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Abstract

Characterizing pigments and dyes in historical manuscripts is challenging due to the fragility of materials, the complex
composition of low-concentration elements, and sampling limitations. Consequently, complementary non-invasive analytical
techniques and non-contact measurement methods are often required. This study presents the most comprehensive spectral
database to date, combining diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and hyperspectral imaging
(HSD) to aid in identifying pigments, dyes, and binders historically used in illuminated and decorated manuscripts. A total of
156 painting mock-ups were created using traditional techniques, incorporating variations in binders, pigment particle sizes,
support types, surface roughness, and application methods. Spectral imaging was performed in the visible and near infrared
(VNIR) and short-wave infrared (SWIR) regions, while DRIFTS analysis covered the middle wave infrared (MWIR) region.
For DRIFTS, both contact and non-contact measurements were tested. Using the samples in the database, the influence of
binder, support, and grain size on the sample spectra and color were analyzed and discussed. This database facilitates pigment
and dye identification using DRIFTS or HSI data independently or in combination through data fusion, applying techniques
ranging from direct spectral comparison to advanced methods such as machine learning and spectral unmixing. By making
this database publicly available, the study underscores the value of DRIFTS and HSI in identifying painting materials and
contributes to the preservation of historical manuscripts.

Keywords Spectral library - Painting mock-ups - Diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS) -
Hyperspectral Imaging (HSI) - [lluminated and decorated manuscripts - Non-contact analyses

Introduction historical-artistic and analytical studies [1-3], aiming to

expand knowledge on painting techniques and materials.

Characterizing historical illuminated and decorated manu-
scripts is challenging due to their complex composition and
vulnerability to most laboratory-based analytical techniques.
The need for conservation has led to a growing number of
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Identifying these materials is crucial for selecting compat-
ible treatments and conservation strategies [4, 5]. How-
ever, analytical studies remain difficult due to sampling
constraints, requiring non-invasive approaches [6] and the
refinement of suitable analytical techniques, such as HSI
systems [7].

Spectroscopic techniques, including Fourier transform
infrared spectroscopy (FTIR), Raman spectroscopy, X-ray
fluorescence spectrometry (XRF), and fiber optics reflec-
tance spectroscopy (FORS), have proven effective for
identifying dyes and pigments mixed with binding media
[4, 8-11]. These techniques provide valuable insights into
composition, provenance, and degradation processes [12,
13]. Advances in portable analytical methods have further
expanded their use in cultural heritage studies, offering less
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invasive approaches through non-contact measurements [5],
which help preserve the integrity of artifacts [13, 14]. How-
ever, fluorescence interference and the high sensitivity of
some supports to laser excitation [15] limit the use of Raman
spectroscopy to devices that allow strict control of laser radi-
ance [16, 17]. As a result, FTIR, including diffuse reflec-
tance Fourier transform infrared spectroscopy (DRIFTS), is
among the most widely used techniques for in situ analyses
of historical documents. Its main advantage lies in the simul-
taneous identification of organic and inorganic materials,
though limitations include interferences due to low material
quantities, surface roughness, and spectral distortions [18].

Hyperspectral imaging (HSI) has emerged as a powerful
tool for acquiring high-resolution reflectance spectra [19].
It provides both spatial and spectral data, enabling precise
identification of pigments, dyes, and binders, as well as
underdrawings, layered structures, and restorations—espe-
cially when combined with automated classification and
machine learning methods [20, 21]. However, to prevent
heating and bleaching caused by infrared and ultraviolet
radiation, proper data acquisition conditions are essential
[22]. Additionally, reference materials of known compo-
sition are often needed, emphasizing the importance of
complementing HSI with elemental or molecular analytical
techniques.

A key requirement for identifying painting materials is
the development and use of comprehensive spectral data-
bases. These allow material recognition by comparing spec-
tral features with known substances, ideally incorporating
multiple variables that influence analytical results. While
numerous databases exist for painting materials [10, 13,
23-27], most focus on specific characteristics, such as mate-
rial type (organic [27], inorganic [25]), origin (natural [27],
synthetic [26]), color [4], or composition [11]. Few include
spectra acquired using multiple analytical techniques. Addi-
tionally, most studies emphasize oil and fresco techniques
[28], whereas tempera-based mixtures remain relatively
underexplored [10, 29], highlighting the need for more
extensive data [30] and further research on these materials.

Historical manuscripts present unique challenges due to
their fragility, the thinness of paint layers with high binder
content, and the influence of the support on spectral data.
Therefore, it is essential to use databases with specifically
designed painting mock-ups that replicate materials com-
monly used in illuminated and decorated manuscripts. This
study introduces a combined DRIFTS and HSI database
based on more than 150 mock-ups of traditional dyes and
pigments applied to paper and parchment, with up to quad-
riphasic mixtures. The database includes DRIFTS spectra
in the mid-infrared (MWIR) region (4000-650 cm™!) and
HSI spectra in the visible- and near infrared (VIS, 400-1000
nm) and short-wave infrared (SWIR, 900-1700 nm) ranges.
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Additional information regarding pigment composition and
particle size was obtained through X-ray diffraction (XRD),
micro-Raman (u-Raman), and laser granulometry analyses.
This work highlights the complexity of identifying mixed
materials in illuminated and decorated manuscripts and
details the process of creating an extensive spectral database.
While this work presents the study of manuscripts as a main
focus, it also holds significant value for research in multiple
other fields due to the inclusion of pure pigment spectra,
which can be compared with a wide range of polychrome
artworks. The data is stored in widely used open-license for-
mats to ensure accessibility and usability for future research.
The characterization results contribute to understanding pig-
ment/dye-binder interactions and evaluating the advantages
and limitations of combining two non-invasive analytical
techniques.

Materials and methods
Pigments, dyes, binders, and supports

All painting materials used in this study are historically docu-
mented in illuminated and decorated manuscripts. The mock-
ups were created following traditional painting techniques
[1, 9]. Egg glair and gum Arabic were selected as binders
due to their historical prevalence in the Western world [31].
Pigments, dyes, and gum Arabic were sourced from Kremer
Pigmente GmbH & Co. KG. The selected supports included
handmade paper and parchment. The paper, composed of a
1:1 mixture of cotton and linen fibers, was obtained from
Paperlan® (Gijén, Spain), while the parchment was acquired
from Roemer Shop® (Galuburg, Germany). To replicate
historical preparation methods, the parchment underwent
a “degreasing” process [32], in which calcium carbonate
(CaCOs) was homogeneously applied with a linen cloth, and
the excess was removed using a soft brush.

Eighteen pigments and five dyes were obtained in pow-
der form and characterized using laser granulometry, X-ray
diffraction (XRD), micro-Raman (u-Raman), and DRIFTS,
following the methodology described in “Analytical tech-
niques.” These pigments and dyes were then mixed with
either egg glair or gum Arabic. Table | provides their com-
mercial names, chemical compositions, and particle sizes as
specified by the supplier. The painting materials are grouped
by color, and a list of the abbreviated names used in this
study is also included.

