionality reduction results in worse recovery quality

for printer inks, and supports the hypothesis that there are

differences in the subspaces covered by the basis vectors

of the different sets.

We assessed recovery quality using spectral error met-

rics, because we were interested specifically in differences

found between the original and recovered spectral signals.

We found a lower recovery quality in goodness-of-fit

coefficient (GFC) and root mean square error (RMSE)

indices (described in the next section) for training sets 2

and 3 in all cases, when compared to the recovery results

obtained using basis vectors of training set 1 (for instance,

PCA recovery for eight basis vectors resulted in a GFC of

0.9985 and RMSE 0.014 for training set 1, 0.9957 and

0.0298 for training set 2, and 0.9969 and 0.0257 for train-

ing set 3). The quality of recovered samples measured

with GFC was found to be better using NMF for dimen-

sionality reduction. If RMSE was used as quality metric,

however, ICA performed best. To determine whether

these results might be due to the random selection process

used in sets 2 and 3, we ran the ICA, NMF, and PCA

algorithms on sets 2 and 3 five times and recovered the

reflectances of set 1, each time with a different subset of

160 samples (again, randomly selected). Although the

quality indices values varied slightly for each run, the

trends outlined above for GFC and RMSE were consist-

ent. For all runs, the inks samples offered the best results.

Globally, these results show that there is a significant dif-

ference in the subspaces spanned by the basis vectors

obtained from different training sets. Therefore, the previ-

ous results concerning the design of multispectral capture

systems, which were obtained using different sets of

reflectances, are not strictly valid for the inks set.

Quality Indices for Spectral Estimation Assessment

We used three metrics to analyze the quality of the

spectral estimates obtained by different algorithms. Two

of them are based on spectral similarity between the origi-

nal and estimated samples (the RMSE, and the GFC35),

and one of them is based on visual perception (the CIE 94

Color difference equation, DE94, computed using the LED

source as reference white and the CIE1931 2 deg standard

observer). We chose this color difference equation instead

of the more recent and perceptually more accurate

CIEDE2000 because it is much simpler to calculate and

allows us to perform our comparative analysis of algo-

rithms performance as well. Spectral similarity metrics

and color differences typically show some common trends

but not a complete correlation. This shows that it is neces-

sary to include both spectral and colorimetric measures

for analyzing spectral estimation results.36,37 The RMSE

index focuses on absolute differences between the original

and estimated sample reflectance, and therefore is not in-

dependent of scale factors. The GFC quality index is the

cosine of the angle formed by the two samples in the

high-dimensional vector space of spectral signals. The

closer the GFC is to unity, the better the estimation qual-

ity of the sample. The GFC is independent of scale fac-

tors, so two samples differing only in scale but not in

shape would result in a GFC of 1. Both measures are

complementary and have different relative importance

depending on the kind of spectral recovery (absolute or

relative values of reflectance).

RESULTS AND DISCUSSION

Training Set 1 and Full Spectral Range

We first present the estimation results obtained for

training set 1 (printer inks) in the full spectral range from

380 to 780 nm. In Table I, we show the quality indices

corresponding to the four different algorithms and sensor

set A. Each quality index distribution is the result of

recovering all the samples one by one using the ‘‘leave

one out’’ cross validation evaluation method.30 In other

words, for each sample selected for recovery, we use all

the remaining samples as a training set (for all the algo-

rithms which require training data). Therefore, the train-

ing set changes slightly each time we estimate a different

sample. Our main aim was to compare the algorithm per-

formance of the four selected algorithms in the same con-

ditions, and for that we have used three different training

sets. For all algorithms except POCS (which does not

require training), the estimation results can be compared

amongst each other (as they are based on the same train-

ing data—training set 1 for results presented in this sub-

TABLE I. Quality indices results for sensor set A,
noisy data, different algorithms, and full spectral
range for training set 1.

Kernel RBF-NN POCS Pseudoinv

RMSE
Mean 0.0025 0.0040 0.0049 0.0046
STD 0.0018 0.0024 0.0030 0.0025
5% p 0.0008 0.0009 0.0010 0.0012
95% p 0.0051 0.0089 0.0104 0.0094

GFC
Mean 0.9964 0.9946 0.9927 0.9923
STD 0.0080 0.0079 0.0064 0.0093
5% p 0.9997 0.9993 0.9989 0.9989
95% p 0.9875 0.9857 0.9796 0.9727

DE94

Mean 0.8332 1.6715 0.7763 1.0938
STD 0.5165 1.5050 0.5125 1.0902
5% p 0.3048 0.4039 0.2133 0.2242
95% p 1.9165 4.1835 1.8833 2.7139

Best results in bold for each metric.
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section). It shall be noted that training set 1 has not been

specifically optimized to improve the performance of any

of the algorithms. We will leave this issue as a matter for

future study.

