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Generalized Inverse-Approach Model for
Spectral-Signal Recovery

Shahram Peyvandi, Seyed Hossein Amirshahi, Javier Hernández-Andrés,
Juan Luis Nieves, and Javier Romero

Abstract— We have studied the transformation system of a
spectral signal to the response of the system as a linear mapping
from higher to lower dimensional space in order to look more
closely at inverse-approach models. The problem of spectral-
signal recovery from the response of a transformation system is
generally stated on the basis of the generalized inverse-approach
theorem, which provides a modular model for generating a spec-
tral signal from a given response value. The controlling criteria,
including the robustness of the inverse model to perturbations
of the response caused by noise, and the condition number for
matrix inversion, are proposed, together with the mean square
error, so as to create an efficient model for spectral-signal
recovery. The spectral-reflectance recovery and color correction
of natural surface color are numerically investigated to appraise
different illuminant-observer transformation matrices based on
the proposed controlling criteria both in the absence and the
presence of noise.

Index Terms— Color, inverse problem, spectral analysis,
spectral-signal reconstruction.

I. INTRODUCTION

THE RECENT development of multispectral imaging sys-
tems together with an urgent need for a hyper-spectral

data-acquisition system have given rise to extensive research
in imaging science aimed at finding efficient ways of acquiring
multispectral signals [1], [2]. Within this context, the over-
sampling of hyperspectral signals as well as the inevitable
noise involved in recording images demand an efficient process
for image storage, communication and restoration without
any loss of information. On the contrary, typical color-image
acquisition devices record under-sampling spectral signals for
each pixel. The spectral reconstruction of pixels is highly
desirable in order to retrieve the colorimetric information of
the image under any illumination conditions [3].
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In 1964 Cohen analyzed the reflectance spectra of 433 chips
in the Munsell Book and fitted a linear model to a set of spec-
tra [4]. This considerable achievement formed the foundations
of spectral reflectance recovery using linear models [5]–[7].
On the basis of linear models of basis functions of the spectral
dataset [8], [9] a variety of methods were later developed
for spectral recovery in the field of color science [10]–[14].
Spectral-based techniques have also been investigated with the
intention of recovering the reflectance of surface colors from
the sensor response of a digital camera [15], [16].

As far as imaging applications are concerned, Bayesian
inference for inverse problems has been widely used as a
far-reaching tool for image restoration [17], [18]. In the
Bayesian inference model for inverse problems the posterior
distribution is obtained by prior knowledge of the signal and
noise. The Wiener filter restoration method, resulting from
Bayes theorem, is a common technique for signal restora-
tion, image reconstruction and communications problems [3],
[17]–[20]. In 1995 Brainard suggested that Bayesian method
might be suitable for spectral recovery from the RGB sensor
responses [21]. Bayesian decision theory was also employed
to deal with the problem of color constancy to compute
the posterior distribution of the illuminants and recover the
physical properties of the surfaces in the scene for a given
set of sensor responses [22]. The Wiener filter-restoration
approach as a solution for inverse problems in imaging science
has been widely used for spectral-reflectance reconstruction
from image-capturing sensor responses [23]–[28] and also for
color correction methods [29]–[32].

To build a parametric inverse-approach model for spectral
recovery or color correction, a modular model is created, the
arguments of which can be set up to optimize the inverse
model based on a preferred criterion. We first of all present
here a theoretical background to introduce a transformation
system together with the Moore-Penrose inverse approach
and Bayes’ method for inverse problems. Subsequently, in
Section III, we introduce a theorem as a generalized approach
for inverse problems in spectral-signal recovery from the
response of a transformation system. The proposed theorem
provides a general parametric form to generate mathematically
a set of spectra given an individual response. The proposed
theorem is extended to include the presence of noise as a
perturbation of response in a transformation system. Since
the optimum lighting condition for practical spectral recovery
has always been a matter of great concern in color and
imaging technology, in Section IV we investigate spectral-
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signal recovery from the response of a transformation system
in order to develop the controlling criteria for making an
efficient inverse model. The proposed controlling criteria are
designed to evaluate in a practical way the transformation
matrix for choosing the optimum transformation system in
color and imaging technology. In Section V we develop
the color-correction methods based on GIA, and finally we
conduct a numerical experiment to test the proposed criteria
for different illuminant-observer transformation matrices in
order to obtain the optimum light source for classical spectral
recovery and color correction.

II. THEORETICAL BACKGROUND

It is very common to adopt the vector space approach to
relate input and output for a mathematical model in color
and imaging applications [3], [33], [34]. So let us take the
following forward transformation system of signal to response
to be:

c = AT r + ε, (1)

where r is the n × 1 vector of the spectral signal, A the
n × p system transformation matrix, ε the signal-independent
additive noise of the system and c the p × 1 response vector.
In practice we encounter the problem of a considerable loss of
information due to transforming from spectral n-dimensional
signal space, �n, to p-dimensional response space, �p, where
p < n. The difficulties attached to this information loss will
emerge when we need to estimate the unknown signal, r , from
its system response, c.