Painting mock-ups

A total of 156 mock-ups were created using the previ-
ously mentioned painting materials, combining up to four
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Table 1 Characteristics of pigments and dyes according to manufacturer (Kremer Pigmente®)

Kremer® reference code Author’s Kremer® chemical description Kremer® particle
reference size (um)

Pigments
10207 Azurite MP, Sky-Blue Light AZ-EF Azurite Cuz(CO;),(OH), <38
10206 Azurite MP, Light AZ-M Azurite Cu3(CO;),(OH), 38—63
10204 Azurite MP, Dark AZ-C Azurite Cuz(CO3),(OH), 63—S80
10203 Azurite MP, Extra dark AZ-EC Azurite Cu;(CO;),(OH), 80—100
10010 Smalt, very fine SM Blue glass, Co-silicate < 80
10562 Lapis Lazuli from Chile LAP (Na,Ca)g(Al,Si0,)4(S,SO,, Cl), 38—45
46000 Cremnitz White* LW PbCO; n.i
58720 Calcite CA-EF Calcite CaCO; 20
10624 Cinnabar, very fine CIN Cinnabar HgS <20
48651 Hematite, intense tinting HMT Hematite Fe,O, 1—10
42500 Red Lead, Minium~ MIN Minium Pb;0, <63
10700 Orpiment, genuine ORP Orpiment As,S¢ 175
10110 Lead Tin Yellow Deep (type I) LTY Lead stannate Pb,SnO, <38
10300 Malachite natural, standard MLC Malachite Cu,(CO3)(OH), < 120
44450 Verdigris, synthetic VG Copper(Il)-acetate-1-hydrate n.i

Cu(CH;COO0),-[Cu(OH),]52H,0

116421 Yellow Moroccan Ochre, fine ~ OC Pure earth pigment from central Morocco <80
40710 Burnt Umber, brownish BU Natural brown earth, contains manganese oxides n.i
12015 Grape Seed Black GB Charred Grape Seeds n.i

Dyes
42100 Carmine Naccarat CARM Aluminium lake of carminic acid, C,,H,00,; n.i
37050 Gamboge, powder GMB Gamboge (H;0,) 100% n.i
37110 Saffron, red threads SA Crocus sativus n.i
36000 Indigo, genuine IND Natural organic product. Natural Blue 1, C.I. n.i

75780. Indigosfera species or Isatis tinctoria

37380 Ripe buckthorn berries BCKT Natural Yellow 13 n.i

*Cremnitz white is an equivalent to lead white (LW). ~Red lead is the synthetic pigment and minium (MIN) the natural pigment. n.i. not identified

components bound with either gum Arabic or egg glair (see
Table 2 for details on the mixtures included in the data-
base). Several additional factors were evaluated to assess
their influence on the analytical results, including the type
of support, the type of binder, pigment particle size (specifi-
cally for azurite), and method of paint application (either as
a mixture or in superimposed layers).

As aresult, the database includes three monophasic sam-
ples (consisting of binders or liquid dyes that do not require
a binder), 39 biphasic mixtures (one pigment/dye + one
binder), 34 triphasic mixtures (two pigments/dyes or their
combinations + one binder), and two quadriphasic mixtures
(three pigments + one binder). Each formulation was applied
to both paper and parchment. For triphasic and quadripha-
sic mock-ups, the pigment-to-binder ratios used in biphasic
mixtures were maintained, following 1:1 and 1:1:1 propor-
tions, respectively. Since these ratios are not standardized,
quantities were adjusted based on two factors: the maximum

pigment concentration admitted by the binder—known as
Critical Pigment Volume Concentration (CPVC)—and the
desired fluidity of the paint.

Gum Arabic (GA) was prepared at a 20% concentration
in water (20:100 w/v), while egg glair was obtained follow-
ing traditional methods by beating the egg white, removing
the surface foam, and adding water to achieve a 1:1 volume
ratio. Imperial yellow ink was prepared according to the
Kremer® recipe, which involves adding potash alum and
gum Arabic to a buckthorn solution.

The prepared paints were applied to paper and parch-
ment in 2X 2 cm squares and as written text using a brush
(Fig. 1a). To evaluate variations induced by different appli-
cation methods, pigments were either mixed homogeneously
and applied in a single layer or applied as separate superim-
posed layers using the same components (Fig. 1b).

Table 2 shows the taxidermy of the database sam-
ples according to the number and proportion of painting
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Fig. 1 Examples of painting
mock-ups bound with gum
Arabic: a azurite extra fine on
parchment and b superimposi-
tion of lead white and malachite
applied on paper

materials present. The exact composition of the mock-ups,
including total binder content, can be found in the general
information of the database (Information_Mock-ups).

Analytical techniques
Laser granulometry (LG)

Particle size measurements were conducted using a Mas-
tersizer 2000LF equipped with a Hydro 2000G accessory
(Malvern Instruments®). Since ethanol was used as the dis-
persing medium, the refractive index was manually adjusted
to n= 1.36. For each sample, three measurements of 30 s
were taken, and the average values were calculated. Results
were analyzed based on the volume distribution of particle
sizes, assuming a uniform sample distribution [33], and are
presented in Table 3.

X-ray diffraction (XRD)

Powder X-ray diffraction (XRD) was performed using a
PANalytical X’PertPRO diffractometer with Cu-Ka radia-
tion and silicon zero-background sample holders. The instru-
ment operated at 45 kV and 40 mA, with an exploration
range of 3 to 60° 20 and a goniometer speed of 0.01° 26/s.
In samples where Powder XRD results were inconclusive
(i.e., yellow ochre and burnt umber), u-XRD analyses were
conducted using a Bruker D8 DISCOVER diffractometer
equipped with a DECTRIS PILATUS3R 11 K-A detector
and a | mm diameter X-ray beam. The operating conditions
included Cu-Ka radiation, 50 kV voltage, 1 mA intensity,
an exploration range of 10 to 57° 20, and a scanning speed
of 0.02° with 40 s per step. Crystalline phase identification
was carried out using Xpert Highscore 2.0 and Profex 5.2.8,
both linked to the Crystallography Open Database. Results
are presented in Table 3.

Micro-Raman (p-Raman)

p-Raman analysis was performed only in specific cases
where XRD results lacked sufficient resolution, such as for
black carbon-based pigments (i.e., grape seed black). Meas-
urements were conducted using a confocal JASCO NRS-
5100 Micro-Raman Spectrometer, coupled with a Peltier-
cooled CCD detector and an Olympus microscope. The
working conditions included a spectral range of 300-2000
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cm™! with a resolution of 1 cm™'. Samples were excited

using two lasers: a green laser (Elforlight G4-30; Nd: YAG;
532 nm) and a red laser (Torsana Starbright; 785 nm). The
results of these measurements are presented in Table 3.

Diffuse Reflectance Infrared Fourier Transform
Spectroscopy (DRIFTS)

DRIFTS analyses were conducted on both painting mock-
ups and pigments and dyes in powder form using a port-
able 4300 Handheld FTIR Spectrometer (Agilent Technol-
ogies®) with a Diffuse Reflectance interface and a 6 mm
spot diameter. IR spectra were collected in the mid-infrared
region (spectral range, 4000 to 650 cm™") with 10 scans
per spectrum and a resolution of 4 cm™!. A Coarse Gold
Reference Cap (G8180-67560) was used for background
subtraction. Spectra were processed with baseline correc-
tions to avoid errors caused by instrument distortions [18].
Data was acquired using both direct contact and non-contact
methods with the surface of the mock-ups. Note that only
spectra from non-contact measurements are presented, as
results from both methods were similar, and non-invasive
analysis is preferred in the study of historical documents.
To ensure adequate results, the obtained contact and non-
contact spectra were compared with the “Cultural Herit-
age Open Source” (CHSOS) DRIFTS spectral library [6].
The spectra of non-bound pigments closely matched those
reported in the library, with minor variations attributable
to baseline corrections. These variations, however, do not
impact the qualitative interpretation of the results. Further-
more, although the CHSOS database provides DRIFTS spec-
tra exclusively for pigments bound with an acrylic medium,
the combined influence of the support and binders was found
to be consistent with the signals obtained from our mock-
ups, thereby validating the comparative framework.

