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H I G H L I G H T S

Hyperspectral data from visible to near-
infrared enable accurate ink classifica-
tion via machine learning.
Three types of ink are classified: metallo-
gallate, carbon-containing, and non-carbon.

A workflow for traditional and deep
learning algorithms for ink identifica-
tion and mapping is proposed.
Good performance is obtained for all
models, reaching 98% of macro-averaged
F1 for the deep learning algorithm.
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A B S T R A C T

Ink identification using only spectral reflectance information poses significant challenges due to material
degradation, aging, and spectral overlap between ink classes. This study explores the use of hyperspectral
imaging and machine learning techniques to classify three distinct types of inks: pure metallo-gallate, carbon-
containing, and non-carbon-containing inks. Six supervised classification models, including five traditional
algorithms (Support Vector Machines, K-Nearest Neighbors, Linear Discriminant Analysis, Random Forest,
and Partial Least Squares Discriminant Analysis) and one Deep Learning-based model, were evaluated. The
methodology integrates data fusion from different imaging systems, sample extraction, ground truth creation,
and a post-processing step to increase uniformity. The evaluation was performed using both mock-up samples
and historical documents, achieving micro-averaged accuracy above 90% for all models. The best performance
was obtained using the DL-based model (98% F1-score), followed by the Support Vector Machine model. In
the case study documents, the overall performance of the traditional model was better. This study highlights
the potential of hyperspectral imaging combined with machine learning for non-invasive ink identification
and mapping, even under challenging conditions, contributing to the conservation and analysis of historical
manuscripts.
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1. Introduction

The identification of materials used in tangible cultural heritage
is vital for selecting appropriate restoration and preservation strate-
gies [1]. In particular, the analysis of inks in manuscripts and historical
ocuments enhances our understanding of the artistic and historical

context [2,3], aids in dating documents [4], determining authorship,
detecting falsifications or undocumented restorations, and identifying
causes of deterioration [5,6]. This makes ink analysis a key tool for
codicologists and historians who explore both the content and material
composition of manuscripts to gather this information [7].

Historically, different types of inks have been used across cultures
nd periods. The oldest preserved documents were written with carbon
nks, created by mixing soot with a binder and water. Metallo-gallate or
ron gall inks, which result from the reaction of tannins with iron salts,
ecame more prominent during the medieval period, particularly in
urope. Their identification is crucial for selecting optimal conservation
trategies, as their composition can cause corrosion of the support ma-
erial, a phenomenon known as ‘‘iron-gall ink burn’’ [5]. In general, the

study of inks can reveal much about the sociocultural and technological
shifts in historical document production [8].

The increasing attention to the material composition of manuscripts
nd ancient artifacts, in general, reflects a broader recognition of

their importance. To obtain compositional information while preserv-
ing the integrity and value of these objects, non-invasive analytical
techniques are predominantly employed. Among these, X-ray Fluores-
cence (XRF) [9,10], X-ray Diffraction (XRD) [11,12], Fourier Transform
Infrared (FTIR) spectroscopy [9,10,13], and Raman spectroscopy [12,
14] are widely utilized. In recent years, hyperspectral imaging (HSI)
as gained prominence in this field [6,15]. This technique combines
pectroscopy and spatial imaging to provide images at different wave-

lengths, capturing the spectral reflectance at each pixel of the image. It
produces a hypercube containing three-dimensional data: two spatial
oordinates and a spectrum for each pixel of the image [16]. The
rimary advantage of HSI over other methods is its ability to provide

spatial information, which enables the retrieval of material distribution
within a document, crucial for historical studies and the evaluation of
conservation status [17]. In addition, its non-contact and rapid data
acquisition capabilities make it particularly suitable for the on-site
analysis of historical artifacts at locations such as museums, libraries,
or heritage institutions. This avoids the need for transporting fragile
or valuable items to a laboratory, reducing the risk of damage, pre-
serving the artifacts, and enabling real-time analysis in their original
context. However, the spectral data obtained are not directly correlated
with the chemical composition of the materials present in the docu-
ment. This makes additional processing necessary to gain access to this
information, generally by recurring to classification algorithms.

Different spectral ranges can be captured using this technique,
ach providing distinct data from the artworks. While the short-wave
nfrared (SWIR) range can be used for revealing pentimenti and un-
erdrawings [18], as well as identifying binders [19], the ultraviolet

(UV) range is employed to study varnishes [20], and the visible and
ear infrared (VNIR) range is primarily used for the identification of
igments and dyes [21–28].

The high dimensionality of HSI data makes it particularly suitable
or integration with Machine Learning (ML) techniques. The increasing
se of ML techniques coupled to HSI data is shown in recent studies for
ifferent purposes [16,29–31]. In particular, supervised classification

algorithms have been proposed for pigment classification, including
Support Vector Machines (SVM) [32–35], Partial Least Squares Discrim-
inant Analysis (PLS-DA) [10,36], Decision Trees (DT) [35], and even

eep Learning (DL) techniques when sufficient data is available [25,
33,37]. However, most automatic algorithms developed for material
lassification in artworks have been trained and tested primarily on
ock-ups, i.e., controlled samples created by researchers. As a result,

hese algorithms may not always perform accurately when applied to
2 
real works of art, which can exhibit significant variability due to aging,
different states of conservation, and different compounds incorporated
nto the recipe for a given material class.

In the context of document analysis, several studies have focused on
he identification of contemporary inks using HSI in the field of forensic
nalysis [38–42], as well as the analysis of pigments in illuminated

manuscripts [17,25,27]. However, to our knowledge, only one study
has addressed the classification of historical inks by means of spectral
metrics and a reference library [43]. Thus, the classification of histor-
ical inks using non-invasive techniques has received limited attention,
articularly when relying exclusively on HSI data.

To date, no study has investigated the automatic classification of
historical inks by using ML methods and HSI data. Therefore, the
bjective of this study was to train and validate six state-of-the-art

supervised ML models to automatically classify three types of inks:
1) pure metallo-gallate inks (MGP), (2) carbon-containing inks (CC),
hich include pure carbon-based inks like ivory black or bone black,
s well as mixtures of carbon-based and metallo-gallate or sepia inks,
nd (3) non-carbon-containing inks (NCC), which can be pure sepia
r a mixture of MGP and sepia. Throughout this study, the six algo-
ithms will be divided into two groups: five in the group of traditional
echniques, including SVM, K-Nearest Neighbors (KNN), Linear Dis-
riminant Analysis (LDA), Random Forest (RF), and PLS-DA, and one
n the group of DL techniques. Given that all inks appear brownish or
lack in the visible spectrum, hyperspectral images in the visible to
ear-infrared (VNIR, 400 to 1000 nm) and short-wave infrared (SWIR,
00 to 1700 nm) ranges were captured, and low-level fusion was
erformed in the spectral dimension to enhance classification accuracy.
oth mock-ups and historical documents were included in the training
nd test sets.

In addition to the primary objective, Principal Component Anal-
sis (PCA) was used prior to classification for visualization of the
eparability of the classes and dimensionality reduction, comparing
he classification accuracy and running time with and without PCA.
arameter optimization for the different models was also tackled, and
or the traditional algorithms, a novel post-processing step to increase
he local consistency of the results was developed. The full workflow
or several traditional algorithms made their performance comparable
only slightly worse) to that of the DL model. The decision to use
raditional or DL-based algorithms will then be made depending on the
vailable resources for computation at a given site and the availability
f training data. The results of our study show that it is possible to
erform ink identification and mapping using only spectral informa-
ion, thus adding to the evidence validating HSI as a key non-invasive
echnology in the domain of historical document characterization and
reservation.