One simple way of estimating r is to use the Moore-Penrose
generalized inverse matrix (AT )† [35], which for an ideal
noiseless system is

r̂ = (AT )†c. (2)

Another way of estimating r is to use the Bayes theorem,

p(r|c) = p(c|r)p(r)
p(c)

, (3)

in which p(c|r) and p(r) are the likelihood and prior
probability density functions respectively. Assuming Gaussian
distribution, applying Eq. (3) to Eq. (1) would yield an
analytical solution to the estimation of r given response c [17].
Translating our prior knowledge of the input signal r through
prior probability distribution r ∼ N (μr ,�r ) and assuming
that the noise follows Gaussian distribution, ε ∼ N (με ,�ε),
will result in the posterior probability distribution p(r|c) =
N (μr |c,�r |c), where

μr |c = �(c − με − AT μr ) + μr (4)

�r |c = �r − �AT �r , (5)

in which � = �r A(AT�r A+�ε)
−1 is the Wiener estimation

matrix [18]. The mean vector and covariance matrix are
represented by μ and � respectively. The estimation, r̂, of
the signal, r, given response c, which minimizes the mean
square error, E{‖r − r̂‖2}, is the mean vector μr |c. If, based
on Eq. (3), the closed-form of the analytical solution is not

available for an individual a priori and likelihood distributions;
the estimation r̂ is the maximum a posteriori

r̂ = argmax
r

{p(c|r)p(r)}, (6)

which is the most probable estimation of r given
response c [17].

III. GENERALIZED INVERSE-APPROACH THEOREM

In many applications where complete information is avail-
able about the transformation matrix, A, it would be desirable
to estimate r̂ efficiently from the response c. The concept
of the Generalized Spectral-Decomposition Theorem (GSD)
was introduced for the metameric decomposition of spectral
stimuli [36]. We intend to present here a Generalized Inverse-
Approach Theorem (GIA) based on the same concept of GSD
as well as its extension to include the presence of noise.
From Appendix (A) we can estimate the signal r̂c, given
response c. Now a general theorem is presented for the inverse
problem that enables us to estimate the distribution p(r|c) =
N (μ̂r , �̂r ).

Theorem 1: Let r be a spectral signal that follows a
Gaussian distribution, r ∼ N (μr ,�r ), and c = AT r an
ideal noiseless system of signal r to response c transfor-
mation, which maps the higher n-dimensional signal space
�n to the lower p-dimensional response space �p. Let S =
U�UT V(AT U�UT V)−1 be a specified n × p matrix in which
U and V are n × q and n × p matrices, respectively, where
p ≤ q ≤ n. If the columns of the matrices U and V are
specific, linearly independent, spectral basis vectors, and � is
a q×q individual real diagonal matrix, then r̂ = rc + ro, with
the constant fundamental signal

rc = Sc, (7)

and the nullspace

ro = r − SAT r (8)

of the transformation system, in which H = SAT is an
idempotent matrix, provides a spectral signal r̂ with the mean
vector

μ̂r = S(c − AT μr ) + μr (9)

and covariance matrix

�̂r = (I − H)�r (I − H)T (10)

so that AT r̂ = c for the response c of the transformation
system.

Proof: From Appendix (A), rc = Sc is an estimate of r
with a noiseless response, c. If the spectral signal r̂ provides
the same response c, then multiplying the signal r̂ by the
transformation matrix AT should result in the same response c:

AT r̂ = AT rc + AT ro. (11)

The substitution of rc and ro from Eqs (7) and (8) into Eq. (11)
gives:

AT r̂ = AT Sc + AT (r − SAT r)

= c + AT r − AT SAT r

= c + AT r − AT r

= c. (12)
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If ro provides a signal of the nullspace null(AT ) :=
{r|AT r = 0} of the transformation system, then AT ro = 0.
Considering Eq. (8):

AT ro = AT (r − SAT r)

= AT r − AT SAT r

= AT r − AT r

= 0. (13)

It can also be shown that for a scalar value γ , AT (γ ro) = 0.
Furthermore, since HH = H then H = SAT is idempotent.
Therefore, from Eqs (7) and (8), we can write:

r̂ = Sc + (I − SAT )r. (14)

Since c is a given deterministic vector, we get:

μ̂r = Sc + (I − SAT )μr

= S(c − AT μr ) + μr (15)

and

�̂r = (I − SAT )�r (I − SAT )T

= (I − H)�r (I − H)T . (16)

In the presence of noise ε ∼ N (με,�ε) we could construct
the following equation from Eq. (A.13) of Appendix (A),

μ̂r = S(c − με − AT μr ) + μr (17)

and the covariance matrix �̂r = (I − SAT )�r (I − SAT )T ,
where,

S = U�UT V(AT U�UT V + �ε)
−1 (18)

on the presumption that,

τ = ‖ (AT U�UT V)−1�ε) ‖< 1, (19)

so that (AT U�UT V + �ε) is invertible [37].
The proposed theorem would provide a parametric tool that

enables us to create the modular convex subset R̂n(�) :=
{r̂ i }m

i=1 from the set of spectral signals, Rn := {r i }m
i=1, for

a given response, c, and specified matrices, U and V. The
properties of the subset thus created, R̂n(�) , will change
depending on the input parameters and matrices chosen. In
practical situation of the spectral recovery where p < q ≤ n,
we encounter the problem of information loss due to the trans-
formation from higher dimensional spectral space to lower
dimensional response space. Also, the spectral reflectance, r,
is unknown and we are not aware of the vector of residuals
error, e, in Eq.(A.3). As the result, the diagonal elements, ω j ,
of the matrix � are unknown. Therefore, the elements ω j of
the diagonal matrix � as well as the matrices U and V should
be optimized to efficiently recover the unknown n×1 spectral
signal, r , from the p × 1 response vector, c.