To prevent damage to the mock-ups and simulate real data
acquisition procedures for historical documents, a custom
support system was designed. This system, consisting of an
adjustable tripod and a reclining bookrest, allowed analyzing
the mock-ups at a minimal distance and under stable condi-
tions for the instrument (Fig. 2).

Hyperspectral Imaging (HSI)

HSI measurements were performed with two line-scan spec-
tral imaging cameras from Resonon® Ltd (Pika L and Pika IR
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Table 2 Characteristics of the painting mock-ups: number and type of components and their proportions in the paint mixtures. Paints are applied
either in uniform mixtures or in superimposed layers on paper and parchment supports

Type of mock-up Pigments and dyes Binders Proportion Total N°.
of mock-
ups

Monophasic - Gum Arabic (GA) 20:100 (w/v) 6

- Egg glair (EG) 50:50 (v/v)
Ripe buckthorn berries * (BCKT) Pure 0,3:1 (w/v)
Biphasic Azurite EF (AZ-EF) Gum Arabic or egg glair 1:0,5 (w/v) 78
Azurite M (AZ-M) Gum Arabic or egg glair 1:0,5 (w/v)
Azurite C (AZ-C) Gum Arabic or egg glair 1:0,5 (w/v)
Azurite EC (AZ-EC) Gum Arabic or egg glair 1:0,5 (w/v)
Smalt (SM) Gum Arabic or Egg glair 1:0,5 (w/v)
Lapislazuli (LAP) Gum Arabic or egg glair 0,4:1 (w/v)
Lead White (LW) Gum Arabic or egg glair 0,4:1 (w/v)
Calcite (CA) Gum Arabic or egg glair 0,4:1 (w/v)
Cinnabar (CIN) Gum Arabic or egg glair 0,4:1 (w/v)
Hematite (HMT) Gum Arabic or egg glair 0.4:1 (w/v)
Minium (MIN) Gum Arabic or egg glair 0,2:1 (w/v)
Orpiment (ORP) Gum Arabic or egg glair 0,33:1 (w/v)
Lead Tin Yellow (LTY) Gum Arabic or egg glair 0,5:1 (w/v)
Malachite (MLC) Gum Arabic or egg glair 2:1 (w/v)
Verdigris (VG) Gum Arabic or egg glair 2:1 (w/v)
Yellow Ochre (OC) Gum Arabic or egg glair 0,2:1 (w/v)
Burnt Umber (BU) Gum Arabic or egg glair 0,4:1 (w/v)
Grape Seed Black (GB) Gum Arabic 0, 4:1 (W/v)
Carmine* (CARM) Gum Arabic 2:1 (w/v)
Gamboge* (GMB) Gum Arabic 2:1 (w/v)
Indigo* (IND) Gum Arabic 0,66:1 (w/v)
Saffron* (SA) Gum Arabic 2:1 (vIv)
Triphasic AZ-EF +LW © Gum Arabic or egg glair 1:1:1 (vIviv) 68
LTY +LW ° Gum Arabic or Egg glair 1:1:1 (vIviv)
MLC +LW ° Gum Arabic or Egg glair 1:1:1 (vIviv)
VG +LW ° Gum Arabic or egg glair 1:1:1 (vIviv)
CIN +LW ° Gum Arabic or egg glair 1:1:1 (vIviv)
GB +LW ° Gum Arabic or egg glair 1:1:1 (v/vlv)
MIN +LTY Gum Arabic or egg glair 1:1:1 (viviv)
AZ-EF + GMB Gum Arabic 1:1:1 (v/viv)
MLC + GMB Gum Arabic 1:1:1 (v/viv)
VG +GMB Gum Arabic 1:1:1 (v/viv)
ORP +IND Gum Arabic 1:1:1 (v/vIv)
GMB +SA Gum Arabic 1:1:1 (v/vIv)
CARM +GMB Gum Arabic 1:1:1 (v/vlv)
LW + CARM Gum Arabic 1:1:1 (v/viv)
Imperial Yellow Ink (buckthorn + alum) Gum Arabic 0,18:0,01:1 (w/w/v)
Quadriphasic LW +CIN +LTY Gum Arabic or egg glair 1:1:1:1 (vIvIviv) 4

* =Dye. ©= Samples made using two types of paint application (in homogeneous mixtures and in layers). See Table 1 to check the painting
materials’ name abbreviations. Weight =w (g); volume =v (ml). Pure saffron was prepared with 7,5 saffron threads in water, which is equivalent
to a 0,0124:25 (w/v) proportion
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Fig.2 Measurement acquisition
system for portable DRIFTS.

a Instrument placement on the
adjustable tripod. b and ¢ Non-
contact analyses with minimal
distance to the document
surface

+) which allowed acquiring data in two spectral ranges (VNIR
and SWIR respectively). The VNIR camera (Pika L) covers the
spectral range from 380 to 1080 nm using 900 pixels per line
and a spectral resolution of 2.1 nm. The SWIR camera (Pika IR
+) covers from 888 to 1732 nm with 640 pixels per line and a
2.4 nm resolution. The outer portions of the range were cropped
due to low signal-to-noise ratio, and spectra were interpolated in
both spectral ranges with a sampling interval of 5 nm, resulting
in spectra containing 121 bands in VNIR (from 400 to 1000
nm) and 161 bands in SWIR (from 900 to 1700 nm). Dark sub-
traction and flat field corrections were applied, using the 90%
reflectance patch from the Sphere Optics Zenith Lite Multistep.
The light source was a set of four halogen lamps oriented to
avoid specular reflection from the samples. The capture distance
was 50 cm for the VNIR range and 40 cm for the SWIR range,
with a field of view of 14.5 cm approximately for both cameras,
resulting in a spatial resolution of 0.16 mm/pixel for the VNIR
and 0.22 mm/pixel for the SWIR camera.

The samples were captured in groups corresponding to
the different sheets of either paper or parchment support on
which they were deposited. To ensure a spatial correspond-
ence between VNIR and SWIR sample cubes, the spectral
images of the VNIR and SWIR sheets were registered using
the Registration Estimator App in MATLAB, as shown in
Fig. 3c. Afterwards, a region of interest (ROI) of 20 x20
pixels was extracted from the painted square in each sample
and each spectral range in the registered cubes. The ROI size
was chosen to cover 19.4 mm?, approximately 70% of the spot
area of the handheld FTIR device. The spectral reflectance
curves of the 400 pixels in the ROI were averaged. The aver-
aged spectral data was stored in CSV format as part of the
database, including the two spectral ranges (first VNIR and
then SWIR). Some variations can be found in the overlap-
ping region (900-1000 nm) resulting from the use of two
different imaging devices. This occurs for several reasons,
such as differences in the spectral bandwidth and the fact that
these wavelengths correspond to the extremes of both sensors’
ranges, where sensitivity decreases.
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In addition to the averaged spectra with standard deviation
plots included in the database (accessible at Supplementary
Information), the ROI hyperspectral images with pixel-by-
pixel reflectance are available in BIL and H5 formats. This
constitutes one of the unique traits of this database, since it
allows direct examination of the spatial uniformity of the sam-
ples. Figure 3 illustrates the process of extraction of the spectra
from one of the samples, including the average and standard
deviation spectral reflectance plot.

