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Temperature distribution can be acquired through non-
contact temperature measurement using multispectral
imaging. However, the challenge lies in radiometric tem-
perature inversion owing to the unknown emissivity. Despite
the promising results demonstrated by traditional algo-
rithms and neural networks, enhancing the precision and
reliability of temperature inversion remains a challenge. To
tackle these challenges, in this work, we propose the use
of ensemble learning for temperature distribution inversion
in infrared multispectral imaging. The network comprises
a base-learner and a meta-learner, trained to establish
the nonlinear relationship between temperature and multi-
spectral distribution measurements. Moreover, the network
architecture exhibits high robustness against noise arising
in the testing environment. Simulations and real exper-
iments on multispectral imaging measurements illustrate
that ensemble learning can be a potent tool for multispectral
imaging radiation temperature distribution measurement,
achieving superior inversion performance compared to other
neural networks. The reproducible code will be available
at https://github.com/shuowenyang/Temperature-Inversion.
© 2024 Optica Publishing Group. All rights, including for text and data
mining (TDM), Artificial Intelligence (AI) training, and similar tech-
nologies, are reserved.
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Introduction. Multispectral pyrometry offers the benefits of
rapid response, non-contact measurement, and absence of an
upper-temperature limit [1,2]. Nevertheless, the majority of
pyrometers focus on single-point measurements, often falling
short in accurately capturing temperature within regions of
interest (ROI). Multispectral imaging expands temperature
measurement to encompass distribution, showing promising
applications across diverse fields, such as temperature moni-
toring in petroleum refining industry, transportation, defense,
and aerospace industries [3,4]. Temperature inversion is typi-
cally achieved through spectral measurement of objects, whose
emissions strongly correlate with temperature. However, the lack
of emissivity information of objects poses a challenge to recover
temperature distributions accurately.

For multispectral measurement of i spectral channel, math-
ematically, the temperature model can be represented as

follows:
Vi

V̂i
= ϵ(λi, T) · e−

C2
λiT · e−

C2
λiT′ (1)

where Vi denotes the output signal from the i-th spectral
channel of target. V̂i represents the acquisition signal of the
blackbody from the i-th spectral channel. ϵ(λi, T) is the target
spectral emissivity at temperature T , T ′ denotes the reference
temperature of the blackbody, and C2 denotes the second radi-
ation constant. However, solving Eq. (1) presents an inverse
problem as the number of unknowns exceeds the number of
equations. A feasible solution involves predefining a specific
relationship between emissivity and wavelength. Sun et al. [5]
developed a quadratic measurement method based on the tem-
perature–emissivity model for inversion. Xing et al. [6] proposed
a quadratic measurement method under the assumption of a
linear relationship between emissivity and temperature across
different wavelengths. However, emissivity does not consistently
change linearly with temperature in all cases. Therefore, this
hypothesis lacks robustness, constraining the accurate inversion
of real-world situations. An alternative approach to address this
issue is to reformulate the inversion problem as an optimization
problem, imposing constraints to restrict the number of solu-
tions. Xing et al. [7] utilized gradient projection and applied a
penalty function for optimization. Subsequently, Zhao et al. [8]
introduced the improved grey wolf optimization (IGWO) algo-
rithm, enabling the simultaneous estimation of temperature and
emissivity without relying on an emissivity hypothesis model.
Although not requiring an emissivity hypothesis model, these
methods suffer from low computational efficiency due to their
iterative procedure.

Recently, neural networks have demonstrated the potential to
solve inverse problems. Unlike traditional optimization meth-
ods, neural networks treat this inverse problem as a nonlinear
mapping. Rather than relying on hypothesis models, Cong et
al. [9] utilized a radial basis function (RBF) network to sim-
ulate the emissivity model, enabling multispectral radiometric
temperature measurement. Additionally, Sun et al. [10] intro-
duced a genetic algorithm combined with a neural network for
temperature inversion. Inspired by backpropagation (BP) net-
works, Gao et al. [11] devised an emissivity model and imposed
constraints to solve temperature utilizing an enhanced genetic
algorithm. Recognizing the temporal continuity of multispectral
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Fig. 1. Architecture of the proposed ensemble learning for
temperature inversion from multispectral radiation distribution.
It mainly comprises a base-learner and a meta-learner. The
base-learner produces a pool of candidate base predictions. The
meta-learner provides a broader receptive field for aggregation.

radiometric data, Xing et al. [12] proposed to employ a long
short-term memory (LSTM) neural network for temperature
recovery. Leveraging the feature representation ability of deep
learning, Xing et al. [13,14] transformed one-dimensional tem-
perature data into two-dimensional spatial data to facilitate
network extraction. These pioneering investigations have intro-
duced fresh perspectives to temperature inversion. Nevertheless,
these methods employ shallow network structures, thus not fully
harnessing the capabilities of deep learning, which hampers
inversion accuracy and speed.

