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pectral-reflectance linear models for optical
olor-pattern recognition

uan L. Nieves, Javier Hernández-Andrés, Eva Valero, and Javier Romero

We propose a new method of color-pattern recognition by optical correlation that uses a linear description
of spectral reflectance functions and the spectral power distribution of illuminants that contains few
parameters. We report on a method of preprocessing color input scenes in which the spectral functions
are derived from linear models based on principal-component analysis. This multichannel algorithm
transforms the red–green–blue �RGB� components into a new set of components that permit a general-
ization of the matched filter operations that are usually applied in optical pattern recognition with
more-stable results under changes in illumination in the source images. The correlation is made in the
subspace spanned by the coefficients that describe all reflectances according to a suitable basis for linear
representation. First we illustrate the method in a control experiment in which the scenes are captured
under known conditions of illumination. The discrimination capability of the algorithm improves upon
the conventional RGB multichannel decomposition used in optical correlators when scenes are captured
under different illuminant conditions and is slightly better than color recognition based on uniform color
spaces �e.g., the CIELab system�. Then we test the coefficient method in situations in which the target
is captured under a reference illuminant and the scene that contains the target under an unknown
spectrally different illuminant. We show that the method prevents false alarms caused by changes in
the illuminant and that only two coefficients suffice to discriminate polychromatic objects. © 2004
Optical Society of America

OCIS codes: 100.5010, 330.1690, 100.4550.
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. Introduction

n addition to shape and size, color is one of the most
mportant characteristics in the discrimination and
ecognition of objects. The introduction of color in-
ormation in pattern recognition by optical correla-
ion is usually made by means of a multichannel
orrelation technique that decomposes the source and
he target color images in three �red–green–blue
RGB�� channels.1–4 The correlation is made sepa-
ately for each channel, and arithmetic or logical
oint-wise operations can be used to derive the final
utput. A common way in which objects are opti-
ally recognized is by use of a multichannel joint-
ransform correlator in which a filter matched to the
arget is used in each channel.5

Different methods to enhance the differences be-
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ween the images of the channels to achieve better
ecognition have been proposed.6–8 Some of these
ransformations benefit color-vision models and
ransform the color channels into three color signals
hat correspond to one achromatic channel—the lu-
inance channel—and two opponent channels—the

ed–green and the blue–yellow channels.7 This
ethod increases discriminability when it is com-

ared with the RGB transformation and even reduces
he number of effective channels that contribute to
olor correlation, with the two opponent channels be-
ng sufficient for good color correlation. The use of
olor transformations that are not based on human
isual models has also been effective in increasing the
iscrimination of color objects and preventing false
larms for objects that are equal in shape but differ-
nt in color.8 An alternative way to include color
nformation in optical pattern recognition is by the
se of the three-dimensional �3D� color correla-
ion.9,10 The colors of images are introduced as a
hird dimension in addition to spatial variables, and
hus a 3D Fourier transform can be defined. The
echnique encodes 3D functions onto two-
imensional functions and leads to new encoding pro-
osals in optical correlators.11
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Although satisfactory results can be obtained with
he techniques described above, changes in the illu-
inant may cause difficulties in recognizing color

bjects. Only a few studies that address the prob-
em of finding optical pattern-recognition architec-
ures that are not susceptible to changes in the
lluminant have been published.12,13 In one of these
ublications12 the use of uniform color spaces, which
re more stable in the face of these changes, is con-
idered. For common illuminants the transforma-
ion from RGB to the coordinates of the CIELAB
ystem allows us to overcome some of the recognition
ifficulties that occur when there is a change in the
lluminant that we have mentioned. The correlation

ade among luminance, chroma, and hue channels
rovides better discrimination than conventional
GB techniques. The drawback of the method is

hat the matrices that transform the RGB values to
he XYZ tristimulus values depend on the particular
hoice of illumination �i.e., the spectral power distri-
ution of the light source�. But the use of only two
hannels �the luminance and the hue channels� sim-
lifies recognition and leads to pattern recognition
esults that are stable when the illuminant changes.