To recover the full spectral range of the sample does

not pose a problem for sensor sets A or B, since these

sets cover the entire spectral range. Sensor set C on the

other hand covers only a range from 430 to 685 nm and

therefore forces a blind estimation for any wavelength

outside that range (towards the ends of the spectrum).

We can see from Table I that globally the best results are

offered by the kernel algorithm followed by RBFNN accord-

ing to GFC and RMSE quality measures. In most cases, the

average quality of the estimations can be considered accepta-

ble for the specific application of color quality assessment,

assuming a threshold of around 1 DE94. The minimum ac-

ceptable thresholds for spectral metrics have not been

defined for this application, so we can assume the usual val-

ues of GFC above 0.99 and RMSE less than 0.025. The

POCS algorithm gives the lowest average DE94 color differ-

ence and the RBFNN the highest. This can be explained by

considering that the aim of the RBFNN is to obtain data as

similar as possible to the original reflectances but not neces-

sarily offering a minimal perceptual difference. It therefore

does not introduce constraints regarding the location in the

spectrum for which differences are allowed to appear

between original and recovered data. For some cases such

differences might appear in the central portion of the spec-

trum where they are visually more noticeable. The POCS

algorithm offers good colorimetric performance even though

it estimates metamers for the camera sensors and not for the

human visual system cone responsivities. The worst results

in spectral estimation quality correspond to the Pseudoin-

verse for sensor set A. It shall be noticed that our results can-

not be compared directly with other authors’ results due to

the difference in the sample sets or error metrics used.

Estimation quality for noise-free sensor responses (not

shown in Table I) is better than for noisy data, as expected.

The biggest difference between noise-free and noisy esti-

mations is found for pseudoinverse (mean GFC of 0.9979,

mean RMSE of 0.0024 and mean DE94 of 0.3868 for noise-

free data). This shows some potential lack of robustness

against noise for this algorithm. In this sense, the kernel

method, POCS and RBFNN are found to be relatively less

sensitive to noise in the sensor responses.

Apart from the best and worst approaches discussed

above, the overall estimation quality is quite similar for

all the other algorithms. This shows that we could have a

wide range of choice for our particular application, and

the final selection for the best algorithm could be dictated

by the availability of the inputs needed for a particular so-

lution (such as the spectral responsivity of the sensors or

the training data).

When comparing the algorithms’ performance for dif-

ferent sensor sets, we found quite similar trends for all

evaluated algorithms. In Table II, we present individual

results for the three sensor sets, only for the kernel algo-

rithm. The best results for the full spectral range corre-

spond to sensor set A, second best is sensor set B and the

worse quality is given by sensor set C. Nevertheless, sen-

sor set A has the disadvantage of not being formed by

real sensors. Even if we use a camera coupled with a de-

vice producing transmittances similar to Gaussian curves

(such as a liquid crystal tunable filter) the combined sen-

sor responsivity would not be Gaussian because it has to

be multiplied by the camera sensor responsivity. We get

closer to real situations when we evaluate the possibility

of using sensor sets B or C.

In Fig. 3, we present some examples of original and

recovered reflectances for the RBFNN, Pseudoinverse,

POCS, and kernel algorithms for sensor set C. The big-

gest difference in general between the original and esti-

mated reflectance is found in the extremes of the spec-

trum (near 380–400 nm or near 730–780 nm). The color

matching functions or CMFs, which are needed to calcu-

late the color differences, have negligible values in both

ends of the spectrum, so even relatively big discrepancies

between original and recovered signals at the beginning

and the end of the spectrum do not result in visually per-

ceptible differences. This is one of the reasons why the

spectral and colorimetric indices do not always correlate.

If we consider the estimation quality for an application

related to human judgment of color differences between

samples then we should be less concerned with the dis-

crepancies found in the extremes of the spectral range

covered. It seems that in general purple colors are the

most difficult samples to estimate. One reason for this is

the somewhat spiky nature of the inks in the violet end of

the spectrum found in some cases of ink samples. As

shown in Fig. 3(a), a purple sample with a smoother re-

flectance can be estimated very accurately.