2. Materials and methods

2.1. Mock-up and historical samples

Both mock-up and historical samples were used in this study to train
nd test different machine learning models.

The mock-up samples were extracted from a set of modern synthetic
samples presented in [44]. These included metallo-gallate inks, sepia,
and carbon-based inks, along with their mixtures, prepared according
to different traditional recipes from the 13th to 17th centuries [45],
and using materials of varying provenance to ensure a wide range
of variability. All of them were bound with an Arabic gum solution
in water. Each ink was used to fill a 1 × 1 cm square, and a few
words were written by hand. Two substrates were used: parchment and
hand-crafted cotton-linen paper.

The historical documents were obtained from three different collec-
tions of documents preserved in the Provincial Historical Archive and
the Royal Chancellery Archive of Granada, Spain.
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The first set comprises notarial documents from 1488 to 1494
and a religious text of an undetermined date. Previous analyses using
optical microscopy, Scanning Electron Microscopy (SEM), and Fourier-
transform infrared (FTIR) spectroscopy have identified various types of
ink, including pure carbon-based and iron gall inks, on linen paper [46,
47].

The second set is a family tree book from the 16th and 17th
centuries, containing both handwritten and stamped samples of two ink
types applied on cotton-linen paper: a mixture of iron gall and sepia,
nd a pure carbon-based ink. The ink types were identified using SEM
y the conservators in charge.

Finally, the third set includes handwritten texts in pure iron gall
ink on parchment from various lawsuits of nobility dated between 1459
nd 1608. The inks and substrate were identified using XRF and optical

microscopy, respectively [48,49].
Additional details about the materials present in the mock-up and

istorical samples are provided in Appendix A.

2.2. Hyperspectral image acquisition

Two hyperspectral line-scan cameras (Resonon Ltd.) coupled to a
inear stage were used to capture all documents. The first camera (Pika
) covers the spectral range from 380 to 1080 nm (VNIR range) with a
ensor size of 900 pixels per line [50]. The second camera (Pika IR+)

covers from 888 to 1732 nm (SWIR range) with a sensor size of 640
ixels per line [51]. The distance from the camera to the samples was
0 cm for the VNIR camera and 51 cm for the SWIR camera. The field
f view (FOV) was 17.3 cm and 14.2 cm, respectively, resulting in an
stimated spatial resolution of 192 μm and 221 μm per pixel for the VNIR
nd SWIR ranges.

Due to the low signal-to-noise ratio, the spectra were cropped at
he extremes of the spectral range. This resulted in 121 spectral bands

in the VNIR range from 400 to 1000 nm, and 161 bands in the SWIR
range, from 900 to 1700 nm, with a sampling interval of 5 nm for both
ranges. Before each capture, the devices were calibrated to perform
ark subtraction and flat field correction with a white reference surface
the 90% reflectance patch from the Sphere Optics Zenith Lite Multistep
f size 20 × 20 cm). A set of four stabilized halogen lamps oriented to
void specular reflection from the documents and placed at 40 cm from
he documents was used as the light source for spectral image capture.

2.3. Data pre-processing - registration, sample extraction, ground truth
images, and data fusion

2.3.1. Image registration
In this study, spectral data from both the VNIR and SWIR ranges

were fused for classifier model input. To achieve this, it is neces-
sary to first pre-process the spectral images (captured as explained in
Section 2.2) so that the corresponding pixels in the VNIR and SWIR
images align. This alignment was achieved by spatially registering the
VNIR image onto the SWIR image. The VNIR image was chosen as the
image to transform because it has a higher spatial resolution, which
minimizes artifacts in the final registered image. The registration was
erformed using only one band of the VNIR (700 nm) and one band of
he SWIR hypercubes (1000 nm), which were selected using the criteria

of sufficient sharpness according to visual perception and being below
200 nm for the SWIR. The latter condition is set to avoid proximity to

the beginning of the high reflectance region of metallo-gallate inks in
the SWIR range, which would lead to a lack of key points needed for
proper registration.

Feature-based image registration with SURF features [52] within
the MATLAB Registration Estimator App (release R2023a, The Math-
Works, Inc., Natick, MA, USA) was performed along with either an
affine or a projective spatial transform. The registration quality was
visually assessed using overlay images and the Structural Similarity
Index Measure (SSIM) [53] after trying different features or spatial
 c

3 
transforms to ensure that a satisfactory registration was obtained. The
final registration transformation was then applied to all spectral bands
within the VNIR hypercube. An example of this process is shown in the
irst row of Fig. 1.

2.3.2. Sample extraction
The registered VNIR and SWIR hypercubes were cropped multiple

times to obtain representative areas containing substrate and one or
wo different types of ink. These cropped areas, which will be referred
o from now on as minicubes, were extracted using identical spatial
oordinates in both spectral ranges. Fig. 1 (d) and (e), show the false-

color images of the minicubes in the VNIR (R = 645 nm, G = 565 nm,
nd B = 440 nm) and SWIR (R = 1600 nm, G = 1200 nm, and B =
000 nm) ranges.

2.3.3. Ground truth images
For each minicube, a Ground Truth image (GT) was created using

a semi-automatic method. This involved four steps: selecting a band
ith high contrast between the ink and background using the Signal-

to-Noise ratio (SNR) metric, extracting the skeleton of the ink using
MATLAB R2023a function bwskel, based on Lee et al.’s medial surface
axis thinning algorithm [54], and adjusting the skeleton width until
he intensity of surrounding pixels matched the average of the Canny
dge detector borders. This is a variation on the method proposed
n [55], in which the skeleton was manually corrected and then forced
o grow until it met the borders. In the fourth step, manual correction

is performed after obtaining the automatic GT by visually comparing
the result with a false RGB image of the minicube. This procedure will
generate a binary image for each pair of registered minicubes. The
colors of this binary image are then altered according to the materials
identified in the region. The GT image in Fig. 1 (f) has been generated
using this procedure and shows the presence of two different inks:
metallo-gallate ink mixed with sepia (orange) and carbon-based ink
(yellow). The background pixels are middle gray (the three RGB values
are set to 128).

2.3.4. Data fusion
After extracting the minicubes and building the GT, the spectral

data in both ranges were fused. The fusion process is performed by
integrating different data sources to produce more useful and accu-
rate information than any individual data source [56]. In our case, a
low-level fusion is performed, where the VNIR and SWIR spectra are
concatenated using the bands 400–950 and 955–1700 nm, respectively,

ithout further pre-processing [57]. This resulted in fused spectra with
61 bands. Although PCA could have been applied before data fusion

for a mid-level approach, this would carry the risk of discarding po-
tentially important information during dimensionality reduction [57],
which could be critical for distinguishing ink classes with overlapping
spectral properties. Fig. 1 (g) shows the data fusion result for a single
pixel of metallo-gallate mixed with sepia ink (NCC group), illustrating
the contribution of each range.

2.4. Training and testing sets

The training and test sets were extracted from a full dataset com-
prising 44 registered pairs of SWIR and VNIR documents described in
Section 2.1. From these, 145 minicube pairs are extracted following the
procedure described in Section 2.3.2.

