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Abstract. Density measurement of printed color samples takes an im-
portant role in print quality inspection and process control. When
multi-spectral imaging systems are considered for surface reflectance
measurement, the possibility of calculating spectral print density over the
spatial image domain arises. A drawback in using multi-spectral imag-
ing systems is that some spectral reconstruction algorithms can produce
estimated reflectances which contain negative values that are physically
not meaningful. When spectral density calculations are considered, the
results are erroneous and calculations might even fail in the worst case.
We demonstrate how this problem can be avoided by using kernel ridge
regression with additional link functions to constrain the estimates to
positive values.
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1 Introduction

The objective of color reproduction in printing technology is to reproduce colors
of a reference object as faithfully as possible. Print quality control is the task of
monitoring the printing process in terms of many factors, such as the accuracy
of color reproduction, image resolution or the registration of multicolor print
layers [1]. An increasing demand in high-fidelity printing motivates the ongoing
research in this field of technology, with the ultimate goal of improving color
reproduction and the degree of automation of the printing process.

When multicolor printing presses are considered, the application of ink (ie.
the ink thickness) on the paper substrate must be monitored and adjusted indi-
vidually for each printing unit to maintain high printing quality. Traditionally,
color control bars with solid ink patches are printed for this purpose on each
printed sheet in a spatial location that is afterwards trimmed off or occluded.
For the solid ink patches, changes of ink layer thickness can be approximated
from density measurements in a certain range, following the Beer-Lambert law.
One measure of such is color density, which can be obtained from an optical fil-
ter densitometer with optical filters that are typically specific for the inks to be
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measured. The maximal transmittances of the filter peaks are spectrally located
at the corresponding surface reflectance minimum (so the absorption maximum).

An alternative approach to the classical optical filter densitometry is to calcu-
late spectral density from surface reflectance measurements, using narrow-band
filter functions. This approach allows spectral density measurements for arbitrary
colors and is not limited to those colors defined for color filter densitometry. Due
to advances of spectral imaging technologies in recent years, spectral densitom-
etry for printing process control is becoming more and more attractive. Clearly,
the real advantage of spectral imaging in printing applications is the possibility
of accurate color measurement to determine print quality in high spatial reso-
lution. But the data from such devices can also be used to determine spectral
density and potentially be applied to print process control [2].

Line-scan multi-spectral imaging systems qualify specifically for in-line print
inspection. In such systems, spectral reflectance at each spatial image location is
reconstructed from multi-channel image data. Reconstruction accuracy depends
heavily on the system design and the spectral estimation algorithm. Specifically
for spectral density measurement from estimated reflectance data a problem
occurs, if the estimated reflectance is physically not meaningful due to negative
values, an issue that is present in many multi-spectral systems.

In this work we evaluate spectral density measurement with a multi-spectral
imaging system and a reflectance estimation approach that guarantees positivity
and therefore qualifies for density calculations.

1.1 Spectral Density Measurements

The International Organization for Standardization (ISO) has published the ISO
5 norm series for densitometric measurements. For color density measurement
corresponding to the classical optical filter approach, several filter functions for
different types of standard density are defined, matching specific application
domains [3]. For printing applications, the norm filters are matched to the process
inks (typically C,M,Y).

Spectral density is defined less restrictive as compared with color density, as
it corresponds to computing the density for a particular surface using a narrow-
band filter function such that a maximal density reading is obtained [1]. The
filter peak-wavelength is accordingly adjusted to the minimal reflectance value
of the measurement surface. Consequently, the measurement can be considered
for other than standard process colors.

We compute this moving filter spectral density Dmf for the m×1 column vec-
tor of spectral reflectance r ⊂ R

m, with m being the dimensionality of reflectance
data, as

Dmf (r) = − log10

(
rTaλmin∑m

i=1 ai

)
, (1)

with aλmin = (a1, ..., am)T ⊂ R
m being a discretized narrow-band Gaussian

shaped filter function, with peak-wavelength λmin corresponding to the index of
r with minimal reflectance.
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1.2 Spectral Reflectance Estimation

We consider two regression models for spectral reflectance estimation. A linear
least-square model (further PI), and a kernel based ridge regression model (fur-
ther KL). The PI method is described for instance in [4]. The more recently pub-
lished KL method belongs to the class of so-called Reproducing Kernel Hilbert
Space (RHKS) regression models [5]. In this work we apply the logarithmic kernel
function, for which details about our implementation are described in [6].

The KL method can be expanded to constrain the solution of the estimation to
physically meaningful values, which means that the estimated reflectance spec-
tra have to be positive. Heikkinen et al. propose several so-called link functions
that can be used with RHKS regression models to impose this constraint on
the solution [7]. These function pairs consist of a forward transformation τ that
is applied to the reflectances r in the model training phase, and a backward
transformation τ−1, applied to the estimate in order to obtain the recovered
reflectance r̃. In this work, we consider the square root (or root function) and
logit transformation function pairs, defined in Table 1. There are several other
estimation approaches that constrain the solution to positivity, for instance by
using constrained quadratic programming [8]. We consider the KL method be-
cause of the high spectral and color accuracy in spectral reflectance estimation
reported previously [2,5,6,7].