Training Sets 2 and 3 and Reduced Spectral Range

We now discuss the issue of the training set selection.

As described in ‘‘Light Source and Training Samples’’

TABLE II. Quality indices results for the kernel
algorithm, different sensor sets and full spectral
rangem.

Sensor
set A

Sensor
set B

Sensor
set C

RMSE
Mean 0.0025 0.0031 0.0046
STD 0.0018 0.0028 0.0034
5% p 0.0008 0.0010 0.0019
95% p 0.0051 0.0069 0.0113

GFC
Mean 0.9964 0.9938 0.9827
STD 0.0080 0.0129 0.0479
5% p 0.9997 0.9998 0.9996
95% p 0.9875 0.9728 0.9016

DE94

Mean 0.8332 1.1252 1.2202
STD 0.5165 0.8837 0.7047
5% p 0.3048 0.4309 0.4099
95% p 1.9165 2.2131 2.5533

Best results in bold for each metric.
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section, we performed the estimations of ink reflectances

using sensor set C with reduced spectral range between

430 and 685 nm, and 160 samples of the Color Checker

DC (set 2) as well as 160 samples of Vhrel’s reflectances

(set 3) for training, instead of using the ink reflectances

(set 1). We have found for our data using either alterna-

tive training set the best performance is offered by the

pseudoinverse algorithm, showing that this algorithm, is

most suitable in case a non-optimal training set is used

for estimation. Except for the POCS algorithm which does

not require training, as outlined in the previous section,

all quality indices are worse than those corresponding to

estimation based on training set 1. For instance, the best

GFC for sensor set C and noisy data decreases from

0.9964 to 0.9924, best RMSE increases from 0.0025 to

0.0040, and the averaged DE94 increases from 1.0352 to

1.7730 for training set 2; the best GFC for training set 3

is 0.9936, best RMSE is 0.0047, and the averaged DE94 is

1.5834. This is not very surprising given the dissimilar-

ities found between the subspaces covered by the different

training sets (see ‘‘Light Source and Training Samples’’

section). Training sets 2 and 3 are constituted by the same

number of samples as training set 1, but none of them are

printer inks. The two algorithms for which estimation

quality decreases most are kernel and RBFNN. This is

due to the fundamental principle underlying their estima-

tion process: the RBFNN (as all neural networks) is

extremely sensitive to the kind of samples provided in the

training phase. The kernel requires tuning of some param-

eters which depend to a certain degree on the training set

as well. Therefore, it is quite logical that RBFNN and

kernel are more affected by a relatively bad choice of a

training set.

The pseudoinverse algorithm is not influenced as much

as RBFNN and kernel by the training set selection. This

is a point in favor of this method if an optimized set of

training reflectances cannot be found.

Sensor Set Optimization by Exhaustive Search

As discussed in ‘‘Training Set 1 and Full Spectral

Range’’ section, sensor sets B and C are closer to a real

FIG. 3. Representative examples of recovery (corresponding to 5 and 95 percentiles) for sensor set C. (a) RBFNN.
(b) Pseudoinverse (c) POCS. (d) kernel. The measured spectra are plotted in continous lines, and the estimated spectra
using symbols. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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multispectral system’s spectral responsivity, while sensor

sets A and B cover the full spectral range of the measure-

ments better. The advantage of sensor set C is the reduced

number of sensors when compared with A and B. Both

sensor sets A and B have 12 sensors. That number is

above the usual number of sensors for multispectral cap-

ture devices.3 Apart from that, it can be seen from Fig. 1

that the sensitivities of the sensors in set B clearly over-

lap, and the same is true (though to a lesser degree) for

sensor set A. We are interested in investigating the possi-

bility of using a reduced number of sensors for these two

sensor sets, and to see if we can optimize the sensor

selection for spectral estimation in the full spectral range

for training set 1. For our study, we used an exhaustive

search procedure to determine the optimum sensor subset

ranging from six to eight sensors. The computationally

expensive exhaustive search process is feasible in our

case, because the number of sensors is not very high.

Other studies have tackled the issue of sensor or filter set

optimization for a specific task,38–41 and this issue is con-

templated as a matter of future work within our specific

task of designing a multispectral capture system for

in-line inspection of printer inks.