IV. SPECTRAL SIGNAL RECOVERY

The proposed GIA could be used to recover spectra from
the response of a system. Taking the mean vector, μ̂r , as the

estimated signal, r̂, we can write the following equation for
spectral approximation from the response c:

r̂ = S(c − με − AT μr ) + μr

= S(c − με) + (I − H)μr . (20)

The two important special cases of GIA in terms of the aim
of the inverse problem are:

1) An approach based on the Moore-Penrose generalized
inverse matrix when � is an n×n diagonal matrix equal
to identity and V = A.

2) The Wiener inverse approach when � is an n × n
diagonal matrix, the diagonal elements of which are the
descending-ordered eigenvalues of the covariance matrix
�r and V = A.

The proposed GIA was introduced based on the assumption
of Gaussian distribution for spectral signal r . The normal
probability distribution can be roughly assumed for a priori
and likelihood distributions that leads to a Gaussian poste-
rior distribution. Nonetheless, the assumption of a Gaussian
distribution of natural object spectra was argued in a paper
by Attewell and Baddeley [38] where a beta-distribution or
mixture of normal distributions for natural reflectance spectra
were proposed. GIA holds true theoretically for the chosen
parameters, yet optimizing the input arguments of GIA to con-
struct an efficient model is required for practical applications
in imaging and color science. The arguments of the model can
be optimized to achieve a specific criterion, e.g. minimax of
the estimation error. In this special case, in order to obtain
the minimum of the maximum spectral estimation error using
the training spectral dataset, the diagonal elements ω j of the
matrix � can be optimized by,

�∗ = argmin
ω j �=0

{
max[‖r − r̂(�)‖2]

}
, (21)

where r̂ is estimated using Eq. (20). In the following sections,
two criteria are developed to control the system to create an
efficient inverse model.

A. Mean Square Error of the Spectral Estimation

On the basis of Eq. (20) it can easily be proved that the
mean square error, E{‖r − r̂‖2}, for the estimation of r̂ from
c can be measured by:

ζ = E
{
(r − Hr)T (r − Hr)

}

= tr
{
E[(I − H)r rT (I − H)T ]}

= tr
{
(I − H)�r (I − H)T}

= tr{�̂r } (22)

where tr{·} is the trace operator. Rewriting Eq. (20) as the
estimated signal, r̂ , we have:

r̂ = rc + (I − H)μr − Sμε, (23)

in which rc is in fact the row estimation of the signal r , (I−H)
μr is the average of the nullspace Rn

o of the transformation
and Sμε is an estimation of the spectral perturbation caused
by noise ε. The term (I − H)μr is in fact the average of
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our unawareness about the signal being recovered, which is
added to rc just to compensate for the information loss caused
by the transformation �n �→ �p [36]. The covariance matrix
�̂r of the convex subset R̂n is equal to the covariance of
Rn

o . We may conclude that the amount of information loss
might correspond to the extension of the nullspace, Rn

o , or
convex subset, R̂n , which could be evaluated by the covari-
ance matrix, �̂r . Therefore, we could measure information
loss as a quantity related to the volume of the spectral
space created by the convex subset, R̂n . According to the
information theory, the entropy of a Gaussian distribution is
measured as a function of the product of eigenvalues of the
corresponding covariance matrix. Furthermore, the continuous
probability function, with higher differential entropy, contains
more information in volume [39], [40]. Bearing in mind that
the covariance, �̂r , is a positive definite matrix, the criterion
for measuring the amount of information loss caused by the
projection of Eq. (1) from the n-dimensional signal space, �n,
to the p-dimensional response space, �p, could be numerically
evaluated by the summation of the eigenvalues of �̂r , as
presented in Eq. (22). Thus it is comprehensible that less
information loss due to the transformation �n �→ �p would
provide more precise estimation, r̂, for the signal r given the
response c. It should be noted that, however, MSE is one of
the most widely used criteria to control the inverse model, the
sensitivity of the system to the noise perturbation is also of
important consideration in the presence of noise, that should
be taken into account together with MSE.