To tackle the aforementioned challenges, in this Letter, we
focus on achieving precise inversion of temperature distribu-
tion in infrared multispectral imaging. We introduce ensemble
learning into this problem, a novel approach to the best of our
knowledge. Our network establishes a nonlinear mapping from
spectral intensity measurement to temperature distribution. This
mapping transforms initially inseparable data into a linearly sep-
arable form in feature space, significantly enhancing the model’s
regression capability. To objectively assess the performance of
our method, we conduct a comparison of temperature sensing
properties based on typical neural networks.

Theoretically,D = (xi, yi)|i = 1, . . . , n represents a multi-label
training dataset, where xi denotes the spectral radiant inten-
sity and yi is the corresponding temperature label. Ensemble
learning aims to learn a nonlinear function h given the train-
ing dataset D, which maps from the radiant intensity space to
subsets of temperature label space. The fundamental concept of
ensemble learning is to select the most proficient base-learner
for unknown emissivity and amalgamate them to achieve the
final temperature inversion. As depicted in Fig. 1, we design

Fig. 2. Spectral emissivity diagrams for 12 class targets.

an ensemble network structure comprising a base-learner and
a meta-learner. The base-learner produces a pool of candi-
date base predictions. To guarantee model generalization and
robustness, the base-learner’s construction must be precise and
diverse. Building on this principle, we apply three different types
of candidate networks—convolutional neural network (CNN),
general regression neural network (GRNN), and BP—to predict
temperature at various levels.

Before entering the meta-learner, we apply a normalization
process to the initial predictions to maintain the accuracy of sin-
gle predictions from the emission intensity. Consequently, the
normalized initial prediction is transformed into the final label
for the meta-learner. The meta-learner comprised a BP neural
network with a broader receptive field for aggregation. It dynam-
ically assigns weight relationships among base-learners, leading
to enhanced inversion accuracy and model generalization.

Results and discussion. Twelve class targets with diverse
emissivity trends are selected for simulation experiments, as
illustrated in Fig. 2. The training temperatures range from 573 K
to 1473 K, compromising 901 temperature points. At each tem-
perature point, the 12 emissivity models are employed, resulting

Table 1. Comparisons between the Proposed and
Competing Methods

Indexes GA BP GRNN RBF ResCNN Ours

RMSE↓ 6.5732 3.8335 2.0504 9.1199 5.8743 0.9418
MAE↓ 5.4893 2.8964 0.8325 7.2211 4.7214 0.4616
MdAPE↓ 0.4321% 0.212% 0.020% 0.591% 0.382% 0.020%
R2 ↑ 0.9993 0.9997 0.9999 0.9987 0.9995 0.9999
MRE↓ 0.673% 0.327% 0.121% 0.784% 0.527% 0.061%
Time (s)↓ 6.76 0.1398 0.729 0.0871 0.0542 0.9055

Fig. 3. Absolute errors between inversion results and ground-
truth of random sampling from testing dataset among 12 class targets
without noise.
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in a total of 10,812 data points obtained using the Planck for-
mula. Out of these, 9732 data points are randomly selected for
network training, while 1080 data points are reserved for testing
purposes. We train the network for 500 epochs with an initial
learning rate of 1 × 10−2 and a batch size of 256. Our imple-
mentation is on the MATLAB R2023b with Deep Learning
Toolbox, using a platform with an Intel Core i3-9100 CPU and
a 16 GB RAM. Temperature inversion performance is evaluated
using metrics including the root mean square error (RMSE),
mean absolute error (MAE), median absolute percentage error
(MdAPE), and coefficient of determination (R2). Smaller values
of MSE, RMSE, MAE, and MdAPE indicate more accurate
model prediction results. The R2 ∈ [0, 1] assesses how well the
model fits the data. A value closer to 1 signifies a better fit of
the model to the data.