For our experiments, the documents were partitioned into two
ets, so that the corresponding minicubes cover 75% of the total
or training and 25% for test. Partitioning at document level allows
ifferent minicubes extracted from the same document to fall into

the same subset. Such precaution prevents the introduction of bias in
the training-test split, avoiding test minicubes from having training
ounterparts coming from the same document. In fact, this would create
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Fig. 1. Registration process and outcome. (a) False color image of the VNIR hypercube (R = 645 nm, G = 565 nm, and B = 440 nm). (b) False color image of the SWIR hypercube
(R = 1600 nm, G = 1200 nm, and B = 1000 nm). (c) Overlay of both images. Green represents the areas belonging only to the SWIR capture. (d) False color image of registered
VNIR minicube. (e) False color image of registered SWIR minicube. (f) Semi-automatic classification Ground Truth. (g) Full spectrum of an ink pixel after data fusion.
an unrealistic evaluation scenario, where test performance does not
reflect real-world performance.

For the training and test sets, only ink spectra (according to the
GT images) were selected. This includes pixels from square regions
with higher ink deposition in mock-ups, as well as traces with variable
amounts of ink, allowing the models to account for these variations
during classification, ensuring robustness in the results. This does not
exclude the possibility that a particularly dark substrate pixel may have
been included in the training data incorrectly, but this will not happen
often because the GTs were carefully revised.

Following this procedure, we obtained the data distribution shown
in Table 1. Due to computational workload limitations, it was nec-
essary to reduce the number of pixels in the training set for param-
eter optimization of traditional algorithms, as will be explained in
Section 2.7. After the subsampling step, the number of pixels per
4 
class was reduced without altering the class imbalance, as shown in
Table 1.

Hence, the three classes are not balanced, with 44% of the spectra
(pixels) in the CC class, 31% in the MGP class, and 25% in the NCC
class. It is worth noting that the sum of the samples containing each
class exceeds the total number of samples in the table, as some samples
include two types of ink instead of just one. For traditional algorithms,
class imbalance compensation by reducing the majority classes did not
improve the classification results in preliminary experiments.

2.5. Principal component analysis (PCA)

In this study, PCA is employed for both dimensionality reduction
and visualization purposes. First, it is used to reduce the amount of
data introduced to the classifiers to improve efficiency, comparing the
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Table 1
Training and test data distribution for the three ink classes: pure metallo-gallate inks (MGP), carbon-containing inks (CC), and non-carbon-
containing inks (NCC).

Class Train Test Total

N. samples N. pixels N. pixels subsam. N. samples N. pixels N. samples N. pixels

MGP 49 232534 46510 14 71349 63 303883
CC 45 330236 66114 17 210016 62 540252
NCC 28 188497 37833 7 24890 35 213387

Total 109 751267 150457 36 306255 145 1057522
b
t
b
w
5

u
t
d
s

s

a
t
p
s
T
e
p
s
p

a
p

accuracy and running time for the training phases of the models with
nd without PCA, to determine whether PCA is useful for reducing
raining time without compromising accuracy. To do that, the optimal
umber of PCs was selected, and their projection coefficients were used
o train the classifiers, as explained in Section 2.7.

Additionally, PCA is applied to the hyperspectral data of the full
training set for visualization, projecting the first principal components
of each spectrum onto a 2D graph. This approach facilitates a quick
assessment of the separability of the data, allowing for the visualization
of the three separate classes and helping to identify whether distinct
clusters can be found, as explained in Section 3.

2.6. Classification models

All models used in this study are supervised classification tech-
niques, so prior information about the data is required. These al-
orithms automatically identify spectral signatures corresponding to
arious types of inks, facilitating the classification of unknown samples

through the use of a reference or training dataset. As explained before,
wo groups of algorithms are considered in this study: the traditional
nd the DL-based. For the implementation of the traditional models,
ATLAB software (release R2023a, The MathWorks, Inc., Natick, MA,
SA) was used. For the implementation of the DL-based model, Python
.10.12 was used with the PyTorch deep learning framework at version
.11.0.

Table 2 provides a summary of the five traditional algorithms (SVM,
NN, LDA, RF, and PLS-DA) and the DL-based model, highlighting

their fundamentals, advantages, limitations, and hyperparameters used
or each. For details on hyperparameter optimization, please refer to
ection 2.7.

PLS-DA was implemented using the PLS_Toolbox (Eigenvector Re-
search, Wenatchee, US). For the DL-based algorithm, neural parameters
were initialized through pretraining on a subset of the Microsoft COCO
dataset [63]. Although this dataset depicts a different type of visual
ontent, scientific literature suggests that exposing the model to diverse
isual data can improve training speed and reduce the amount of

required training data [62]. To adapt the model architecture to our
roblem, we replaced the first convolutional layer, which was originally

designed to process 3-channel RGB images, with a new convolutional
layer capable of processing 261 channels (111 VNIR + 150 SWIR
channels).

2.7. Optimization and post-processing for traditional algorithms

A k-fold cross-validation method with k = 5 was employed to
optimize some of the traditional model parameters using a subsampled
training set (see Table 1). This technique divides the dataset into k
equal-sized folds, where each fold serves as a validation set while
he remaining folds are used for training. This process rotates so that
ach fold is used for validation once, and the model’s generalization

performance is estimated by averaging the accuracy across all folds.
5 
For KNN optimization, six distance metrics were evaluated: city-
lock, Chebychev, correlation, cosine, Euclidean, and Minkowski. First,
he optimal distance metric was determined using a number of neigh-
ors K = 1. After that, a different number of neighbors were tested
ith the optimal distance metric: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20,
0, and 100. A low K value can lead to overfitting, where the model

memorizes the training data too closely and performs poorly on new,
nseen data. On the other hand, a high K value can result in underfit-
ing, where the model fails to capture the underlying patterns in the
ata adequately [59]. The performance metrics data obtained with the
ubsampled training set in cross-validation (k = 5) can be found in

Appendix B. From these results, the cosine distance and K = 1 were
elected as the final hyperparameters.

For the SVM model, the box constraint was optimized using the
following values: 0.8, 1, 1.2, 1.4, 1.6, 2, 4, 10, 30, 100, 200, and 300.
In this case, to select the best value, both micro-accuracy and training
time were considered. Increasing the box constraint results in the SVM
classifier assigning fewer support vectors, which leads to stricter data
separation, but also to longer training times [64]. After evaluating the
training time in cross-validation (k = 5) and micro-averaged accuracy
(see Appendix C), a box constraint of 10 was selected.

After obtaining the classification maps as explained in Section 2.8,
a post-processing cleaning procedure was applied. Considering the
ssumption that a continuous stroke is composed of the same ink
ype, each pixel in the classification map was reassigned to the most
revalent class within its surrounding neighborhood. Neighborhood
ize was defined as 5% of the smallest dimension of the minicube.
he cleaning process was repeated over 10 iterations. These param-
ters were selected based on preliminary tests that indicated optimal
erformance with minimum computational time. The post-processing
tep is one of the contributions of this study, and its impact on the
erformance of traditional models is described in Section 3.