Color analysis

Color coordinates were extracted from HSI reflectance data
and calculated pixelwise using CIE D65 standard illuminant
and the 2-degree CIE 1931 standard colorimetric observer.
Mean values for each sample were calculated by averaging the
color coordinates of the pixels within the ROI in CIELAB and
CIEL*C*h* color spaces. In the CIELAB space, L* represents
clarity (ranging from black with a value of 0 to white with a
value of 100), and a* and b* represent the axis red (+a*) to
green (—a*) and yellow (4 b¥*) to blue (—b%). CIEL*C*h*
cylindrical coordinates correspond to clarity (L*), chroma
(C*,,), and hue (h* ). To study the influence of binders, sup-
ports, and azurite particle size, AE* , color differences were
calculated using the CIE 1976 formula (AE*,, = \/ (AL*?+
(Aa*)2+ (Ab*)z). The results are presented in “Color analy-
sis.” Besides, color differences using the CIEDE2000 color
difference formula [34, 35] were calculated and are accessible
through the Supplementary Information.

Results and discussion
XRD and laser granulometry
The mineralogical composition and particle size of the pig-

ments studied here, some of which were analyzed in previous
works [36—40], are shown in Table 3. The first observation
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Fig. 3 Extraction process of the
spectra from verdigris samples.
a, b False color (RGB) images
of a portion of the sheets
containing the samples in the
VNIR and SWIR ranges. The
bands used for the false color
images are [605, 535, 430] nm
and [1600, 1200, 1000] nm,
respectively. ¢ Overlay of the
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confirms that the supplier’s specifications for commercial-
ized pigments are not always accurate and often include
additional materials [36]. This factor must be considered in
scientific studies and conservation or restoration treatments
and requires the use of combined analytical techniques to
ensure reliable results [41, 42].

The results highlight the presence of impurities, such
as quartz, identified in azurite, calcite, cinnabar, hematite,
and malachite pigments in previous studies [35], and in yel-
low ochre and burnt umber pigments in this study. These
impurities are generally not indicated by the manufacturer.
Additionally, dolomite (detected in hematite [35]), calcite,
and kaolinite (detected in yellow ochre and burnt umber,
respectively) are identified, and their presence can typically
be attributed to the natural origin of the pigments.

Therefore, characterizing the mineralogy and particle size
of the pigments is essential to avoid incorrect interpretations
of results obtained from DRIFTS and HSI analysis. The min-
eralogical composition and particle size of dyes were not
studied due to their organic nature. p-Raman analysis was
exclusively applied to characterize the grape seed black pig-
ment, which is primarily composed of carbon.

P P wP g o® O

A A

Wavelength (nm)

DRIFTS and HSI

This section presents the combined DRIFTS and HSI spectra
of supports (i.e., paper and parchment) and binders (i.e.,
gum Arabic and egg glair) (Fig. 4), followed by examples of
spectra of verdigris painting mock-ups of varying complex-
ity (monophasic, biphasic, and triphasic) (Fig. 5) and one
quadriphasic mixture (Fig. 6). As mentioned in the materi-
als and methods section (“Painting mock-ups”), the type of
paint application was also considered, and it was found to
have a considerable impact on the results (Fig. 5). Finally,
the influence of particle size and pigment/dye-binder inter-
actions in mixed paintings was evaluated only for azurite
mock-ups.

The combined contribution of these variables to the
DRIFTS and HSI spectra is one of the strengths of this data-
base, as it provides comparative results on the influence of
variables commonly encountered in historical documents
(e.g., different supports, binders, and particle sizes). Since
this paper primarily focuses on the study of mock-ups, spec-
tra for pure pigments can be accessed in the Supplementary
Information, as is the usual practice in previous databases
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Table 3 Mineralogical
composition and particle size

Kremer® reference

Author’s reference

Chemical composition

Particle size (um)

of pigments studied in this Azurite MP, 10207 AZ-EF Azurite, malachite, quartz * 25 (4-90) *

work, Particle size ranges are Azurite MP, 10206 AZ-M Azurite, malachite, quartz * 45 (20-110) *

presented between brackets,

preceded by main maximum Azurite MP, 10204 AZ-C Azurite, malachite, quartz * 70 (25-180) *

particle size Azurite MP, 10203 AZ-EC Azurite, malachite, quartz * 90 (20-280) *
Smalt, 10010 SM n.d 55 (1-100) F
Lapis Lazuli, 10562 LAP Lazurite, calcite, diopside f 47 (0,6-95) T
Cremnitz White 46000 LW Hidrocerussite, cerussite 3(0,1-10) e
Calcite, 58720 CA-EF Calcite, dolomite, quartz ~ 25 (0,25-100) ~
Cinnabar, 10624 CIN Cinnabar# 12 (0,4-40)
Hematite, 48651 HMT Hematite, quartz, dolomite # 0,6 (0,3-17) #
Red Lead, 42500 MIN Minium # 3(0,4-9) #
Orpiment, 10700 ORP Orpiment 42 (0,2-84)
Lead Tin Yellow, 10110 LTY Hidrocerussite, cassiterite 3,2 (0,2-15)
Malachite, 10300 MLC Malachite, pseudomalachite e 3(0,2-112) e
Verdigris, 44450 VG Hoganite, tenorite 102,5 (1,8-226)
Yellow Ochre, 116421 oC Goethite, quartz, kaolinite 10,5 (0,2-76)
Burnt Umber, 40710 BU Hematite, quartz, calcite 6,4 (0,2-42)
Grape Seed Black, 12015 GB Calcite, carbon 84 (0,3-152)

Information according to: *= Cardell et al. (2017) [37]; += Pozo-Antonio et al. (2020) [38]; e= Pozo-
Antonio et al. (2022) [39]; ~ = Rivas et al. 2018 [40]; #= Pozo-Antonio et al. (2018) [36]. n.d. not detected
using XRD. Quartz, SiO,; lazurite, NacCa,(AleSiz0,,)(SO,,S,S,,S;,CLLOH)>™; diopside, MgCaSi,Oy;
hidrocerussite, Pb3(CO3),(OH),; cerussite, PbCOj3; dolomite, CaMg(COs;),; cassiterite, SnO,; pseudoma-
lachite, Cus(PO,),(OH),; hoganite, Cu(CH;COO),H,0; tenorite, CuO; goethite, a-Fe**O(OH); kaolinite,
Al,Si,05(OH),; carbon, C. See Table 1 for the chemical composition of the rest of the painting materials
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Readers are referred to the online version of this article for better
interpretation of spectra

Fig.4 DRIFTS and HSI spectra of supports and binders. a, b Sup-
port’s DRIFTS and HSI spectra. ¢, d Binder mock-up’s DRIFTS and
HSI spectra, respectively. See Table 1 to consult names abbreviations.
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[6]. An example of pure verdigris pigment is, however,
included in Fig. 5 as a reference to evaluate the spectral
changes induced by painting mixtures (biphasic and tripha-
sic mixtures) applied on parchment with different binders
and types of paint application.