B. Perturbation of the System

In practical applications of imaging technology, the response
is recorded by a noisy sensor device and the noise of the
system may have a significant effect on the result of spectral
recovery. Shimano [41] optimized a set of Gaussian-shaped
spectral sensitivities based on a colorimetric evaluation in the
presence of noise, in order to increase the robustness of the
model to noise. He discussed that the robustness to noise
decreases with an increase in the number of sensors at low
SNRs, resulting in decreasing the performance of capturing
the colorimetric information. In another research [26], he also
proposed a model for estimating the system noise variance
that can be used, together with the autocorrelation matrix, to
effectively recover the spectral data [42]. In Appendix (A)
it can be seen that the condition number of the matrix,
AT U�UT V, plays a crucial role in the estimation of r̂, and
so a smaller condition number, cond(AT U�UTV), may limit
the relative error in estimating r̂ due to noise ε. This result
is in agreement with previous finding that the inverse model
is more sensitive to noise when the condition number is
high [43].

In Eq. (20), it can be seen that any deviation of c results in
a concomitant deviation in the approximated spectral signal,
r̂ . Therefore, it is preferable to have a model that is robust to
the noise of the system so that the recovered signal r̂ deviates
as little as possible while c is perturbed by the inevitable noise
of the recording device. The derivative of the recovered signal

r̂ of Eq. (20) with respect to response c,

∂ r̂
∂c

= S, (24)

provides the rate of perturbation of the spectrum, r̂, with
a small deviation of c due to the noise of the system, ε.
Therefore the magnitude of the perturbation rate of Eq. (24)
can be considered as being a criterion for the evaluation of the
robustness of the recovered spectral signal to the perturbation
caused by the noise of the system, as follows:

η =‖ S ‖, (25)

where η measures the sensitivity of r̂ to perturbations in c.

V. COLOR CORRECTION

Color correction is the mapping procedure from a device-
dependent response space such as sensor response to a device-
independent color space such as CIEXYZ or CIELAB [30],
[32]. Color correction methods and spectral approximation
techniques both generally follow the same aim of estimating
the colorimetric information of a color sample from the
recorded response, c, under many different viewing conditions.
Let us suppose that L = [�iLi ], i = 1, . . . , K represents
the 3K × n matrix including K matrices Li , which is the
3 × n CIE standard illuminant-observer matrix of mapping
the reflectance spectra to the CIEXYZ color space. The scalar
value �i represents the weighting factor corresponding to the
viewing condition Li proportional to its relative importance.
Multiplication of Eq. (20) by L will result in the color
correction model,

t = LS(c − με − AT μr ) + Lμr

= LS(c − με) + L(I − H)μr , (26)

which transforms the response vector c to the vector of
tristimulus values t = Lr̂ , where

ζc = tr{ L(I − H)�r (I − H)T LT } (27)

and

ηc =‖ LS ‖ (28)

are respectively MSE and the perturbation sensitivity of the
color-correction model of Eq. (26).

VI. COROLLARY

From Appendix (B) it has been shown that for an ideal
noiseless system, given that U�UT = �r and V = A,
the MSE value, ζ , is minimized. If V = A and � is a
diagonal matrix, the diagonal elements of which are equal to
the decreasingly ordered eigenvalues of �r then GIA would
invert to the special case of the Wiener inverse model, meaning
that amongst all possible special cases of GIA, whether it is
applied in spectral space [10], [44] or principal-component
space [45], [46], the Wiener inverse method would provide
the minimum MSE for a noiseless system.

Vrhel and Trussel [30] proposed an interesting method
to design the optimum filters for color correction in the
absence of noise. On the basis of their elaborate idea, we
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have been able to design the optimum transformation matrix A
to obtain the minimum MSE for signal recovery from the
response of the noiseless transformation system. According
to Appendix (C), if U�UT = �r and V = A, the value ζ of
a noiseless system is confined within the interval [ξmin , ξmax ].
To obtain the lowest possible value of ξmin for the MSE value
ζ with regard to the matrix A, the transformation matrix A
should preferably be designed on the basis of any individuals
A∗ ∈ A where:

A := {A|A = �
−1/2
r Q∗Y, Y ∈ Yp}, (29)

in which the columns of matrix Q∗ are the p eigenvectors
associated with the p largest eigenvalues of the matrix �r and
Yp denotes the set of p × p non-singular matrices, Y.

It has been discussed in Appendix (A) that in the presence of
noise, the condition number of the matrix AT U�UT V, should
be small to decrease the effect of noise on the estimation of
spectrum, rc. This is in convincing agreement with Shimano’s
findings [41]. Let’s consider the special case of Wiener inverse
model. Then, the singular values - and particularly the smaller
ones - of the matrix AT U�1/2 should be maximized to increase
the robustness of the model to noise [26], [41], [47]. The
singular values of the matrix AT U�1/2 are equal to the square
root of the eigenvalues of the matrix AT U�UT A, the condition
number of which can be calculated by Eq. (A.14). Therefore,
when the smallest singular value of the matrix AT U�1/2 gets
closer to the largest one, the condition number of the matrix
AT U�UT A decreases, getting closer to one. In the present
paper, we proposed the sensitivity of inverse-model to the
noise perturbation based on Eq. (25), however, the sum of
the squared singular values of the matrix S was proposed by
Hironaga and Shimano to evaluate the robustness of the system
to noise [48]. In the presence of noise ε, not only is the MSE
value ζ of crucial concern [31] but also the robustness of the
recovered spectral signal, r̂, to the perturbations in c due to
the noise of the system, this latter being calculated according
to the value η of Eq. (25). Thus, the optimum transformation
matrix is that which provides the minimum MSE value, ζ , and
simultaneously as low a value as possible for the sensitivity,
η, of r̂ to perturbations in c.