2.8. Performance evaluation

To evaluate the performance on the test set, the confusion matrix
was first employed to compute pixel-level performance metrics. The
number of True Positives (TP), False Positives (FP), True Negatives
(TN), and False Negatives (FN) were used to calculate precision, recall,
ccuracy, and F1-score. Precision indicates the reliability of positive
redictions (see Eq. (1)), recall assesses the model’s ability to identify

all the positive instances in the dataset (see Eq. (2)), accuracy mea-
sures the proportion of correct predictions out of all predictions (see
Eq. (3)), and F1-score is the harmonic mean of precision and recall (see
Eq. (4)) [65].

𝑝𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 (1)

𝑟𝑒𝑐 𝑎𝑙 𝑙 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁 (2)

𝑎𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁 (3)

𝐹1 − 𝑠𝑐 𝑜𝑟𝑒 = 2 ⋅ 𝑝𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑟𝑒𝑐 𝑎𝑙 𝑙 (4)

𝑝𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐 𝑎𝑙 𝑙
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Table 2
Summary of classification models used in the study: fundamentals, advantages, limitations, and hyperparameters.

Model Fundamentals Advantages Limitations Hyperparameters Ref.

Support Vector
Machines (SVM)

Finds the optimal
hyperplane that
separates classes with
the maximum margin.
Handles both linear
and nonlinear problems
using kernel functions.

– Robust theoretical
framework.
– Efficient for
high-dimensional data.
– Strong generalization.
– Minimizes the risk of
overfitting.

– Requires careful
parameter tuning.
– Computationally
expensive for large
datasets.
– Originally designed
for binary classification.

– Kernel function = Gaussian
– Box constraint level = 10
– Kernel scale = Automatic
– Multiclass coding =
One-vs-One
– Standardize data = Yes

[16,31,32]

K-Nearest Neighbors
(KNN)

Classifies based on the
majority vote of K
nearest neighbors; no
training phase required.

– Transparent and
interpretable.
– Well-suited for
multi-class problems.
– No assumptions about
data distribution.

– Sensitive to noise and
spectral variability.
– High computational
cost for large datasets.
– Performance highly
dependent on K value
and distance metric.

– Number of neighbors = 1
– Distance metric = Cosine
– Distance weight = Equal
– Standardize data = Yes

[31,58,59]

Linear Discriminant
Analysis (LDA)

Finds a linear
combination of features
that best separates two
or more classes by
maximizing the ratio of
between-class variance
to within-class variance.
Projects the data onto a
lower-dimensional
space.

– Computationally
efficient for large
datasets.
– Easy to implement
and interpret.
– Robust to overfitting.
– Few hyperparameters.
– Well-suited for
multi-class problems.

– Assumes linear
separability, normal
distribution, and equal
covariance matrices for
all classes.
– Performance degrades
with high-dimensional
or noisy data.

– Discriminant type = Linear
– Covariance structure = Full

[30,60]

Random Forest (RF) An ensemble of
decision trees trained
on random subsets of
data and features. Uses
majority voting for
classification.

– Robust to noise and
overfitting.
– Handles high
-dimensional data
effectively.
– No assumptions about
data distribution.
– Handles collinearity
well.

– Sensitive to
hyperparameter
choices.
– Increased complexity
with many trees.
– Less interpretable
compared to simpler
models.
– High computational
cost.

– Ensemble method = Bag
– Learner type = Decision tree
– Maximum number of splits
= 751266
– Number of learners = 30
– Number of predictors to
sample = Select All

[31,59]

Partial Least Squares
Discriminant
Analysis (PLS-DA)

Combines PLS
regression and LDA to
enhance class
separation by creating
discriminant functions
from input variables
that provide better
separation than
individual variables
alone.

– Handles collinearity.
– Effective for small
sample sizes.
– Provides robust class
separation.

– Struggles with noisy
or highly complex data.
– Requires careful
preprocessing.

– Preprocessing = Autoscale
– Number of latent variables
= 3
– Orthogonalize = Off
– Algorithm = SIMPLS
– Sample weighting = None

[10,29]

Deep Learning (DL) Uses the DeepLabV3
semantic segmentation
model for pixel-wise
classification,
employing dilated
convolutions to
efficiently integrate
multiscale information.

– Excellent for
high-dimensional data.
– Models complex
relationships and
spectral variability.
– Benefits from transfer
learning.

– High sensitivity to
noise without proper
training.
– Requires large
computational resources
and datasets to train up
to millions parameters.
– Increased risk of
overfitting if not
carefully tuned.

– Epochs = 25 (total of 3300
iterations)
– Loss function = categorical
cross-entropy
– Adam optimizer
– Learning rate = 0.0001.

[61,62]
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To evaluate the performance for the multi-class problem, two ap-
roaches were considered. The Micro-average approach treats all in-
ividuals (in our case, the reflectance spectra per pixel) equally, not
aking into account differences between the number of instances per
lass. Micro-average accuracy, precision, recall, and F1-score are ex-
ctly the same, so only Micro-average accuracy is computed in this
tudy. The Macro-average approach gives each class equal weight in
he average, which ensures that performance is balanced across all
6 
classes. Macro-average is computed as the arithmetic mean of the
etrics for single classes [65]. The Micro-average approach weights

classes according to their frequency in the dataset, which gives more
mportance to larger classes. Therefore, poor performance on smaller
lasses is less impactful as they represent a smaller portion of the

overall dataset. In contrast, high Macro-average values indicate that the
algorithm performs well across all classes, regardless of their frequency.
This ensures that each class is considered equally, making it a better
measure of performance for imbalanced datasets.
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Additionally, classification maps were generated for each minicube
based on the prediction results, with each class represented by a distinct
olor group to facilitate the quick identification of misclassifications.
he color code used is: purple for MGP, yellow for CC, and orange for
CC. These maps were then visually inspected to assess the consistency
f the classifications.

2.9. Case study: binarization and classification of inks in two full historical
documents

After evaluating the different models, a practical application is
resented to demonstrate a complete classification process of a histor-
cal document using the best-performing models (either traditional or
L-based).

For this purpose, two documents, one from the Royal Chancellery
rchive and another from the Provincial Historical Archive of Granada,
ere selected. The first document is a page from a family tree book

dating from between the 16th and 17th centuries. This page is entirely
andwritten, and the hands of two different people can be identified in

it, each using a particular ink. In this case, the reason for the existence
of two authors is unknown. In previous analyses conducted by the
conservators in charge, it has been verified the presence of a CC ink
and another ink consisting of a mixture of MGP and sepia (NCC).
Two minicubes extracted from this document were used as part of the
training set samples.

The second document is an Arabic notarial manuscript dated to
499, detailing a certificate of ownership for irrigated land in the Hotal-
ar village. Such documents are particularly valuable for classification

studies, as they typically contain the handwriting of two individuals: a
otary who writes the document and a judge who validates it, adding a
ew words to indicate his agreement, each using different inks. In this
anuscript, the text and marginal note are written with a MGP-based

nk (MGP), and the judge’s validation with a pure carbon-based ink
(CC). No minicubes from this document were included in the training
set.

For these two documents, an additional pre-processing step was
equired: the binarization of the document. This step consists of sepa-
ating the background (substrate) and foreground (inks), so that we can

use only the ink pixels as input to the classifiers. The spectral band with
the highest contrast was selected using the SNR metric as explained
in Section 2.3.3, and then Bradley’s Local Image Thresholding algo-
rithm [66] was applied. This method chooses a threshold 𝑇 for each
pixel based on its surroundings:

𝑇 = 𝜇 ⋅
(

1 − 𝑡
100

)

(5)

where 𝜇 represents the local mean intensity within the chosen win-
dow, and 𝑡 is the percentage of intensity values to be considered as
foreground. In our case, we used a window size of 1

3 of the image
height times 1

3 of the image width, and 𝑡 is set to 10. We have selected
this algorithm and parameters since they obtained the best results in a
revious study with similar documents [67].