Table 1. Square root and logit transformation functions

Link function τ (x) τ−1(y) data range

Square root y =
√
x x = y2 y ∈ [0,+∞),x ∈ [0,+∞)

Logit y = ln
(

x
1−x

)
x = exp (y)

1+exp (y)
y ∈ (−∞,+∞),x ∈ (0, 1)

2 Experiments and Results

Acquisition System: A 12-channel multi-spectral line scan camera of type
truePIXA1 and a LED line illumination of type Corona II-D50 in combination
with a linear translation stage were used for acquisition of multi-channel camera
response data. The measurement geometry of the camera observation and illumi-
nation angle were set to approximate 45/0 geometry. The linear stage was used
to translate color samples under the camera and by that scanned the sample
surface. More details on the acquisition system are reported in [9].

The number of spectral channels in most multi-spectral acquisition systems
vary between 3 and 12. In this study, two configurations of the truePIXA sys-
tem were considered, namely a 12- and a 3-channel configuration. The system
responsivities are illustrated in Figure 1a.

1 http://www.chromasens.de/en/truepixa-spectral-camera

http://www.chromasens.de/en/truepixa-spectral-camera
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Dataset: The dataset considered in this work consists of 2698 color patches
(see Figure 1b), printed on a 7 ink wide gamut inkjet printer (HP Designjet
Z3100). Camera responses were acquired with the above mentioned acquisition
system, and averaged spatially over an image area of approximately 2mm×2mm
per patch. Reference measurements of spectral reflectance of each patch were
obtained with an ISO 13655 norm conform X-Rite i1iSis XL spectrophotometer2.
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Fig. 1. a) Spectral responsivity of the imaging system. The solid lines correspond to
the 3-channel configuration, dashed-lines and solid lines together correspond to the
12-configuration system; b) CIE-L*a*b* color coordinates of the 2698 printed color
samples, projected onto the coordinate planes.

Evaluation: As outlined in the introduction, the spectral density measurement
considered here is based on estimated spectral reflectance data and measurement
performance is therefore directly linked to the spectral reflectance estimation
performance. We therefore evaluate spectral density measurement performance
as well as estimation performance.

The quality of spectral density measurement is evaluated by means of the root
mean square error (further RMSE) between reference density Dmf (r), calculated
from measured reflectances r, and the spectral density Dmf (r̃), calculated from
the corresponding estimated reflectance r̃.

We assess the estimation performance spectrally by means of RMSE and col-
orimetrically by computing CIEDE 2000 color difference[10] (further ΔE00) be-
tween color coordinates from estimated and measured reflectances. CIE-L*a*b*
coordinates were calculated assuming the CIE-1964 10◦ standard observer and
CIE-D65 standard illuminant. The white point was set to the perfect reflecting
diffuser.

Our evaluation scheme is based on 10-fold cross-validation. The regularization
parameter in the KL method was selected to minimize average RMSE estima-
tion error in a 10-fold cross-validation scheme for the training data. The scale
parameter of the logarithmic kernel was fixed to 2, a value that was found to be
appropriate in previous studies[6].

2 https://www.xrite.com/product_overview.aspx?id=894

https://www.xrite.com/product_overview.aspx?id=894
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2.1 Negativity of Estimated Reflectance Data

From the 2698 samples considered in this work, 101 estimated reflectances con-
tain negative values when PI estimation and the 12-channel configuration are
considered. For the 3-channel case and PI, 193 reflectances with negative com-
ponents are found. Using KL method without link functions, only the 3-channel
configuration results in estimates with negative values (5 samples). One might
conclude that using the KL approach with the 12-channel system without any
link function could be sufficient for the spectral density measurement task, how-
ever, non-negativity is not guaranteed in general.

In Figure 2, we illustrate the color coordinates of measured reflectances that
resulted in negative estimates for the 12-channel configuration and PI method.
It can be seen that those colors lie mostly close to the gamut boundary, corre-
sponding to highly saturated colors. The spectral density values computed from
the measured reflectances indicate that more than 90% of these samples have
spectral densities larger than 2, with 1.8 corresponding to the sample of minimal
spectral density.
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Fig. 2. CIE-L*a*b* color coordinates of the dataset. In color illustrated are reflectances
for which the 12-channel configuration and PI method result in negative values.

2.2 Spectral Estimation Performance

The numerical results of this evaluation are illustrated in Table 2. For the 12-
channel configuration and comparison of mean estimation performance, it was
found that KL without link function outperforms PI by roughly a factor of 2 in
terms of colorimetric and spectral error. Comparing KL results including link
functions, it can be seen that no link functions results in the lowest colorimetric
error and similar spectral error as for KL with square root link function. Logit
link function performance is spectrally worse and in terms of ΔE00 close to that
of PI. Comparing maximum colorimetric error values, the logit link function
performance is even worse than that of PI, whereas best results are achieved
with KL and square root link function. For maximum spectral error, the PI
method is almost by a factor of 6 better than any KL approach, with or without
link function.
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In case of the 3-channel system, comparison of estimation quality without
consideration of link functions shows that PI results on average in a considerable
higher spectral and colorimetric error as compared with KL. The maximum
spectral error is lowest for PI, but in case of colorimetric error, PI is outperformed
by KL. Introducing link functions can reduce the mean estimation performance,
this is similar to what was found for the 12-channel case. For logit link function,
the performance is worst. However, both link functions provide on average lower
errors than the PI method. The overall lowest maximum colorimetric error is
achieved with the square root link function. Lowest maximal RMSE is found for
PI. Highest maximum colorimetric and spectral errors are found for the logit
link function.