Supports and binders

Figure 4 presents the DRIFTS and HSI spectra of the ana-
lyzed supports (paper and parchment) and binders (gum Ara-
bic -GA- and egg glair -EG-). The organic nature of both
binders in DRIFTS analyses was confirmed by the pres-
ence of CH functional groups (spectral ranges 3400-3300
cm™! (alkynes), 3100-3000 cm (alkenes), and 3000-2800
cm~! (alkanes). Cellulose bands of the paper support
(Fig. 4a) correspond to OH (3600; 3200-3100 ecm™!) and
CO (1300-1000 cm~!, with main bands at 1042 and 1088
cm™") chemical bonds. Bands at 1650 cm™ are attributed to
OH stretching (v) and bending (,6) vibrations of water mol-
ecules [43]. Parchment (Fig. 4a) shows characteristic bands
of CH (organic), NH (protein), and OH (water) functional
groups in the regions from 3600 to 2800 cm™". Its proteina-
ceous nature is confirmed by two sharp bands at 1684 cm™!
(amides -C =0-) [44] and at 1576 cm™! (NH stretching)
[45]. The band at 1086 cm™! (CO;*~ (Vsyn)) Was associated
with calcite (CaCOj;) [11] used in the degreasing process.
Furthermore, when evaluating DRIFTS spectra, bands
between 2400 and 2300 cm ™" attributed to atmospheric CO,
[46, 47] must be considered in all obtained results.

Gum Arabic (Fig. 4c) is a polysaccharide compound with
main absorption bands between 3700 and 3100 cm™! [48, 49]
(CH and OH bonds) and at 2949 cm™! [14]. Bands around
1170 cm™', attributed to CO stretching (1300-1000 cm_l),
appear more pronounced on paper supports since characteristic
absorptions occur in the same region. Note that bands between
1700 and 1400 cm™! (due to OH bending, CH bending, C =
O, NH [14], and water bonds) can be masked by interferences
from the support, particularly when placed on parchment. The
absence of intense bands around 1743 and 1240 cm™', which
are attributed to different gums used as binders in artworks
(such as tragacanth gum), has been identified as an indicator
of gum Arabic [49] and can aid in its characterization.

The spectrum of egg glair mock-ups (Fig. 4c) resembles
that of the parchment support (Fig. 4a), due to the simi-
larities in their composition, which result in the presence
of bands in the same ranges. This can lead to misleading
results. However, when placed on paper, characteristic bands
near 2978 cm™! (CH stretching) [14] and 1553 cm™! (NH
bending) are more distinguishable.

Regarding the HSI results, the support’s influence mainly
translates into an increase in reflectance values on paper and
a decrease on parchment due to its darker tone (Fig. 4b),

especially in the SWIR range (900-1700 nm). This trend
is consistent in binders, with gum Arabic achieving higher
reflectance (Fig. 4d). In the VNIR range (400-1000 nm), and
particularly between 700-900 nm, binders and supports show
similar reflectance values, except for the gum Arabic on parch-
ment mock-up, which exhibits fluctuating reflectance results.
This fluctuation is due to the specular reflection of gum Arabic,
which was difficult to avoid during hyperspectral captures.

Painting mock-ups

This section presents DRIFTS and HSI spectra of selected
pigments mixed with either gum Arabic or egg glair, as a
representative example of the content of the database. Fig-
ure 5 displays the DRIFTS spectra of verdigris (VG) mock-
ups on parchment, including their corresponding variations
for both binders (Fig. 5a). It also includes biphasic (VG-
GA, VG-EQG) and triphasic mixtures (VG +LW), as well
as the type of paint application (either as uniform mixtures
or superimposed layers) (Fig. 5b). The DRIFTS spectra
are shown alongside those of the pure verdigris pigment,
facilitating the comparison and evaluation of the variations
induced by the binder and supports. HSI spectra for the
biphasic and triphasic uniform mixtures are presented in
Fig. Sc, without standard deviation to improve visualization.

Verdigris pigments show characteristic bands between
1620 and 1400 cm™! [10, 45] and 700 and 600 cm™!, which
are associated with the symmetric and asymmetric stretching
of acetate groups (-COO- (Vyyp, Voeym)) [50, 51]. While char-
acteristic bands around 690 cm™! are present in all bound
mock-ups, position shifts of up to 13 cm™! were observed for
different supports: 699 cm™! (VG-GA on parchment), 681
cm™! (VG-GA on paper), 680 cm™ (VG-EG on parchment),
and 677 cm™" (VG-EG on paper). However, bands between
1690 and 1550 cm™ (NH (v, and 6)), which are attributed
to proteinaceous compounds like egg glair and parchment,
present significant overlaps with those of the pure verdigris
pigment. Additionally, co-occurrences with the characteris-
tic band of water at 1640 cm™' [28] must be considered to
avoid erroneous interpretations.

As shown in Fig. 5a, mock-ups bound with egg glair
exhibit a higher absorbance intensity compared to those
bound with gum Arabic. The broader bands between 3400
and 2800 cm™! are due to organic CH bonds and, therefore,
cannot be attributed solely to the pigment, supports, or bind-
ers, as all of these materials present at least partially organic
compositions. Furthermore, Fig. 5b shows the DRIFTS
spectra for mixtures of verdigris and lead white. The pres-
ence of lead white is indicated by bands around 1100 cm™),
which are attributed to symmetric stretching of carbonates
(COs%7). Characteristic bands of cerussite, typically located
around 1735, due to CO32' symmetric stretching [44], and at
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«Fig.5 DRIFTS spectra of a pure verdigris and its biphasic mixtures,
b triphasic mixtures with different types of paint application (+ =uni-
form mixture;/= superimposed layers), and ¢ HSI reflectance spectra
of biphasic and triphasic mixtures, all of which are placed on parch-
ment. See Table 1 for names abbreviations

2400 cm™! [14], were measured in pure pigments (accessible
through Supplementary Information) but could not be identi-
fied correctly in these mock-ups due to the combined mask-
ing effects of verdigris, binders, and supports. The attribu-
tion of OH stretching molecular vibrations to hydrocerussite
at 3800—3200 cm™! [14, 47] is equally unclear given the
previous statement. The type of paint application is mainly
distinguished by a decrease in the intensity of the character-
istic verdigris bands in mock-ups obtained through superim-
posed layers, as the upper layer corresponds to lead white,
which exhibits greater absorbance.

Regarding HSI results, Fig. 5c indicates reflectance
variations and, consequently, color changes in biphasic and
triphasic mixtures of verdigris (VG) and lead white (LW) in
uniform mixtures. The results show that reflectance is higher
when lead white is included as a component. Interestingly,
triphasic mock-ups bound with gum Arabic exhibit higher
reflectance values in the VNIR range, while reflectance for
both biphasic and triphasic mock-ups bound with egg glair
is higher in the SWIR range, mainly from 1400 to 1700 nm.
This trend is generally maintained, as observed in Fig. 6b,
suggesting that the type of binder can potentially be detected
depending on the considered spectral range.