After classifying the pixels that Bradley’s method selected as ink, we
performed the same cleaning post-processing as described in previous
sections for the traditional algorithms.

To facilitate the evaluation of the classification maps, a GT was
manually created using GIMP 2.10.38 software based on the binarized
images. It is important to note that these GTs are intended to provide
a general overview of the inks in the areas rather than a precise pixel-
by-pixel identification as performed for the minicubes, as minor manual
errors may be present. Therefore, our focus was on verifying that the
number of ink types and their relative spatial positions were consistent
with the findings from previous analyses of the documents.

Fig. 2 presents the workflow of the methodology followed in this
study, providing a visual representation of the procedures outlined in
the preceding subsections. Optimization and cleaning post-processing
are shaded in blue as they were only performed for traditional algo-
rithms.
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3. Results and discussion

3.1. Average spectral reflectance of inks

In Fig. 3, the average spectral reflectance and standard deviation
f the three ink classes from 400 to 1700 nm are presented, along
ith the average reflectance of two of the substrates, parchment and

otton-linen paper. The ink spectra were extracted from the pixels
marked as ink in the GT images of the full training set. A gap can be
bserved in the 950 to 955 nm range, where data fusion occurred. This
s common when different sensors are used for capture and is caused by
everal factors, including differences in spectral bandwidths, low signal-
o-noise ratios, and misalignments in the image setup, which slightly
ffect the Bidirectional Reflectance Distribution Function (BRDF) [68].

In the visible range, the reflectance patterns of the three inks are
similar, showing very low values and a flat shape (with a trend toward
reddish color for the MGP ink). However, as the spectrum extends
into the near-infrared region, the reflectance of MGP ink diverges,
increasing notably as seen in previous studies [69,70]. This divergence
is particularly evident starting at approximately 1300 nm, where pure
MGP ink becomes nearly transparent (i.e. it lets the infrared radiation
pass through almost completely, and what one sees in the reflectance
curve is the radiation reflected by the substrate). This near transparency
distinguishes MGP ink from other inks, including CC ink and sepia, as
well as mixtures of inks with or without carbon content. Specifically, CC
inks absorb a significant amount of infrared radiation. However, pure
sepia and the mixtures of sepia and MGP ink (included in the NCC class)
allow slightly more infrared radiation to pass through but do not reach
the near-total transparency seen in the MGP class spectra.

In the spectral range from 400 to 1700 nm, the infrared region is
articularly interesting as molecular overtone and combination vibra-

tions can be studied from it. Specific absorption bands within this range
are associated with distinct chemical bonds: the 1460–1570 nm range
corresponds to N-H bond absorptions, the 1100–1400 nm and approx-
imately 1700 nm bands are attributed to C-H bond absorptions, and
the 1450 nm band is linked to O-H bond absorptions [71]. Considering
the shape of the reflectance curves in Fig. 3, MGP and NCC inks have
two peaks in the infrared range: one around 1300–1400 nm, and the
other at 1650 nm approximately. In CC inks, the latter peak can also
be seen, but much less pronounced. Both peaks could be reasonably
assumed to correspond to C-H bond absorptions. However, in this
spectral range the absorption bands are weaker and more complex than
those in the mid-infrared region, so the application of chemometric
techniques is highly suitable to achieve a higher level of confidence
in the classification of ink spectra.

3.2. PCA for visualization

In Fig. 4, score plots of principal components (PCs) 1, 2 and 3
are presented. Three PCs were selected by analyzing the Variance
Accounted For (VAF) curve and identifying the inflection point at which
he curve flattens out. As seen in Fig. 4, 84.4% of the total variance is

explained by PC1, 12.1% by PC2, and 2.2% by PC3, achieving a total
of 98.6% VAF with just three components. In this Figure, the point
cloud for MGP inks, represented in purple, seems to form a separable
cluster from that of CC inks, represented in yellow. However, the point
cloud for the NCC class is situated between the two previous groups. It
should be noted that the CC group contains pure carbon-based inks as
well as mixtures with metallo-gallate and sepia inks. Similarly, the NCC
group includes pure sepia ink and its mixture with MGP ink. This may
be the reason why no clear clustering pattern is observed among the
three groups, from which it is concluded that the data are not clearly
separable in the PCA components space.
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Fig. 2. Workflow outlining the steps followed during the different phases of this study.
Fig. 3. Average spectral reflectance and standard deviation for the three ink classes in the full training set and two substrates: non-carbon-containing inks (NCC), carbon-containing
inks (CC), pure metallo-gallate inks (MGP), parchment (Parch), and cotton-linen paper (Cot-lin).
3.3. Classification maps and performance metrics

In Table 3, the performance metrics for all traditional classification
models evaluated on the test set before applying the cleaning post-
processing step are presented. Among different models, SVM provided
the highest performance across all the metrics studied, including both
micro- and macro-averaged results, achieving over 95% in micro and
8 
macro-averaged accuracy and recall. This superior performance could
be attributed to its efficiency in handling high-dimensional data, its
ability to model non-linear relationships, and its robustness to over-
fitting (see Table 2). In contrast, PLS-DA is the model providing the
lowest values for all the metrics. However, it should be noted that
the values of all the metrics are above 72%, reaching almost 87% in
micro-averaged accuracy. This means that even the worst of the models
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Fig. 4. Score plots of principal components (PC) 1, 2 and 3 for the three different classes used in the study: non-carbon-containing inks (NCC), carbon-containing inks (CC), pure
metallo-gallate inks (MGP).
Table 3
Performance metrics in the test set for all traditional models before cleaning post-processing. The
color shades represent a gradient from best (dark green) to worst (dark red).

Model Micro-accuracy Macro-accuracy Macro-precision Macro-recall Macro-F1

SVM 96.06 95.38 89.17 95.38 91.79
KNN 93.22 93.39 84.09 93.39 87.43
LDA 95.27 93.02 87.90 93.02 89.73
RF 94.77 94.33 86.72 94.33 89.70
PLSDA 86.82 78.33 72.42 78.33 74.36
Table 4
Performance metrics in the test set for all models after cleaning post-processing. The color shades
represent a gradient from best (dark green) to worst (dark red).

Model Micro-accuracy Macro-accuracy Macro-precision Macro-recall Macro-F1

SVM 98.35 97.29 95.08 97.29 96.15
KNN 95.23 95.79 87.36 95.79 90.63
LDA 97.42 95.44 92.40 95.44 93.71
RF 97.25 97.13 91.78 97.13 94.14
PLSDA 89.80 81.56 76.09 81.56 78.23
DL 99.20 99.13 97.40 99.13 98.22
tested here provides what could be considered good results in this
classification task (in comparison to random class assignment, which
would yield only about 33% accuracy). All other models provide micro-
and macro-averaged accuracy and recall above 93%.