VII. NUMERICAL EXPERIMENT

We undertook multispectral signal reconstruction of the
reflecting specimens. The primary multispectral dataset
included three sets of the reflectance collection spectrally
measured from 400 to 700 (nm) with intervals of 10 (nm).
The first set was the spectral data of 1269 chips in the
Munsell Book of Color Matt Finish collection, measured at
the University of Eastern Finland [49]. The second collection
was the 1950 chips of the NCS Color Atlas [50], measured
with the Datacolor 550TM spectrophotometer, and the third
one consisted of 5574 samples of acrylic paint [9]. Therefore
a total of 8793 reflectance spectra from natural color samples
were available for the primary spectral dataset. In the following
experiments, the total of 8793 spectral reflectances were used
as the training dataset to construct the covariance matrix for
inverse approach. Same dataset were also considered to be the
trial set to test the inverse model.

TABLE I

TRANSFORMATION MATRICES WITH DIFFERENT MATRIX-RANK, p, THAT

ARE CREATED TO OBTAIN THE MINIMUM AND MAXIMUM MSE

VALUES, ζ . THE TABLE ALSO SHOWS THE PERCENTAGE OF THE

POSITIVELY BOUNDED FEASIBLE SPECTRA RECOVERED FROM

THE TRISTIMULUS VALUES CALCULATED BY USING

THE MENTIONED TRANSFORMATION MATRIX

p ζ
Bounded

r̂ (%)
Transformation Matrix

3
ζmin 0.0894 96.5 A-2°

ζmax 0.1493 96.6 F5-10°

6
ζmin 0.0128 99.5 F8-2°, A-2°

ζmax 0.0870 95.7 F10-10°, C-10°

9
ζmin 0.0044 99.7 F7-10°, F5-10°, A-2°

ζmax 0.0585 96.0 F10-2°, F11-10°, F7-10°

12
ζmin 0.0015 99.9 E-2°, F9-2°, F7-2°, A-10°,

ζmax 0.0378 98.4 F12-2°, F6-2°, F10-10°, F2-10°

A. Classical Spectral Recovery from Tristimulus Values

Recovery of reflectance spectra from the corresponding
tristimulus values is of crucial importance in color science.
In this part of the numerical experiment different trans-
formation matrices were investigated using the value ζ ,
based on a noiseless transformation system. In the classical
spectral-reconstruction methods [10], [12] the transformation
matrix, A, is in fact the illuminant-observer matrix. In this
part of the numerical analysis 16 illuminants, including equal
energy (E), C, D65, A and 12 fluorescent light sources
together with two sets of 10-degree 1964 and 2-degree 1931
standard observers, were used to create different illuminant-
observer matrices, A, which is usually known as the spectral-
power matrix. All the possible combinations of 32 illuminant-
observer matrices available were used as the transformation
matrix, A, to calculate the value of ζ . Thus the dimension
p of each n × p transformation matrix A, created from the
available illuminant-observer matrices, was a multiple of three.
In Table 1, therefore, each row corresponding to a particular
dimension represents the results obtained from the spectral
recovery by the Wiener method using the transformation
matrix, A, which provides minimum and maximum amounts
of MSE values, ζ . The third column shows the percentage
of feasible positive-bound spectra that can be recovered via
the response of each transformation matrix. In each row the
percentage of feasible spectra recovered via the response of
the transformation matrix related to ζmin is higher than that
corresponding to ζmax . It can be seen that the result for the
best possible transformation matrix depends on the dimension
p. Furthermore, the value of ζ decreases concomitantly with
an increase in p. It is important to note that this numerical
experiment was carried out to find the optimum illumination
based on the optimum spectral performance, which does
not essentially imply the optimum colorimetric performance.
A model such as Eq. (26) may be constructed to find the
minimum value of ζc that provides the optimum colorimetric
performance under the chosen illumination, Li .
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Fig. 1. Responsivity of the monochrome camera and transmittance of the
five glass filters employed for recording response values.

B. Color Correction Using the Noisy Sensor Response

We used a monochrome 12-bit CCD camera from QImaging
[51] together with 5 glass filters to record the 5 × 1 sensor
responses, c. Let us suppose that � is n × n the diago-
nal matrix, the diagonal elements of which are the spectral
sensitivity of the sensor and O is n × p the matrix, the
columns of which are the spectral transmittance factor of the
glass filters. If the spectral-power distribution of the light
source is written as a n × n diagonal matrix, E, then the
n × p transformation matrix, A, is equal to �EO. Because
the 12-bit CCD sensor was used for image acquisition,
each channel of the transformation matrix was normalized
for the reflecting white sample so as to obtain the highest
12-bit response value, that for an ideal white sample is equal
to 4095. Figure 1 represents the sensor sensitivity and the
transmission spectra of the glass filters in the visible range
of the spectrum. Noise ε was presumed to follow normal
distribution with με = 0 and �ε = σ 2

ε I5, where the variances
σ 2

ε = 0.001 and 0, corresponding to the SNRs of 30, and Inf
dB respectively, were used in the experiment. In Appendix (A)
we show that Eq. (19) should be satisfied in the presence of
noise. Therefore, in the numerical experiment particular care
has been taken to satisfy Eq. (19). However recording noiseless
camera response is not practically possible by the real devices,
the experiment was numerically carried out in the absence and
presence of noise in order to evaluate the performance of color
correction in both conditions using the perturbation sensitivity
ηc together with MSE value ζc.