To present a more complex example, Fig. 6 shows
DRIFTS and HSI spectra of the quadriphasic mixture
included in the database (cinnabar (CIN) +lead tin yellow
(LTY) + lead white (LW)). Bands from 1552 to 1160 cm™!
are attributed to sulfides (S>7) found in cinnabar, although
presenting a slight shift when compared to the characteristic
band referenced by Manfredi et al. (2017) [14], which should
be located at 1129 cm™'. Additionally, bands around 1250
cm™! have been attributed to SO, stretching [47], similarly to
those described at 1233 cm™! for orpiment pigments (arsenic
trisulfide (As,S5)) in previous studies [14]. Finally, bands
between 1100 and 700 cm™! suggest the presence of Si—O
bonds proceeding from quartz [47, 52] while those around
14501420, 1100-1000, and 720-700 cm™~! (CO,7?) are
associated with calcite [53], both previously identified min-
erals in CIN pigments by XRD (Table 3). On the other hand,
identifying the LTY pigment in the mixture is challenging,
as its characteristic bands are located in regions below 650
cm™!, which is the limit of the spectral measurement range in
the portable DRIFTS instrument used. Nonetheless, bands at
1049 and 1040 cm™" have been associated with this pigment,
as well as with litharge at 679 cm™! in previous literature
[14]. Bands at 757 and 759 cm™! have been described for
Pb-O bonds in lead-based pigments but are generally not

clearly resolved [52]. Finally, the presence of LW is detected
through bands around 1100 cm™ (COs%"), as well as through
bands at 2400 [14], 1735, and 840 cm™", attributed to the
combination of symmetric stretching (v,,,,) and in-plane
bending (f) of cerussite (PbCO;) [14, 54]. Bands close to
790 cm™" have been identified as f(Pb-OH) bonds and likely
correspond to hydrocerussite (Pb;(CO;),(OH), [47]. Once
more, limitations caused by the spectral range must be con-
sidered. The presence of acute bands at 1606 cm™ (Fig. 6a),
attributed to vibrations of water molecules from the environ-
ment [28], is most accentuated in the quadriphasic mixture
and must be taken into consideration as an influential factor
when using non-contact analyses.

HSI reflectance spectra for this mixture (CIN +LTY
+LW) show the influence of the binders (Fig. 6b), with
higher values obtained by gum Arabic in the VNIR range
and by egg glair in the SWIR range, confirming the findings
in Fig. 5. The characteristic relative position of the bands in
both spectral ranges is maintained, demonstrating the high
value of HSI for material identification in artworks and
the importance of having reference samples available for
comparison.

Table 4 presents the precise DRIFTS band assignments
and HSI reflectance maxima for the mock-ups discussed in
the paper, selected as references to illustrate the obtained
data and provide a clearer understanding of the results. As
shown, maximum reflectance is similar for painting mixtures
made with the same pigment but applied to different sup-
ports, although standard deviations of up to approximately
60 nm should be considered. Cinnabar mock-ups exhibit the
most significant DRIFTS band shifts due to the influence
of the supports. These interferences have previously been
highlighted as a limitation in DRIFTS analysis by Tamburini
et al. [55]. A complete list of DRIFTS band assignments can
be accessed in the Supplementary Information.

Spectral variations due to different particle sizes in azur-
ite pigments were additionally studied with DRIFTS and
HSI, since their influence was noticed in previous studies
[36, 37]. Results of azurite-based mock-ups bound with gum
Arabic on paper and parchment are presented in Fig. 7 and
in Table 5. Band assignments for mock-ups bound with egg
glair are not shown but are available in the Supplementary
Information.

Azurite pigments exhibit typical bands associated with
the asymmetric stretching of CO32_ at 1496 and 1448 cm™
[14], as well as bending at 862 cm™' (& of CO;>") [47].
Bands close to 2500 cm™ (5 of CO,%) have been described
as an indicator of azurite by Vetter et al. (2019) [48]. Bands
between 3600 and 3700 cm™! and around 1150 cm™ are
attributed to OH(v) and CO(v) bonds originating from gum
Arabic, while intense bands between 1640 and 1607 cm™!
are associated with vibrational movements of water mol-
ecules. DRIFTS analysis revealed spectral variations due to
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Fig.6 a DRIFTS and b HSI spectra of the quadriphasic mixture (cinnabar (CIN) +lead tin yellow (LTY) +lead white (LW)) bound with GA

(gum Arabic) or EG (egg glair) on paper and parchment supports

particle size, with coarser pigments (AZ-M, AZ-C, AZ-EC;
see identified particle sizes in Table 3) showing higher inten-
sities when compared to AZ-EF. Minor shifts in the bands
were observed when placed on different supports, with these
shifts being more pronounced on parchment supports. The
main variations were found in the spectral range from 1690
to 1550 cm™ (C =0 and NH bonds).

Additionally, the influence of particle size is discussed
using HSI reflectance spectral data (Fig. 8). Here, main vari-
ations are observed in reflectance intensity, which decreases
proportionally to particle size in pigments bound with gum
Arabic. However, a slightly different behavior is observed
for AZ-EF-based samples, which may be attributed to a
stronger pigment-binder interaction, as previously noted
by Cardell et al. (2017) [37]. In contrast, pigments bound
with egg glair exhibit an inverse pattern, with the fine grain
mock-up showing the highest reflectance intensity, while the
coarse grain sample has the lowest. These results highlight
the combined influence of pigment particle size and binder
type on reflectance spectra.