Table 4 presents the performance metrics for the six models eval-
uated on the test set, after applying the cleaning post-processing step
for the five traditional models. When compared to Table 3, a 2 to 3%
improvement in micro and macro-averaged accuracy and recall can be
observed after applying post-processing. In addition, between 3 and
5% improvement in macro-precision and F1 is achieved. These results
indicate that cleaning post-processing is beneficial for the problem we
are addressing in the context of traditional models, since in the same
stroke (and, therefore, in contiguous pixels in the hyperspectral image)
it is not normal to find different types of inks. The post-processing helps
improving the results obtained for all the performance metrics studied.

The DL model is included in the post-processing set of results since,
by design, it exploits pixel neighborhood information to inform the
final class prediction. It outperforms all traditional models with the
post-processing step included, having both micro-accuracy and macro-
recall above 99%. However, it requires specialized hardware in order
to efficiently complete the training and inference phases.

A comparative analysis of performance by class based on the con-

fusion matrices (see Fig. 5) reveals that RF, SVM, and KNN provide
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the lowest macro-average performance metrics for the NCC class. These
models provide also the highest accuracy and recall for the MGP class,
and the highest precision and F1 for the CC class. The higher precision
but lower recall for the CC class indicates that CC inks are more likely
to be classified as MGP and NCC, than NCC are likely to be classified as
CC. This misclassification can be attributed to the presence of mixtures
of pure carbon with MGP or pure carbon with sepia (which is included
in the NCC class). In contrast, both LDA and PLS-DA demonstrate the
highest macro-average metrics for the CC class. PLS-DA, in particular,
performs poorly for the NCC class, with a precision of 42.7% and an F1
score of 50%. This may be due to the inherent assumptions of the PLS-
DA algorithm, which make it less effective at handling the complexity
of this class, as PLS-DA is not well-suited for highly complex datasets
(see Table 2 fifth row). In contrast, the metrics for the remaining
two classes exceed 85%. This performance degradation may be due
to class imbalance, as the reduction occurs in the least-represented
class. Another explanation is that the spectrum of the NCC class is
right between those of MGP and CC (see Fig. 3), leading to increased
misclassification between NCC and these two classes, compared to
direct misclassification between CC and MGP.

The DL model performs favorably throughout all classes. The lowest

recall is at 98.1% for MGP, which tends to be misclassified as NCC,
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Fig. 5. Confusion matrices of all classification models after cleaning post-processing for the test set. Darker blue in the diagonal cells indicates a higher number of true positive
(TP) spectra.
in turn lowering its precision to 92.68%. Of all models tested, the DL
achieves the best results for the NCC and CC classes, but not for the
MGP class.

In general, for traditional models, NCC pixels tend to be misclas-
sified as MGP and vice versa, while misclassification as CC is less
frequent for both classes. However, for all the models when CC pixels
are misclassified, they are more likely to be assigned to the NCC class
than to MGP. This makes sense, as CC group includes some mixtures of
sepia and carbon-based ink, but MGP only includes pure metallo-gallate
inks with no mixtures with sepia. In addition, we have seen in Fig. 3
that spectrally, NCC is more similar to CC inks than MGP.

Comparing different performance metrics, the lowest values were
always obtained for macro-precision, due to the increased number of
false positives for the NCC class. The highest values were obtained for
the micro-averaged accuracy metric, which makes sense as MGP and
CC are the most represented classes (as seen in Table 1), and provide
a high accuracy value.

In a previous study, the classification of historical inks was per-
formed using a library of reference spectra and different spectral
metrics for pixel-by-pixel classification. Two spectral ranges, VNIR
and SWIR, were studied separately, achieving a maximum F1-score of
58.1% for the VNIR range and 44.3% for the SWIR range using the
Spectral Angle Mapper (SAM) metric. However, the ink classes in this
study differ from those in the present research, as carbon-based inks
from different sources (e.g., vine black, ivory black, bone black, lamp
black) were considered separately [43] In another study, hyperspectral
analysis combined with Least Squares SVM classification was used
for ink analysis and pen verification in handwritten documents. This
approach achieved an 87.5% accuracy in discriminating between 25
different pens with modern inks [42] A further study analyzed 70
hyperspectral images of handwritten notes by 7 subjects, comparing
5 varieties of blue ink and 5 varieties of black ink, with a focus on
ink mismatch detection [39]. However, these studies are not directly
comparable to the present work, as they involve modern inks and are
designed for forensic purposes.
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In Table 5, training run-time and micro-averaged accuracy for the
full training set with and without applying PCA are presented. By
applying PCA, the number of features was reduced from 261 to 3,
decreasing the training set to 1.15% of the original size. This resulted in
a reduction of training run-time to 2%–3% of the original duration for
most models, with the exception of PLS-DA, which showed a reduction
to 11%, SVM that presented a reduction to less than 50%, and DL
which introduced a negligible reduction of training run-time. However,
applying PCA results in a 5%–13% decrease in micro-averaged accuracy
for traditional models, while the DL model is much more robust to the
dimensionality reduction, likely due to the learned ability to extract
complex relationships among the input features, and to the possibility
of accessing neighborhood data directly during the inference phase.
This trade-off between reduced training time and decreased accuracy
should be considered when using traditional models for ink classifi-
cation: if minimizing training time is prioritized over accuracy, then
PCA can be applied. On the other hand, the reduction in time is much
less significant for the DL model, which might not make the use of
dimensionality reduction worthwhile.

The run-time values of traditional models and DL cannot be directly
compared because the DL model was run on a GPU, while the tra-
ditional models used CPU resources. Besides, the computers used for
the two kinds of models were different (see Appendix D for details).
However, comparing the training run-time between traditional models
is possible: the fastest model to train was PLS-DA, followed by RF. The
slowest model was KNN. However, it should also be clarified that run-
time in KNN is related to the time required by the program to store the
training dataset in the model, since this model does not have a training
step as such (see Table 2). In this study, the full training dataset with
all 261 bands was selected as the preferred set-up, as it provided the
highest accuracy.

Additional insights into the model performances can be gathered
from the classification maps. In Fig. 6, some of these maps for selected
mock-ups and historical samples are presented for SVM, PLS-DA, and
DL models.
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Fig. 6. Examples of classification maps using the SVM model (columns 1 and 2), the PLS-DA model (columns 3 and 4), and DL (column 5). The Ground Truth (GT) images are
shown in column 6. Purple: metallo-gallate ink (MGP); yellow: carbon-containing ink (CC); orange: non-carbon-containing ink (NCC).
Table 5
Training run-time and micro-averaged accuracy comparison of different classifiers on
the full dataset, with and without PCA.

Full set (no PCA) Full set (PCA)

Micro-
accuracy

Training
(seconds)a

Micro-
accuracy

Training
(seconds)a

SVM 99.51 27476 92.33 15564
KNN 99.17 90439 85.61 2935
LDA 96.73 24741 86.49 12
RF 99.03 14442 92.68 1538
PLSDA 91.34 137 86.26 15
DL 99.85 3890 99.32 3718

a Computational environment used for experiments available in Appendix D.

For the mock-up samples (first and second rows in Fig. 6), some
problems persist for the SVM model when differentiating between pure
sepia ink and MGP (1st row). For the PLS-DA model, this problem
was mostly solved after applying cleaning post-processing (first row,
columns three and four). In the case of CC ink (2nd row), SVM mis-
classifies some pixels in the strokes as NCC, while PLS-DA struggles
significantly, incorrectly classifying most pixels as NCC. The DL results
(column five) are totally correct for the mock-up samples.