The numerical experiment was carried out to perform the
color correction based on Eq. (26) in which the matrix S
was created based on Eq. (18). The vectors of the tristim-
ulus values, t = Lr̂ , of the 8,793 reflectance dataset from
the responses of the chosen transformation matrices were
estimated to test the color correction model. Matrix L was
constructed by stacking the lighting matrices, Li , i = 1, . . . , 6,
with equal weighting factors, �i = 1, in which the matrices
Li were created by illuminants D65, A, F2, F5, F7 and
F9 together with the 10-degree 1964 standard observer. The
diagonal elements of � were taken to be equal to the decreas-

TABLE II

ANALYSIS OF THE COLOR CORRECTION PERFORMANCE WITH REGARD

TO THE MSE VALUE, ζc , AND PERTURBATION SENSITIVITY, ηc , FOR TWO

DIFFERENT TRANSFORMATION SYSTEMS, CALCULATED BY �E∗
94 COLOR

DIFFERENCE BOTH IN THE ABSENCE AND PRESENCE OF NOISE

SNR No. ζc ηc Min Max Mean Median

Inf
1 1.4005 3.2090 0.4671 0.6796 0.5530 0.5412

2 0.5886 9.9703 0.2987 0.4943 0.4301 0.4490

30
1 1.4006 3.1971 0.4819 0.6825 0.5648 0.5541

2 0.6011 9.5328 0.5008 0.8061 0.6767 0.7086

ingly ordered eigenvalues of the covariance matrix �r and
V = �EO. We then constructed the transformation matrices
using the 16 available illuminants. Among the 16 possible
transformation matrices, �EO, constructed separately from
the 16 available illuminants, the two which respectively led to
the minimum values of MSE, ζc, and perturbation sensitivity,
ηc, were chosen to create two different transformation sys-
tems. Then, the color correction was followed by numerical
simulation of the recorded response values of the employed
CCD under two selected illuminations, in the presence and
absence of noise.

The results of color correction conducted on the 8,793
samples to estimate their tristimulus values under illuminants
D65, A, F2, F5, F7 and F9 from the response of the two chosen
transformation systems are set out individually in Table II,
in which the MSE value, ζc, and perturbation sensitivity, ηc,
as well as the minimum, maximum, mean and median of
the CIE94 color-difference, �E∗

94, obtained under the chosen
illuminants and 10-degree 1964 standard observer, are all
shown. The first transformation system showed minimum
perturbation sensitivity, ηc, while its MSE was quite high,
whereas the second one showed the minimum MSE value, ζc,
but its perturbation sensitivity, ηc, was high. As Table II shows,
in the absence of noise (SNR = Inf) the second transformation
system with minimum MSE proved to be the better color
correction model, the minimum, maximum, mean and median
of �E∗

94 of which were all smaller than those obtained with
the first one. In the presence of noise (SNR = 30) the second
transformation system, with a high perturbation sensitivity
of ηc = 9.5328, gave rise to an unsatisfactory colorimetric
performance in spite of its low MSE value of ζc = 0.6011.
It is very important to note that the second transformation, with
a minimum MSE value, performed badly for color correction
due to the fact that its perturbation sensitivity is high. It can
be seen that in the presence of noise (SNR = 30) the first
transformation, with a low perturbation sensitivity of ηc =
3.1971, performed best as far as colorimetric performance is
concerned, even though its MSE value of ζc = 1.4006 is high.

Figure 2 shows the average of �E∗
94 between the estimated

color coordinates of 8,793 samples and the real ones under the
chosen illuminants for two different noise levels: SNR = 30
and SNR = Inf. It can be seen that the �E∗

94 color differences
for the second transformation system were generally lower that
those obtained with the first transformation in the absence of
noise (SNR = inf). In the presence of noise (SNR = 30) the
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Fig. 2. Average of the �E∗
94 color differences between the estimated color

coordinates of 8793 samples and the real ones under illuminants D65, A, F2,
F5, F7, and F9 for the two different transformation systems in the presence
(SNR = 30) and absence (SNR = Inf) of noise. The first transformation
system shows the lower perturbation sensitivity while the second one has the
lower MSE value.

colorimetric performance of the second transformation system,
with the higher perturbation sensitivity of ηc = 9.5328,
decreased significantly. It is obvious that the color differences
of the second transformation system under all illuminants
except F2 are greater than that of the first transformation, while
the colorimetric performance of the first one does not change
to any considerable degree by imposing noise with SNR = 30
upon the system. It was discussed that the effect of the noise
ε in estimation of r̂ is decreased by the smaller condition
number of the matrix, AT U�UT V. In this context, smaller
perturbation sensitivity corresponds to the smaller condition
number that limits the effect of noise on the inverse model.