To demonstrate the accuracy and effectiveness of the pro-
posed method, we compare it with one traditional optimization
method and four typical neural network methods using simula-
tion measurements. Table 1 presents the temperature inversion
results on the testing dataset. It is seen that the proposed
method outperforms the other competing methods. Specifically,
the genetic algorithm (GA) archives good results but takes the
longest running time. The RBF exhibits the largest measurement
errors, while our method achieves the smallest RMSE, surpass-
ing the second smallest value by GRNN by 1.1086. Regarding
MAE, our method achieves the minimum value, nearly 45%
lower than that of the suboptimal algorithm, indicating our
method can more effectively avoid large prediction bias. Com-
pared to other methods, the MdAPE and R2 of our method and
GRNN are optimally aligned, reaching 0.020% and 99.99%,
respectively, demonstrating a good fit between the model and
simulation data. Figure 3 illustrates the absolute errors between
inversion results and ground-truth of random sampling from test-
ing dataset of 12 class targets without noise. For most classes, the
proposed method can effectively suppress the maximum abso-
lute error, mitigating excessive inversion bias. This is attributed
to the weight adjustment function of the meta-learner in the pro-
posed method. An experiment on the noise robustness of the
proposed method can be found in Supplement 1.

To validate the effectiveness of the proposed method for multi-
spectral imaging temperature distribution inversion, we establish
an infrared multispectral imaging system. As depicted in Fig. 4,
it comprises six mid-wave infrared filters (3.643 µm, 3.664 µm,
3.707 µm, 4.036 µm, 4.382 µm, 4.614 µm) and a mid-wave

Fig. 4. Experimental platform built with the mid-wave infrared
filters and camera. Ta
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Table 3. Temperature Distribution Inversion by the Proposed Method on Real Thermal Targets Compared with
Reference by Thermocouple

Temperature (K) of P1 Temperature (K) of P2
Thermal targets First Second Third Fourth Reference First Second Third Fourth Reference

Electric soldering iron 634.59 660.84 661.43 634.46 645.47 880.56 887.22 842.81 881.25 870.14
Candle flame 617.73 644.35 643.04 619.64 633.22 631.93 659.16 670.04 622.63 642.81

Fig. 5. Temperature distribution maps inversed by the proposed
method. (a) Electric soldering iron. (b) Candle flame.

infrared camera (Gavin615A, 640 × 512). Before the actual
measurement, we calibrate the spectrum and radiation response
of the infrared multispectral imaging system using a monochro-
mator and blackbody (DY-HT3, 300◦–1200◦, 0.1◦), respectively.
This ensures the accurate establishment of the corresponding
relationship between the pixel gray value and incident radiation
brightness.

Table 2 presents a comparison between the inversion tempera-
ture obtained from different methods and the blackbody setting
temperature, along with their relative errors. It is noted that when
the blackbody temperature exceeds 900 K, the infrared radiation
exceeds the dynamic response range of the mid-wave infrared
camera, resulting in an overexposure effect on the camera, which
cannot obtain effective radiation values for temperature inver-
sion. It is observed that compared to other competing methods,
the relative error of GRNN exceeds 1% below 700 K, indicating a
suboptimal performance. Additionally, apart from 823.15 K and
848.15 K, the proposed method achieves the highest accuracy
in temperature inversion.

In order to further explain the effect of the proposed method on
temperature distribution inversion, we conduct additional exper-
iments using real thermal targets, including an electric soldering
iron and a candle. The measurement results of thermocouple are
used as reference. The temperature distribution maps inversed
by the proposed method are displayed in Fig. 5, where the tem-
peratures of two selected points P1 and P2 are shown in Table 3. It
is seen that the proposed method provides accurate temperature
distribution inversion.

This Letter introduces a novel approach to temperature dis-
tribution inversion in infrared multispectral imaging, leveraging
ensemble learning. Ensemble learning is preliminarily utilized
to establish nonlinear mapping from spectral intensity measure-
ment to temperature distribution. A meticulously designed
base-learner generates preliminary sensing data, which is then
aggregated by a meta-learner for temperature inversion. As a

result, the proposed method demonstrates promising inversion
accuracy and model generalization. Extensive simulation exper-
iments on 12 class targets, including 1% noise, reveal that the
proposed method achieves a minimum error of 0.02 K and a max-
imum error of 6.10 K, outperforming algorithms implemented
by some typical neural networks. This property of robustness is
of great significance for practical applications. Furthermore, we
establish an experimental platform based on infrared multispec-
tral imaging, accurately inverting the temperature distribution of
real thermal targets from the multispectral measurement. How-
ever, the traditional multispectral imaging system is bulky, so
the joint optimization of system and inversion algorithm will
be studied in the future to realize the temperature distribution
inversion on-chip.
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