For the historical samples, the example in the 3rd row of the figure
was difficult for most models. This sample, composed of CC ink (yellow
color coding) on linen paper, is classified by SVM as containing all
three ink classes, while PLS-DA incorrectly identifies it as MGP. DL
mistakenly identifies the sample as a partial mixture of MGP and NCC:
given the better performance observed qualitatively and quantitatively
in other samples (see Appendix E for additional examples of classifica-
tion maps), a possible explanation is that of the model having learned
an incorrect bias by relying on stroke structure. Even after the cleaning
post-processing is applied for the SVM and PLS-DA models, there are
still some or all pixels that are misclassified. However, if the number
of pixels classified into the three classes is considered, SVM provides
a more accurate classification by correctly identifying the majority of
pixels belonging to the CC class. This classification challenge may be
attributed to the sample’s age, as the 15th-century manuscript exhibits
ink fading due to aging, which increases the influence of the substrate
11 
on the final ink spectra and raises the reflectance (a wider explanation
is given in Section 3.4).

In the second historical sample (4th row), two types of ink can be
found: a mixture of MGP and sepia (NCC) in the text, and CC ink in
the braces. SVM and DL models have problems with the identification
of carbon in the braces, correctly classifying only a few pixels, although
correctly performing on the text. For the case of DL in particular,
neural architectures for semantic segmentation are known to struggle
on isolated thin structures, as typically demonstrated on pole lights in
automotive applications [72]: this is due to a combination of learned
neighborhood bias (which otherwise helps in correctly identifying large
chunks of text) and neural structure limitations (already significantly
improved by the DeepLabV3 architecture adopted in this work). PLS-
DA misclassifies the entire sample as MGP ink, with only a few carbon
pixels correctly identified in the braces.

Finally, the third historical sample (5th row), which is made entirely
of iron gall ink, was correctly classified by the SVM and DL models, and
nearly correctly classified by PLS-DA.

3.4. Case study: binarization and classification of inks in two full historical
documents

In this section, two historical documents with higher complexity
and size than the minicubes were tested using the best-performing
traditional algorithm (SVM, according to Section 3.3) and the DL
model.

The hyperspectral data cube dimensions were [344 × 197 × 261]
for the family tree document and [426 × 311 × 261] for the Arabic
manuscript. The prediction times for both documents were 3.1 and
3.7 s, respectively, for the SVM model, demonstrating that it can pro-
vide near real-time classification, which is highly valuable for restorers,
conservators, and researchers interested in the material composition of
historical documents.

The DL model took 12.3 and 6.3 s for inference with a sliding
window of 35 × 35 pixels, which increased to 30 and 15 s when
accounting for data loading and transfer into GPU memory. This com-
putational overhead is significant and should be considered for the
implementation of any final application on systems with lower compu-
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Fig. 7. Family tree document. From left to right: false RGB image, binarization, GT, and classification maps using SVM model after cleaning post-processing and DL model.
Predicted MPG pixels are shown in purple, NCC pixels in orange and CC pixels in yellow.
Fig. 8. Arabic notarial manuscript. From left to right: false RGB image, binarization, GT, and classification maps using SVM model after cleaning post-processing and DL model.
Predicted MPG pixels are shown in purple, NCC pixels in orange and CC pixels in yellow.
tational capabilities (see Appendix D for details on the computational
environment).

In the family tree document (see Fig. 7), the binarization step
achieved good visual separation between the ink and support, with
only some artifacts present in the lower right portion of the document
along the right brace. A false RGB image was generated using the VNIR
spectral bands at [605, 535, 430] nm. The SVM model successfully clas-
sified most parts of the text as NCC (orange color), while the DL model
classified most of the pixels as MGP (purple color), and the remaining
pixels as NCC. In addition, all carbon-based text was accurately located,
although the DL model has some misclassified pixels as either NCC or
MGP in the lower left and central parts. Some additional challenges
arise due to the thin traces of the braces for both models, with SVM
correctly identifying more pixels as CC ink (yellow color) in this part
of the document. Overall, this document is classified more effectively
by the traditional SVM-based model.

The analysis of the Arabic notarial manuscript (see Fig. 8) presented
more challenges. The binarization results were visually acceptable on
the whole, with some bleed-through and stains in the upper and lower
part of the document. The manuscript contains two types of ink: the
main text and marginal note, both written with metallo-gallate ink
with added earth (the correct class would be MGP), and the judge’s
validations and signature, which are composed of pure carbon ink
(CC).
12 
Compared to the family tree document, the classification results
were less consistent, as both types of ink (MGP and CC for SVM or MGP
and NCC for DL) were found in the same lines of text or words, which
does not make sense in a document. However, after applying post-
processing techniques for the SVM model, the visual results improved
significantly. The judge’s signature, located below the main text, is
correctly classified as carbon-containing ink (CC, yellow color). This
signature was included as well in the test set (see Fig. 6), and it is
misclassified as MGP (purple color) by the DL model. The main text is
in most pixels correctly identified as MGP by both models. However,
classification errors arise in other areas: the judge’s validations are
incorrectly labeled as MGP for both models, and the marginal note is
mistakenly identified as CC for SVM, while correctly classified in most
pixels by the DL model.

Further analysis of the document’s reflectance in different regions
(see Appendix F), reveals potential explanations for the misclassifica-
tions. When comparing the spectra, two distinct groups emerge: one
containing the main text (MGP) and the judge’s validations (CC), and
another containing the signature (CC) and the marginal note (MGP).
This explains the misclassification of the judge’s validations as MGP
and the marginal note as CC for the SVM model. Additionally, all
inks become transparent in the SWIR range, complicating the clas-
sification further. Most of the mock-up CC training samples exhibit
low reflectance in the SWIR range, which is crucial for accurately
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classifying samples in this class. The behavior of the inks in this
document may be attributed to ink degradation, aging, and discol-
oration, which significantly alter the spectral properties of the ink and
complicate classification. Similar spectral changes have been reported
in previous studies, particularly in offset inks on paper subjected to
artificial aging [73]. In contrast, the family tree document does not
present these issues, likely due to better preservation and the fact that
it is two centuries younger.

4. Conclusions

In this study, six classification models, including five traditional
models (SVM, KNN, LDA, RF, and PLS-DA), and one DL-based model,
were implemented for ink classification, and their performance was
compared using both mock-ups and historical samples (test set), as well
as two full pages extracted from historical documents (case
study).

All studied models provided micro-averaged accuracy over 89.8%
for the test set. The best results were obtained from the DL model,
with micro- and macro-averaged accuracy and recall above the 99%
threshold. Nevertheless, among the traditional models, SVM emerged
s the best option with all metrics above the 95% threshold and micro-
nd macro-averaged accuracy and recall above 97%. In both case
tudies, neither model achieved perfect results. The SVM misclassified
ewer pixels and identified key features like the judge’s signature in
he Arabic notarial manuscript. This document was not included in the
raining of the model and presented notable challenges for accurate
lassification due to degradation, aging, and fading of CC inks in the
WIR range.

The choice between a traditional or a DL model can then be based
ostly on the available computational resources and how pushing is the
eed for slightly better accuracy, since the training and hyperparameter
uning of the DL model require a considerable amount of processing
esources and the prediction times for higher sized documents are

longer. While traditional models could be trained and tested on a
personal computer, the same machine could not tackle the training
of the DL model. On the other hand, DL does not require a post-
processing step that considers the spatial continuity of the classification
maps, while traditional models benefit considerably from such post-
processing.