VIII. CONCLUSION

The generalized inverse-approach (GIA) theorem was for-
mulated as a parametric model for generating a set of signals
for the individual response of a transformation system and
was established as a modular tool to facilitate the estimation
of the distribution of the spectral signal r given response c.
An approach based on the Moore-Penrose generalized inverse
matrix and also the Wiener inverse model are both special
cases of the GIA theorem.

To construct an efficient inverse model we have investi-
gated the controlling criteria: the mean square error (MSE),
perturbation sensitivity of the system and condition num-
ber for matrix inversion. These criteria have enabled us to
evaluate the transformation matrix, i.e. the lighting condi-
tion for spectral recovery and color correction in imaging

applications. The performances of the proposed controlling
criteria were assessed in practice via a numerical experiment
for spectral approximation and color correction using noisy
sensor response. The minimum MSE was also desirable for a
noiseless system. Nevertheless, in the presence of noise, the
robustness of the inverse model to perturbations due to the
noise of the system plays a crucial role in creating an efficient
inverse model for spectral-signal reconstruction. Therefore, an
efficient inverse model should benefit from a low MSE value
and simultaneously as low a perturbation sensitivity as possible
in the presence of noise.

APPENDIX A

Let us now consider a particular n × 1 signal, r, that might
be recovered by the linear combination of q basis functions,
u j , by:

r = Uκ =
q∑

j=1

κ j u j , (A.1)

in which the n ×q matrix, U, is used to transform the spectral
signal space, �n, into basis component space, �q, as:

κ = UT r, (A.2)

where κ is a q × 1 vector, the κ j = uT
j r entries of which are

the weights that uniquely identify the spectral signal, r, as the
coordinates in the component space, �q. Now let us suppose
that the n × 1 signal, r, can also be estimated approximately
by the linear combination of p linearly independent vectors,
υk, k = 1, 2, . . . , p ≤ q ≤ n. Then, we have

r = Vα + e, (A.3)

where the n × 1 vectors υk are the columns of n × p matrix
V and α is a p × 1 vector, the αk entries of which are the
coefficients of linear summation and e is the n × 1 vector of
residual error. Since the component space, �q, is spanned by
q ≤ n basis functions, the spectral signal r can be completely
recovered by at most q linearly independent vectors, υk ,
and therefore, p ≯ q . The j -th coordinate, κ j , of r in the
component space, �q, can be calculated from Eq. (A.4) as
follows:

κ j = uT
j r = uT

j Vα + uT
j e = ω j uT

j Vα (A.4)

in which,

ω j = κ j (κ j − uT
j e)−1 = κ j

uT
j Vα

. (A.5)

Then Eq. (A.5) can be written in the matrix form of:

κ = �UT Vα, (A.6)

where � is a q×q diagonal matrix with diagonal elements ω j ,
the rank of which is equal to q . Thus, with regard to Eqs (A.1)
and (A.6), we can write:

r = U�UT Vα. (A.7)

Eq. (A.7) describes how the signal r can be completely
recovered by the linear combination of p vectors in the
columns of the n × p matrix U�UT V.
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Suppose that we want to estimate the signal rc ∈
{r|AT r = c}, where c is the p×1 vector of noiseless response
of the system. Substituting r from Eq. (A.7) into the noiseless
transformation system c = AT r , we get:

c = AT U�UT Vα, (A.8)

where the matrix AT U�UT V is a p× p non-singular full-rank
matrix. Eq. (A.8) can then be solved for the p × 1 vector of
coefficients α to yield:

α̂ = (AT U�UT V)−1c. (A.9)

Substitution of the estimated coefficients vector α̂ into
Eq. (A.7) gives,

rc = U�UT V(AT U�UT V)−1c, (A.10)

which is the estimation for r with noiseless response c.
It should be noted that if the vector of the residual error, e,
for estimating r based on Eq. (A.3) is known, the matrix, �,
will be identified by Eq. (A.5) and then rc = r, which is
an exact estimation of r with noiseless response c. In inverse
problem of spectral estimation, the vector of residual error,
e, in Eq. (A.3) and therefore, the diagonal matrix, �, are
practically unknown, unless p = q and as the result, e = 0. In
practical situation of the spectral recovery from the response
c, where often p < q ≤ n, we are not aware of the residual
error, e, and then, the diagonal elements ω j are unknown.