@ Springer

llluminated manuscripts

Finally, two manuscripts from the Archive of the Royal
Chancellery are presented to exemplify the applicability of
the database for material analyses in historical documents.
Here, manual spectral comparison was used to identify
possible binders and pigments or dyes. In the red painting
layers of manuscript A (sixteenth century, parchment), pre-
vious analyses using X-ray fluorescence (XRF) suggested
the presence of mercury (Hg). DRIFTS and HSI results of
the measured spot (Fig. 9a) confirmed the presence of cin-
nabar (see Tables 1 and 4), which was most likely bound
with gum Arabic, after comparison with the mock-ups of
our database. In the blue pictorial layer of manuscript B
(seventeenth century, parchment), DRIFTS results indicate
a homogeneous mixture of azurite (AZ-EF) and lead white
(LW) (Fig. 9b). Comparison between AZ-EF +LW spectra
mixed with either gum Arabic or egg glair suggested the
second as the used binder. HSI reflectance values of both
illuminated manuscripts also correspond with those of the
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B g captured CIN-GA and AZ-EF +LW-EG mock-ups, which
< T . .
= 2 accentuates the combined value of both analytical tech-
E, 3 niques. The number of variables included in the database
_ 0 L . . .
E| = - I highlights its novelty, since different aspects, such as type
Z |8 S i E of pigment, dye, binder, and support, or the type of layer
§ =3 S @ § (mixture, superimposed layers) can be resolved in decorated
< . .
El= = £ g manuscripts.
8| g = g3
=] [=N [=N = n
=8 S| S\ < = .
E = = E & Color analysis
X X s
o = SN N %
% § % é f In this section, the results of the color characterization
-g = of the mock-ups are discussed, considering three differ-
Z" %/A.M =l ent variables: the effect of binders (Fig. 10), supports
- ! Q . . . . . .
o, 8 g g (Fig. 11), and particle size for azurite pigments (Fig. 12).
“:3: > == In this study, only AE*,, color differences are presented,
<SS & . Z| T3 although CIEDEOQO color differences [37] for all mock-ups
5 > = |§ _oé E & can be accessed through the Supplementary Information
T e, L S| ) ;
29 e 28w A:% ﬁ P (Chromatic_Coordinates_HSI_Hyperdoc).
L5 L 7 : S . . . .
%@* a, % Al B s The impact of the binder is shown in Fig. 10 for some
. Ce e I > . . . . . .
zJ j;. Zz=Q Bm?/ 573 selected examples of biphasic, triphasic, and quadriphasic
-0 .o Q@ S . . . .
3a‘” g > 8 ;f PS4 ; mixtures included in the database. In approximately 80%
|2 30 Eiresd| 62 of the mock-ups, lightness (L*) is higher in mixtures bound
o Z 0 o Z o O T—=. g g p g g
El RS- 5 2oL 7| &g with e lair than in those containing gum Arabic, with
2125y ~0%s i & g2 g g8
25 2 & 5 oi EEN Ief e g higher differences observed in samples containing lead white
AT S ST =% | B8 . This can be attributed to the higher transparency o
2% Q>§>;‘;o 373 LW). Th be attributed to the higher transparency of
=&, 2 = e . .
E g 832 %9598 2 & painting layers bound with gum Arabic when compared
A= = s g to those bound with egg glair, where the influence of the
ER A 23 support on color is greater. Slight increases and decreases
S % o s 3 .
=2 &g ik in chroma (C*,,) and hue (h*,,) were observed equally
~ - ~ . . . .
E =t == 2 % when comparing both binders, suggesting that there is no
§ i ;5'_& = -z 2 substantial difference in these variables. However, higher
V& : - A ggﬂ ;-T hue variations occurred in the triphasic (for example, VG
= gz S . . S
E gi %2 -= g5 +LW +binder) and quadriphasic mixtures (CIN +LTY
] =3 . oo .
_ S % e ggi\ =& +LW +binder), indicating that multicomponent mock-ups
B 25 1{; go - 4 5 are more sensitive to binder changes, while simpler mix-
=3 < R 2] . . . . .
s im i‘ i %a g 2 5 tures (LW and LTY biphasic mixtures in Fig. 10) are less
— - . < v 3 S . . .
.é’ §~q = § ~ER Eo'% 2 influenced. The highest color difference (AE*,,) also cor-
+ < S o - " . - .
E :‘E gjﬁ 'S =l £ a £ responds to the quadriphasic mock-ups (AE* = 19.50 in
§ iﬁ: :: < '1% % é"j paper and AE* , = 25.68 in parchment), corroborating the
o | PE s %3 <" o & % larger impact of the binder on color in complex mixtures.
E > 3 ﬂ% w5 Z2e” The influence of the support on the color of pigment mix-
N < 72 . . .
Ala~—¥ g = 3B g tures was also studied (Fig. 11). L* values are higher for
| =] . .
= E2 2 parchment substrates in 56% of the samples, with the great-
5| . E Q=S8 est difference observed in the quadriphasic mixture com-
£l & = hi £ posed of CIN, LTY, and LW bound with GA (AL* =18.60).
ST e average lightness of the parchment samples is 67.52,
2= = 828 Th ge light f the parchment samples is 67.52
E g, % compared to 67.46 for the paper samples, indicating minimal
= ; 8¢ o differences for this variable. However, this small difference
Q . .
2 ~ s % may be attributed to the effect of light reflected by the sub-
k= + o TS . . .
g - 2Z strate contour surrounding the painted area, with parchment
o @ . .
: = = % E 2 being more reflective than paper.
@ |3 ; L R Coordinates a* and b* shift depending on the pigment
2 =] = MO o . . . .
L =N B3] AT =S combination, although a* values are generally higher in
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Fig. 7 DRIFTS spectra of azurite (AZ) pigments mixed with gum Arabic (GA). Black, paper; red, parchment support. See Table 1 for authors’

name abbreviations

Table 5 Main DRIFTS bands for azurite (different particle size) mock-ups mixed with gum Arabic on diverse supports

Mock-up DRIFTS wavenumbers (cm™") DRIFTS assignments
AZ-EF-GA on 3870vw!, 3823vw!, 355251, 3510s!, 3445vs'2, 339952, 3153s', 'OH(v); *CH(v), *CO>(B); *CO* (v,,,); *Si-O(v):
paper 2909m?, 2550m>, 2497m’>, 2140vw?, 1858m>*, 1831m>*, 1640s',  °CO(v); "CH(5,5); 8Co3 = (8); OH(S, B)
1607vs"*, 1488m*, 1446w*, 1366w’, 1155w°, 977w®°, 865m>%,
748m’, 704m’, 679m’
AZ-EF-GA on 3871vw', 3827vw', 3557s", 3438vs">13, 33625>13, 2922m?, 2549m®, 'OH(v); 2CH(v), *CO 2-(/5) ‘co,’- (vmm) 51 oWw);
parchment 2495m>, 2140vw?, 1871m>*, 1832 m>*, 1624s"*12, 1607vs"*12, °CO(v); "CH(S,8); "CO ~(8); POH(S, p); °CO,>~
1485m*, 1446w*, 13657, 1153w°, 1096vw’’, 983m5°, 904m'L, Vym): 'Si-0(V,): 12NH(5 A); BNH(M)
866m>%, 753m’, 707m’, 682m>, 666m'!
AZ-M-GA on paper 3870m', 3828m’, 3500vs', 3450vs’, 3401vs'2, 3146vs’, 2888vs?, 'OH(v); >CH(v), >CO5*~(); “CO5>™ (v,y,,): *Si-O(v):

AZ-M-GA on
parchment

AZ-C-GA on paper

AZ-C-GA on
parchment

AZ-EC-GA on
paper

AZ-EC-GA on
parchment

255053, 2154w?, 1853s**, 1628s'*, 1610vs'*, 1489m*, 1446w*,
1313m’, 1264m"", 1095 m'®, 986m, 875m, 775m, 739w, 697w, 678w

3870m’, 3825m’, 3557vs', 3443vs" 213, 3313ps>13, 292052, 255053,
249953, 2179w?, 1857s**, 1637vs"12, 1603vs'*!2, 1490m*,
1446w*, 1326m’, 1093m"°, 985m®°, 870m>3, 746m’, 675m>

3867m', 3822m", 3553vs', 3506vs', 3402vs'2, 295457, 283257, 2492ys°,
2152m?, 185354, 18295>%, 1670vs", 1637vs', 1611vs"*, 1491m*,
1446w*, 1319m", 1090m'°, 984m®°, 868m>%, 775w, 746m’", 680m>

3871m’, 3828m', 3589vs', 3547vs', 3496vs">13, 34025213,
311952 290452, 2554 s°, 24975%, 2145m, 1834s, 1639vs"'2,
1609vs"+12, 1489m*, 1447w*, 1323m’, 1096w’’, 983m®°,
875m>%, 753m’, 700m’, 677m>

3871w', 3835w, 3622vs', 3575vs", 3553vs!, 3439vs'2, 3399ys!2,
3195vs!, 2942vs%, 250653, 2159m?, 1860s>*, 1620vs'*, 1493m*,
1446w*, 1303m’, 1103m’°, 985m®°, 880m>2, 788m’, 738m’,
697m’, 678s°

3868m!, 3824m", 3596vs', 3553ps!, 3506vs!, 3443vs'2, 3393vs12,
295657, 2497s°, 18355, 1665vs"'12, 1624vs'#, 15985"12, 1491m*,
1447w*, 129217, 1157m'°, 986m°®°, 869m>*, 747m’, 704m’, 6665

5CO(v); "CH(5,p); 8cozz-(a) SOH(s, p); 1°CO,%~
(Vyym): 'Si-O(V,,)

IOH®); 2CH(®»), 3co “(B): *CO5* (Vygy): Si-O():