The use of supervised classification models with HSI data has proven
elevant for the material characterization of documents of historical

interest. This can be related to the fact that reflectance imaging can
provide indirect information about the molecular structure of the ma-
erials employed in the ink recipes, as highlighted in Section 3.1 and
entioned in previous studies [19]. Unlike XRF mapping, reflectance

imaging offers the capability to map both inorganic and organic mate-
ials or their mixtures. In this respect, it is important to consider data

fusion of different spectral ranges as a pre-processing step to highlight
distinctive features of the materials like fading in the SWIR range for
MGP inks. A key limitation of the proposed approach, compared to
other analytical techniques, is the need for a large, annotated train-
ing dataset, which requires prior knowledge of the inks used in the
documents. However, once the training phase is completed and the
performance is evaluated with documents not included in the training
set, this methodology eliminates the need for additional techniques to
characterize new documents.

Although the identification of written areas in this study is achieved
through binarization, this method may prove less effective in cases of
poorly preserved texts or high variability, such as interference from
complex backgrounds, fading and degradation of ink, stains on the
paper, bleeding, paper transparency, or the presence of multi-colored
inks. Future research could explore the use of automatic text zone
identification schemes (e.g., bounding box-type approaches) or the
integration of advanced deep learning architectures designed to handle

these complexities and effectively separate text from the substrate. C

13 
Classification of inks in the Arabic notarial manuscript has been
hallenging due to spectral changes, which are likely associated with
ging and discoloration. To address this issue, several strategies can
e implemented: expanding training datasets with additional historical
amples, though this is not always possible due to their fragility and
estricted access imposed by conservation policies, and the use of
nknown recipes in the materials present; using virtual aging simula-
ions to model spectral shifts resulting from ink degradation; applying
ccelerated artificial aging to mock-ups in controlled environments
heat, humidity, and radiation) to study spectral changes, although
his method may not fully replicate natural aging processes; and using
icrofading, which, while faster, is less comprehensive than artifi-

ial aging, as it only studies the effects of light exposure. These
pproaches could improve ink classification accuracy in historical
aterials.

The three classes used for this study provide very useful informa-
ion for restorers and historians interested in ink characterization of
istorical documents, since, for instance, MGP tends to show corrosion
t the border of the trace, while CC will be more prone to fading.
evertheless, future work will be focused on tackling a more detailed
lassification in which the subclasses present in the CC and NCC groups
an be separated. One potential approach to address this, given that
ome inks are mixtures of different components, is the application
f unmixing techniques. These methods can provide a more inter-
retable analysis of individual components and their concentrations in
ixtures compared to deep learning (DL) or machine learning (ML)

pproaches. However, their effectiveness depends on the choice of
mixing model, the accuracy of the extracted endmembers (spectra of
pure components), and the availability of a comprehensive reference
library. Incorporating substrate separation into the traditional model

orkflow will also be considered.
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Table A.6
Details of the substrates, ink types, and corresponding labels for the samples used in the study.

Set Inks Label Substrates

Mock-up samples

Metallo-gallate - ferrous sulfate in different proportions MGP

Parchment
Cotton-linen

Metallo-gallate - ferrous sulfate + copper sulfate MGP

Metallo-gallate - ferrous sulfate + zinc sulfate MGP

Metallo-gallate - ferrous sulfate + pomegranate juice MGP

Metallo-gallate - ferrous sulfate + pomegranate juice + myrtle leaves infusion MGP

Metallo-gallate - ferrous sulfate + earth pigmenta MGP

Atramentuma MGP

Ivory blacka CC

Bone blacka CC

Lamp blacka CC

Grape seed blacka CC

Cherry blacka CC

Bistrea CC

Metallo-gallate - ferrous sulfate + lamp blacka in different proportions CC

Metallo-gallate - ferrous sulfate + bone blacka in different proportions CC

Lamp blacka + earth pigmenta CC

Lamp blacka + sepia in different proportions CC

Bone blacka + sepia in different proportions CC

Sepia (from the ink sac of the animal) in different proportions NCC

Sepia in powdered forma NCC

Metallo-gallate - ferrous sulfate + sepia in different proportions NCC

Historical documents

1st set (notarial documents)

Metallo-gallate MGP

LinenMetallo-gallate + earth MGP

Carbon-based ink CC

Carbon-based ink + earth CC

2nd set (family tree book) Metallo-gallate + sepia NCC Cotton-linen
Carbon-based ink CC

3rd set (lawsuits of nobility) Metallo-gallate MGP Parchment

a From Kremer Pigmente GmbH.
Appendix A. Material information in mock-up and historical sam-
les

See Table A.6.
More details about the recipes used in the mock-up samples can be

ound in [44]. Note that the exact recipes for the historical documents
re unknown.

Appendix B. KNN optimization

See Table B.7.

Appendix C. SVM optimization

See Fig. C.9.

Appendix D. Computational environment

All experiments were conducted on a personal computer with the
following hardware configuration for the traditional algorithms:
14 
Table B.7
Micro-averaged accuracy of KNN with different distance metrics
and numbers of neighbors.

Model Distance metric Neighbors Micro-accuracy

KNN cityblock 1 0.9817
KNN chebychev 1 0.9764
KNN correlation 1 0.9794
KNN cosine 1 0.9845
KNN euclidean 1 0.9826
KNN minkowski 1 0.9826

KNN cosine 1 0.9841
KNN cosine 2 0.9817
KNN cosine 3 0.9832
KNN cosine 4 0.9825
KNN cosine 5 0.9823
KNN cosine 6 0.9816
KNN cosine 7 0.9813
KNN cosine 8 0.9808
KNN cosine 9 0.9802
KNN cosine 10 0.9798
KNN cosine 20 0.9759
KNN cosine 50 0.9685
KNN cosine 100 0.9613
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Fig. C.9. Training time in seconds (bar charts) and micro-averaged accuracy (red line) after cross-validation (k = 5) for different values of the box constraint in the SVM model.
• Processor (CPU): Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz
(12 CPUs), 3.19 GHz

• Memory (RAM): 16 GB
• Storage: 512 GB NTFS SSD
• Operating System: Windows 11 Pro, v. 23H2, 64-bit

The DL-based method required a specialized hardware (GPU), run
on a machine with the following configuration:

• Processor (CPU): Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz (8
CPUs)

• Memory (RAM): 32 GB
• Graphics Card (GPU): NVIDIA Titan X, 12 GB
• Storage: 3 TB ext4 SSD
• Operating System: Ubuntu 22.04.3 LTS, 64-bit
15 
Appendix E. Supplementary classification maps

See Fig. E.10.

Appendix F. Average spectral reflectance - historical document

See Fig. F.11.

Data availability

Data will be made available on request.
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Fig. E.10. Classification maps obtained using all the models studied (SVM, KNN, LDA, RF, PLS-DA, and DL) after cleaning post-processing. The Ground Truth (GT) images are
shown in the last row. Purple: metallo-gallate ink (MGP); yellow: carbon-containing ink (CC); orange: non-carbon-containing ink (NCC).
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Fig. F.11. False RGB images of the Arabic notarial manuscript in the VNIR ([605, 535, 430] nm) and SWIR ([1300, 1100, 900] nm) spectral ranges. Regions of interest (1–5)
were averaged to generate the spectral reflectance plot on the right.
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