In the presence of noise ε ∼ N (με ,�ε), the substitution
of r from Eq. (A.7) into the noisy transformation system of
Eq. (1) will result in:

c = AT U�UT Vα + ε. (A.11)

Like Eq. (A.8), Eq. (A.11) is a system of linear equations,
but with uncertainty in the response data, c, due to the
presence of the noise, ε. An attempt to find a solution to
Eq. (A.11) may include perturbation matrix due to the noise.
Eq. (A.11) may be solved with uncertainty due to the presence
of noise ε to estimate α̂ as follows [37]:

α̂ = (AT U�UT V + �ε)
−1(c − με), (A.12)

where �ε is supposed to be a perturbation matrix of
AT U�UT V [52]. Introducing α̂ from Eq. (A.12) into Eq. (A.7)
results in:

rc = U�UT V(AT U�UT V + �ε)
−1(c − με). (A.13)

Since the matrix AT U�UT V is supposed to be invertible, �ε

should be small enough for AT U�UT V+�ε also to be invert-
ible. If the spectral radius of the matrix (AT U�UT V)−1�ε is
less than unitiy, the matrix AT U�UT V +�ε is invertible (see
pp. 301–302, 335 of [37]). Thus to satisfy this condition, we
take it that ‖ (AT U�UT V)−1�ε ‖ < 1, where ‖ · ‖ is the
matrix norm. The error of estimating α̂ in the presence of
noise ε could contribute to estimating the signal r. The upper
bound on the relative error of estimating α̂ could be described
in terms of the condition number of matrix inversion with
respect to the matrix norm that is defined for a matrix X as
follows [37], [52],

cond(X) =‖ X−1 ‖‖ X ‖=
∣∣∣∣
λmax(X)

λmin (X)

∣∣∣∣ , (A.14)

where, λ is the eigenalue of the matrix X. Therefore, the condi-
tion number, cond(ATU�UT V), is of considerable importance
in estimating rc in the presence of noise ε. The system
noise variance in the perturbation matrix �ε can be practi-
cally estimated based on the interesting method proposed by
Shimano [26].

APPENDIX B

Our aim in this appendix is to find the optimum matrix �
as the parameter of GIA that results in minimum information
loss in order to be able to estimate the best spectral signal, r,
from the ideal noiseless system response, c. For a noiseless
transformation system r can be estimated from Eq. (9) by:

r̂ = Sc + (I − H)μr . (B.1)

On the basis of Eq. (23), MSE can be obtained by:

ζ = tr{(I − H)�r (I − H)T }. (B.2)

To minimize ζ with respect to �, we take it that the convex
subset R̂n(�) is created by the specific matrices U and V and
then begin with the derivative of ζ with respect to the diagonal
elements ω j of � as follows:

∂ζ

∂ω j
= ∂ tr{�̂r }

∂ω j
= 0. (B.3)

Performing some algebraic manipulation based on the rules of
matrix derivatives [35], [53], [54], Eq. (B.3) can be written as:

∂ζ

∂ω j
= ∂ tr{�r − H�r − �r HT + H�r HT }

∂ω j

= −2 tr

{
∂H
∂ω j

�r

}
+ tr

{
∂H
∂ω j

�r HT + H�r
∂HT

∂ω j

}

= −2 tr

{
∂H
∂ω j

�r

}
+ 2 tr

{
∂H
∂ω j

�r HT
}

. (B.4)

Then, we find that if

tr

{
∂H
∂ω j

�r

}
= tr

{
∂H
∂ω j

�r HT
}

, (B.5)

in which,

∂H
∂ω j

= (I − H)u j uT
j V(AT U�UT V)−1AT (B.6)

and thus the condition of Eq. (B.3) is satisfied. To satisfy the
condition of Eq. (B.3) the n×1 vectors, υk , of the columns of
matrix V should span the same range as that of the columns
of A. If U�UT = �r and A = V or the vectors υk of the
columns of V are equal to the orthogonalized columns of A,
then the condition of Eq. (B.3) is satisfied.

APPENDIX C

Let us suppose that an optimum GIA for a noiseless system
is designed with U�UT = �r and A = V. When finding
the optimum transformation matrix, A, the minimum MSE
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value, ζ , with respect to A is desirable for a noiseless system.
Inserting H = �r A(AT �r A)−1AT into Eq. (B.2) results in:

ζ = tr{�r − �r A(AT �r A)−1AT�r }
= tr{�r } − tr{�r A(AT �r A)−1AT �r }
= tr{�r } − ξ, (C.1)

where 0 < ξ = tr{�r A(AT�r A)−1AT �r } < tr{�r }. There-
fore, the bounds on the criterion of ζ will be obtained via the
minimum and maximum values for ξ . To find the boundary of
ζ let us consider the interesting method employed by Vrhel
and Trussell [30]. If we define the n × p matrix F = �

1/2
r A,

then:

ξ = tr(QT �r Q), (C.2)

in which F = QY is the result of the Gram-Schmidt orthogo-
nalization process [55], in which Q is the n × p orthonormal
matrix, and thus QT Q = I and Y is a p × p non-singular
matrix. Thus the boundary values for ξ with regard to Q will
be obtained as [37]:

ξmax = max
QT Q=I

{
tr(QT �r Q)

} =
p∑

i=1

δi (C.3)

ξmin = min
QT Q=I

{
tr(QT �r Q)

} =
n∑

i=p+1

δi , (C.4)

where [δ1, δ2, . . . , δn] are the eigenvalues associated to the
n × n matrix �r and δ1 ≥ δ2 ≥ · · · ≥ δn . With regard to
Eqs (C.3) and (C.4), Eq. (C.1) gives the bounds to the criterion
MSE value, ζ ∈ [ξmin , ξmax ].
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