Color objects can be also recognized based on com-
utational algorithms that are color constant. Color
ndexing involves matching color-space histograms
nd departs from other recognition techniques based
n the geometrical properties of objects.14 One iden-
ifies objects by comparing their color components
ith the color components of each object in a previ-

usly defined database; the intersection of histo-
rams is usually used to recognize the color object.
efore histogramming, illuminant-invariant descrip-

ors can be defined to derive pattern recognition in-
ependently of changes of illuminant.15 Whereas
ptical pattern recognition seeks correlation peaks
hat correspond to the spatial position of the target in
he image, computational color-constancy algorithms
sually recover an illuminant-independent represen-
ation of the color images or the retrieval of images
rom large collections of image databases.15–17

The study presented here describes what is to our
nowledge a new method of optical color-pattern rec-
gnition that leads to discrimination results that are
ndependent of the spectral changes of the illuminant
nder which an image is captured. It is a mul-
ichannel algorithm that uses a linear model based on
rincipal-component analysis �PCA�, which repre-
ents the spectral reflectance function of each image
ixel on a suitable basis for linear representation. A
orrelation is then made throughout the spatial dis-
ribution of the coefficients derived from the linear
epresentation of each reflectance function. When
he illuminant is unknown, or when it is difficult to
btain a spectroradiometric measurement of it, we
sed an illuminant-estimation hypothesis before
aking the correlation. The method is tested with

arious test illuminants and compared with the mul-
ichannel RGB and CIELab techniques; an improve-
ent in the discrimination capability of optical color-

attern recognition is shown when the target is
aptured under one illuminant and the source under
spectrally different and a priori unknown illumi-

ant.

. Linear Description of Surfaces and Illuminants
n Color Images

et us assume a scene viewed under a given illumi-
ation and captured by a color camera. According to
asic concepts of image acquisition, the intensity of
ach image pixel can be expressed as

IN� x, y� � �
�

qN���S� x, y, �� E� x, y, ����, (1)

here N represents each of the channels that capture
he color image �e.g., N � 3 for conventional CCD
olor cameras with three channels �R, G, and B�,
N��� is the spectral sensitivity of each channel, S�x,
, �� is the spectral reflectance function of the pixel �x,
�, and E�x, y, �� is the spectral power distribution
SPD� of the illuminant under which the image is
aptured at pixel �x, y�. We assume that the image
s uniformly illuminated, and thus in Eq. �1� we sub-
titute E���, which does not depend upon pixel coor-
inates, for E�x, y, ��.
It is possible to find18 square-integrable functions

j��� � j � 1, 2, . . .� such that for any surface reflec-
ance S�x, y, �� there is a single set of real numbers
j�x, y�, and thus

S� x, y, �� � �
j�1

n

	j� x, y�Sj���. (2)

he Sj��� functions form a basis of linear function
pace L2 and allow the function S�x, y, �� to be rep-
esented by the vector of coefficients 	xy � �	1

xy, . . . ,
n

xy�. We can act in a similar way and find square-
ntegrable functions Ei��� �i � 1, 2, . . .� such that for
ny SPD of illuminant E��� there is a single set of real
umbers, εi, and thus

E��� � �
i�1

m

εiEi���, (3)

here we have assumed that the illumination is spa-
ially uniform. The Ei��� functions allow SPD E���
o be represented by the vector of coefficients ε �
ε1, . . . , εm�. It should be noted that, whereas the
pectral reflectance function and the SPD of the illu-
inant depend on the wavelength, coefficients 	j

xy

nd εi do not; coefficients 	j
xy vary only in relation to

patial coordinates �x, y�. By incorporating Eq. �2�
nto Eq. �1� we can express the intensity of the mul-
ichannel image as

IN� x, y� � �
i�1

m

�
j�1

n

	j� x, y�εi
ijN, (4)

here the factor 
ijN � ¥� qN���Sj���Ei����� contains
nly fixed elements that are independent of the image
aptured once the bases of linear representation have
een selected. Most of the spectral reflectance func-
ions and SPDs of illuminants can be described by
mall-dimensional linear models; earlier studies
20 March 2004 � Vol. 43, No. 9 � APPLIED OPTICS 1881
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ave shown that five to seven eigenvectors suffice for
dequate reconstructions of surfaces,18–21 and only
hree to five are required for illuminants.22–24 The
lgorithm that we have developed here will use only
hree eigenvectors for surfaces and illuminants.
his economy is of particular interest when we cap-

ure the input images with a CCD color camera.
he selection of 3D linear models is imposed by the

act that if we had three RGB values we thus needed
hree eigenvalues to ensure correspondence between
he camera responses and the number of eigenvec-
ors. Better representations could have been ob-
ained with a greater number of eigenvectors, but our
lection was a compromise between more-accurate
pectral representations and lower computational
osts �remember that the purpose of the recognition
lgorithm is to obtain a correlation peak and not to
ecover an illuminant-independent image similar to
he original image�.