Table 2. Reflectance estimation errors for 3- and 12-channel configuration

Est. #- Link ΔE00 RMSE
method chan. fctn. Mean Std. Min. Max. Mean Std. Min. Max.

- 0.21 0.17 0.01 2.46 0.0018 0.0024 0.0002 0.0654
KL 12 logit 0.38 0.38 0.02 5.44 0.0023 0.0030 0.0002 0.0612

root 0.25 0.24 0.01 2.40 0.0018 0.0023 0.0002 0.0637

PI 12 - 0.42 0.30 0.03 3.18 0.0038 0.0024 0.0007 0.0162

- 0.41 0.31 0.01 4.50 0.0027 0.0040 0.0004 0.1265
KL 3 logit 0.63 0.71 0.01 27.75 0.0035 0.0065 0.0002 0.2499

root 0.46 0.36 0.01 4.03 0.0028 0.0040 0.0003 0.1370

PI 3 - 3.41 1.72 0.15 8.10 0.0161 0.0146 0.0005 0.0709

2.3 Spectral Density Measurement Performance

Clearly, due to the negativity of estimated reflectances for PI with the 3- and 12-
channel system configuration, and KL with the 3-channel configuration, we can
not evaluate the spectral density measurement performance for all samples in all
conditions. The KL method with link functions is therefore the only choice for
density measurement of arbitrary datasets. However, by excluding reflectances
with negative components from the analysis, a numerical comparison of spectral
density measurement performance can still be achieved. Therefore, we provide
two sets of results in Table 3: the left part corresponds to spectral density mea-
surements of the reduced set, and the right part to the results for the full set.

Comparing PI and KL for both, 3 and 12-channel configuration and the re-
duced set, we see clearly better average performance for the KL approach. For
the 12-channel configuration, the lowest average error is found for KL without
link function and square root link function, logit performance is only slightly
worse. The lowest maximum error is found for the logit function, 2nd lowest for
PI, then KL with square root function and KL without link function results in
the largest error. For the 3-channel configuration, average RMSE is lowest in
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case of logit and square root function and only slightly worse for KL without
link function. The lowest maximum error is again found for the logit function,
but unlike in the 12-channel case, the maximum error of PI is larger than that
of KL without or with square root link function. The 12-channel configuration
performs on average better than the 3-channel system, a finding that is similar
to the spectral estimation performance results described in Section 2.2.

Analyses of spectral densitymeasurement performance based on the full dataset
seems to generalize well the reduced dataset case, as can be seen from the compar-
ison of the left and right part in Table 3.

Table 3. Spectral density measurement quality for the 3- and 12-channel configuration

Est. #- Link RMSE (reduced set) RMSE (full set)
method chan. fctn. Mean Std. Min. Max. Mean Std. Min. Max.

12 no 0.017 0.062 0 1.345 0.018 0.061 0 1.345
KL 12 logit 0.018 0.058 0 1.266 0.018 0.057 0 1.266

12 root 0.017 0.060 0 1.316 0.017 0.059 0 1.316

PI 12 - 0.057 0.113 0 1.271 - - - -

3 no 0.022 0.066 0 1.383 - - - -
KL 3 logit 0.020 0.060 0 1.299 0.020 0.058 0 1.299

3 root 0.020 0.062 0 1.349 0.021 0.061 0 1.349

PI 3 - 0.083 0.129 0 1.385 - - - -

3 Discussion and Conclusions

We have evaluated spectral density measurement from estimated reflectances of
a multi-spectral imaging system in 12 and 3-channel configuration. The calcula-
tion of spectral density requires positivity of the sample reflectances. Negative
reflectances are physically not meaningful, yet especially the widely used linear
least-square regression estimation can result in negative estimates if not avoided
by additional constraints. We showed that by constraining the estimation of
reflectances using kernel ridge regression and additional link functions, density
measurement with estimated reflectance data becomes feasible.

In this work, we have compared linear least-square regression and kernel ridge
regression with the logarithmic kernel without and with link functions (logit and
square root).

In conclusion, it was identified that kernel ridge regression with link func-
tion increases the spectral density measurement performance significantly as
compared with linear least-square regression. Constraining the estimates to pos-
itivity via usage of a link function in kernel ridge regression reduces the average
colorimetric and spectral estimation performance slightly as compared with not
using a link function. However, spectral density measurement performance was
found to be similar or even higher when using a link function and, what is more
important, the estimation produces physically meaningful reflectances.
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