The exhaustive search procedure works in the following

way: for each combination of six or eight sensors, we

obtain estimated reflectances of sample set 1 for all five

algorithms. According to the obtained estimation quality

for each algorithm, we assign a rank for the best 10 com-

binations. These combinations were considered as com-

petitors. Finally, we selected the best combination by tak-

ing into account the number of times it appeared in the

‘‘best 10’’ and the given position in the ranking for indi-

vidual algorithms. So for each combination, if it appeared

in ‘‘best 10’’ for each algorithm we added 100 points; and

for each time it appeared as the best for a given algo-

rithm, we added 5 points; 4 points were added for each

time it appeared as second best, and so on. Finally, we

added up all the points for the competitors, and the best

combination was selected. The best sensor combination of

six sensors obtained from sets A and B are shown in Fig.

4. Remarkably, in both optimized sensor subsets, there is

a higher number of sensors placed in the central portion

of the spectral range than in the portions near the

extremes of the spectrum. Once again, sensor set A offers

the best results, but there is a significant increase in esti-

mation quality for optimized sensor set B as well.

The quality indices for the different algorithms and

noisy data for sensor sets A and B and RBFNN algorithm

are shown in Table III for six and eight sensors. Adding

two more sensors (eight sensors) results in improvement

in GFC and DE94 for both sensor sets, and a decrease in

GFC for sensor set B while the GFC for sensor set A

increases as well. This shows that adding more sensors

can sometimes worsen estimation quality, especially for

noisy camera sensor responses. We can conclude from

this result that it is possible to obtain a high quality re-

covery with only six real sensors belonging to sensor set

B, while for sensor set C it would be necessary to add

more sensors in the extremes of the spectrum (and per-

FIG. 4. Optimal six sensors for sensor set A (left) and sensor set B (right). Data based on full spectral range recovery with
training set 1 and noisy data.

TABLE III. Optimized sensor set quality estimation
indices for sensor sets A and B, full spectral range,
noisy data, and RBFNN algorithm.

Set A (6) Set A (8) Set B (6) Set B (8)

RMSE
Mean 0.0033 0.0027 0.0036 0.0038
STD 0.0022 0.0018 0.0029 0.0027
5% p 0.001 0.0009 0.0012 0.0014
95% p 0.0066 0.005 0.0062 0.0072

GFC
Mean 0.9948 0.9963 0.9936 0.9907
STD 0.0106 0.0073 0.0135 0.0198
5% p 0.9996 0.9996 0.9993 0.9993
95% p 0.9828 0.9876 0.9772 0.9613

DE94

Mean 1.9727 1.7723 1.6249 1.3543
STD 1.2914 1.5323 0.8158 0.7164
5% p 0.6246 0.5677 0.6202 0.5275
95% p 4.5975 4.0874 2.9439 2.6788

Best results in bold for each metric.
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form the exhaustive search optimization) to obtain good

quality results for the full spectral range.

If we consider the influence of the algorithm on the esti-

mation results, again the kernel offers the best quality, a

result in agreement with findings from previous experiments

(see ‘‘Training Set 1 and Full Spectral Range’’ section).

CONCLUSIONS

We have analyzed the influence of several factors on the

performance of a simulated multispectral capture aimed at

spectral reflectance estimation of printer inks from sensor

responses for in-line color quality inspection of printed

samples. Those factors were the estimation algorithm,

influence of noise in the camera responses, type of train-

ing set, spectral range and selection of an optimal sensor

subset. We have found evidence of crossed interactions

between some of these factors. The training set selection

determines the best estimation algorithm. If the training

set is not optimum (i.e., if the samples in the set do not

cover the same subspace as the target samples) or if there

is no training set available, then POCS or pseudo-inverse

algorithms are the best choices. The POCS algorithm does

not require a training set and is less sensitive to noise in

the sensor responses than pseudoinverse. If an adequate

training set can be built, the best results correspond to the

kernel algorithm, followed by RBFNN. The spectral range

covered by the sensors is a key factor in determining esti-

mation quality. A sensor set covering most of the spectral

range of the measurements, and particularly the extremes

of the spectrum, should be selected. Nevertheless, the

results of exhaustive search selection show that the major-

ity of the optimum sensors would cover the central por-

tion of the spectral range.

Our results pave the way for the implementation of a

real multispectral capture system, designed for new appli-

cations of spectral estimation related to printer ink reflec-

tances. Apart from that, this study contains some practical

advice for capture system designers related to the selec-

tion of training samples, optimal sensor sets and evalua-

tion of a suitable spectral estimation algorithm for this

specific task.
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