. Outline of the Color-Correlation Method

he originality of the study presented here lies in the
se of linear models in optical color-pattern recogni-
ion. The linear models are derived from PCA,
hich represents the spectral reflectance function of

ach image pixel and the SPD of the illuminant on
uitable bases. The linear description of surfaces
nd illuminants is well documented in the literature,
ut until now, and to our knowledge, this linear de-
cription of spectral functions has not been applied in
ultichannel optical correlation for color-pattern rec-

gnition. We propose to implement the correlation
hroughout the spatial distribution of coefficients 	j

xy

erived from the linear representations of the reflec-
ance functions because these coefficients vary only in
elation to the spatial coordinates. Previously we
eeded to express the intensity of each image pixel
ccording to Eq. �4�, which would imply the election of
he basis functions Sj��� and Ei��� for an adequate
epresentation of the spectral reflectance functions
nd the SPD of the illuminant.
Let us consider first, to illustrate the algorithm’s

erformance, the trivial case in which the illuminant
s known. In this case we can always get the coeffi-
ient 	j

xy that determines each surface reflectance
imply by solving the linear equation set of Eq. �4�.
his process can be reduced to a matrix inversion
hen the number of channels that specifies the image

s N � n; i.e.,

	xy � 
�1Ixy, (5)

here the quantities on the right-hand side of Eq. �5�
re all known. We propose to transform the source
nd the target color images according to Eq. �5�.
ased on this transformation, recognition can be
chieved from the finite subspace of the 	xy coeffi-
ients, and the matched filter operations that are
sually applied in optical pattern recognition can be
eneralized. Let 	s�x, y� and 	t�x, y� represent the
nput coefficients associated with the transformed
ource image and the impulse response of a Fourier
882 APPLIED OPTICS � Vol. 43, No. 9 � 20 March 2004
lter associated with the target to be discriminated,
espectively. The correlation between the trans-
ormed color image and the filter impulse response is
efined as

c	� x, y, j� � �
x��0

dx�1

�
y��0

dy�1

	s� x, y, j�	t*� x� � x, y� � y, j�

� j � 1 . . . n�, (6)

here dx and dy are the dimensions of the image and
is the number of channels �dimension of the surface
eflectance basis�, which are processed indepen-
ently.
It is difficult to handle this trivial case with real

mages for which the SPD of illumination can be
nown only from spectroradiometric measurements,
ut it illustrates quite well how the multichannel
ransformation allows us to preserve the spatial in-
ormation of the image �shape, size, etc.� and avoid
ny dependence on the spectral characteristics of the
llumination. Nevertheless, in other situations it is
lear from Eq. �4� that we need an estimation algo-
ithm of the illumination—what it is usually called
n illuminant estimation hypothesis—in the scene to
olve for coefficients 	j

xy. The use of the optical cor-
elation method proposed here could potentially be a
olor-pattern-recognition technique that is invariant
o changes in the illuminant, either a priori known or
nknown.

. Illuminant-Estimation Hypothesis

here are several ways to get information about the
llumination and to reduce the uncertainty of Eq. �4�.
he illuminant-estimation approaches that have
een used in various color-constancy algorithms
ake use of scene averages, highlights, shadows, mu-

ual illumination, or subspace constraints.18,25–28

he purpose of our study is not to develop a color-
onstant image but to benefit from these color-
onstancy algorithms to obtain correlation peaks that
o not vary when the illuminant changes. So we
onsider one of the simplest illuminant-estimation
ypotheses found in the literature to test the corre-

ation results derived from the multichannel trans-
ormation associated with Eq. �5� because it suffices
o produce good discrimination results by optical cor-
elation. This hypothesis makes use of a reference
hite, which will be a diffuse white surface and must
e placed within the scene to be captured. Following
he linear description of surfaces and illuminants de-
ived from Eqs. �1�–�4�, the intensity of the mul-
ichannel image of the white surface can be expressed
s