6CO(v) TCH(5,8); 8Co3 ~(8); YOH(S, p), '°CO5>~
(Vym): PNH(3,8); PNH(v)

'OH(v); *CH(v), *CO5*(8); *CO5>™ (vq): *Si-O(v):
5CO(v); "CH(5,p); 80032-(35) SOH(s, p); 1°C0,%~
Viym)

'OH(v); *CH(»), *CO5* (8); *CO5>™ (Vggy): 551 oM);
8CO(v); "CH(6,p); 8CO,*(6); °OH(5, B); 1°CO,*~
(Vym): PNH (5,8); PNH(»)

'OH(); *CH(), *CO5*™(8); “CO3>™ (vy5,): *Si-O():
5CO(v); "CH(5,4); 8cof-((s) YOH(s, p); 1°CO,%-
Vyym)

'OH(v); ’CH(v), *CO5*(8); *COL*™ (1,3 *Si-O();

6CO(v); "CH(8,8); CO5* (8); "OH(5, B; 1°C0O,>

Vym): 'Si-O(V,,0); "*NH (5,8); “NH(»)

Relative intensities: vs very strong, s strong, m medium, w weak, vw very weak. v=stretching; v,,,,= antisymmetric stretching: v,;, = symmet-
ric stretching; 6= bending (scissoring); f= bending (wagging/twisting). Band numbers marked in bold font correspond to those identified for
azurite in previous studies [14, 24, 44, 47, 51, 56-58]
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Fig. 8 Reflectance spectra of azurite-based mock-ups with different particle sizes and binders. GA = gum Arabic; EG = egg glair. See Table 1

for authors’ name abbreviations

mock-ups on paper, while b* values increase on parchment
supports, as expected based on the intrinsic properties of the
material. Chroma and hue differences (AC*,, and Ah* ;) are
generally minor, with higher values of both in 64% of the
mock-ups placed on paper. On average, the influence of the
support on color tends to be lower than the influence of the
binder, suggesting that there is generally sufficient covering
of the support.

Regarding the influence of pigment particle size on the
color of painting mock-ups made with azurite (AZ) (Fig. 12),
results show slight increases in L* values with decreasing
particle size for both binders and supports. This effect is
most noticeable in samples containing extra-fine azurite
(AZ-EF). HSI spectra shown in Fig. 8 confirm a trend toward
greener hues for finer-grain azurite pigments. This, along
with the lower a* values observed in Fig. 12a, aligns with
findings in previous studies [36], which mention that azurite
pigments with smaller particle sizes tend to exhibit higher
reflectance and L* values. Additionally, according to the
obtained b * values, the pigment AZ-M bound with GA and
pigment AZ-C bound with EG are the bluest mock-ups. As
expected, higher color differences are observed for coarser
pigments (e.g., AZ-C, AZ-EC) compared to medium grain
size (e.g., AZ-M) and extra-fine azurite pigment (AZ-EF).
These differences are more pronounced in mock-ups mixed
with EG (Fig. 12b).

Finally, the study of the influence of paint application
mode on the color (Fig. 1) revealed higher luminosity (L*)
and lower chroma (C*,,) values when compared to biphasic
mixtures (e.g., VG +binder). This is primarily due to the
addition of lead white pigment, whether mixed homogene-
ously in the painting mixture or deposited as the upper layer
on the surface of the mock-ups. In general, superimposed
mixtures exhibit higher lightness when lead white is added,
while chroma (C*,,) is reduced. Instead of combining the
color contributions of both components, the lead white pig-
ment dominates the color. Although lead white’s covering
power is typically high, its luminosity is influenced by the
binder used, with mock-ups bound with egg glair show-
ing higher luminosity compared to those bound with gum
Arabic. Additionally, higher L* values can be attributed to
greater similarities in luminosity when compared to the sup-
port. In all cases, the highest L* values were observed when
exclusively selecting the white superimposed layer as the
region of interest (ROI). This highlights possible variations
in obtained values when analyzing historical documents,
where the boundaries between areas of different colors may
not be as clearly defined as in laboratory-produced mock-ups

In summary, the factor that most affects the final color
of the sample is the type of binder, resulting in an average
color difference of AE* ,, = 9.62. In the context of this study,
92% of the color differences exceed 3, meaning they are
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Fig.9 Non-invasive HSI and DRIFTS analysis of manuscripts a A and b B, and spectral comparison between historical manuscripts (blue) and
database spectra (red) of mock-ups CIN + GA on parchment and AZ-EF +LW +EG on parchment

visually perceptible [38]. Regarding the influence of sup-
ports, 64% of the color differences are perceptible, with an
average AE*,, = 4.91. Finally, for azurite particle size, no
clear trend is observed, with the bluest samples being those
with intermediate particle sizes (M and C), which exhibit
partially coincident size ranges.

Concluding remarks and future perspectives

This study presents a comprehensive spectral library gener-
ated by complementing DRIFTS and HSI data from 156
painting mock-ups prepared using historical recipes. The
mock-ups include biphasic, triphasic, and quadriphasic

@ Springer

mixtures on diverse supports, created to identify materials
in historical documents.

HST has proven invaluable in complementing DRIFTS
data, providing both reflectance spectra and chromatic coor-
dinates, which offer objective and systematic data on color
and surface appearance. Portable DRIFTS has shown to be
effective for artwork analysis, as comparisons between con-
tact and non-contact measurements presented minimal vari-
ations. However, some limitations, such as interference from
supports leading to erroneous interpretations and the inabil-
ity to detect trace materials in non-pure pigments or thin
layers, need to be addressed. Additionally, the selection of
optimal spectral ranges is critical when analyzing pigments
with characteristic bands below the spectral measurement
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@ Springer



A.S. Reichert et al.

range, such as lead, mercury, or arsenic-based pigments
(e.g., minium, cinnabar, orpiment) or pigments comprised
of iron oxides (e.g., hematite). At present, portable DRIFTS
is considered more suitable for the analysis of supports,
binders, and certain pigments such as carbonates (azurite,
malachite, lead white, and calcite), silicates (lapislazuli),
glass pigments (blue smalt), and acetates (verdigris). Future
research will incorporate ATR-FTIR to address these gaps
and provide comparative results with the data presented
here.

Surface irregularity, particularly on parchment, posed
challenges in obtaining high-quality DRIFTS and HSI data.
These issues were mitigated by extending acquisition times
for DRIFTS and adding weights to flatten the mock-ups for
HSI. However, ensuring flatness remains a significant chal-
lenge for historical documents due to their sensitivity to
manipulation and environmental fluctuations. Determining
the composition and contribution of each painting compo-
nent and their interactions is crucial, but limited informa-
tion exists in the literature. The presented database, which
includes multiple variables (support type, binder type, pig-
ment particle size, paint application method, and contact/
non-contact measurements), serves as an innovative tool
for pigment and dye characterization. Although results refer
to illuminated documents, the database presents a broader
applicability for different types of artworks, given the set
of included pure pigments’ DRIFTS spectra. Additionally,
the potential applicability of extending the obtained data to
other polychrome surfaces where either gum Arabic or egg
glair are used as binders constitutes one of the future aims
of this research.

Additionally, methods for automated material identi-
fication using HSI and DRIFTS data are being explored.
The database includes 400 reflectance spectra per mock-
up, which can be used to train machine learning mod-
els. Ongoing research aims to develop spectral unmixing
methods to identify and quantify individual pigments and
dyes in historical painting mixtures using non-invasive
techniques.
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