IN,W� x, y� � �
�

�
i�1

m

SW� x, y, ��εiEi���qN�����

� �
i�1

m

εi��
�

SW� x, y, �� Ei���qN������ ,

(7)
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here SW�x, y, �� is the a priori known reflectance of
he white surface placed at coordinates �x, y�. The
actor in brackets contains only fixed elements, which
re independent of the image once a suitable basis for
inear representation of illuminants has been se-
ected. The quantities IN,W�x, y� are all known from
he location of the white surface in the captured im-
ge.
Thus, if the number of channels that specifies the

mage is N � m, the linear system of Eq. �7� can be
olved for each εi. By substituting the obtained co-
fficients εi into Eq. �4� we can recover the coefficient
j
xy for each image pixel as

	xy � 
ε
�1Ixy, (8)

here 
ε � ¥i�1
m εi
ijN is the N � m lighting matrix

erived from the illuminant-estimation algorithm.
his equation is analogous to Eq. �5� and allows us to
erive a multichannel representation of the image
hat does not depend on the spectral changes in the
llumination under which the image is captured.

. Results

o demonstrate the possibilities of using the linear
odels in optical color-pattern recognition, first we

how in Subsection 5.A the results derived from a
ontrol experiment in which the spectral power dis-
ribution of the illuminant is known a priori. The
iscrimination capability of the method is compared
ith that derived from RGB and CIELab multichan-
el decompositions. Next, in Subsection 5.B we ap-
ly the illuminant-estimation hypothesis to obtain
olor correlation under conditions of unknown illumi-
ant. Last, in Subsection 5.C we show an example
f the discrimination results derived from an outdoor
olor scene that was captured under daylight illumi-
ation.

. Control Experiment when the Illuminant was Known

et us take the scene in Fig. 1 in which object O1 is
he target when the scene is captured under illumi-
ant D65, which is chosen here as the reference illu-
inant. The colored areas of the target �and of the

cene also� reproduce different objects from the Gre-
agMacbeth ColorChecker chart. Inasmuch as opti-
al correlation depends strongly on the spatial
haracteristics of the objects to be discriminated, ob-
ects O1–O4 were all of the same shape but different
n color �see Table 1�. In addition, the colored areas
f object O4 were selected in such a way that the
ifferences in RGB values compared with those of O1
ere small under each of the test illuminants. The
GB components of each color area that composes
ach object and the RGB color differences are listed in
able 2. The color areas of objects O1 and O4 were
hosen such that it was difficult to discriminate these
wo color objects under the different illuminant con-
itions. The RGB color difference was calculated
rom the formula

RGB � ��R� 1 � R� i�
2 � �G� 1 � G� i�

2 � �B� 1 � B� i�
2�1�2

�i � 2, 3, 4�,

here we obtained R� , G� , and B� by averaging the RGB
olor components of the six color areas that compose
bjects O1–O4.
We made a simulation in which the scene in Fig. 1
as captured with a CCD color camera �JVC TK-
270E�, and thus N � 3 in the following calculations
Fig. 2�a��. The scene was captured under four test
lluminants: D65, A, 10,000 K, and a simulated or-
nge illuminant that corresponds to equienergy light
ltered by an orange plastic filter �Fig. 2�b��. The
j��� basis functions were obtained first through a
CA of the 24 surface reflectance functions of the
olorChecker. The dimension of the basis was fixed
t n � 3, which corresponds to the number of RGB
hannels. Then we used Eq. �4� to transform both
he target under the reference illuminant and the
ource image under each of the test illuminants. We
erformed three numerical correlations: First, we
sed the conventional RGB multichannel decomposi-
ion, which transformed the color images into the
hree color channels R, G, and B.3 Second, we used
he CIELab multichannel decomposition13; for each
f the illuminants a linear transformation from the
GB values to CIELab coordinates was derived,29

nd then the source and the target were transformed
o three color components, L*, a*, and b*. Third, we
erformed our multichannel decomposition ex-
ressed in terms of three coefficients, 	1

xy, 	2
xy, and

3
xy. In all cases the correlation was made sepa-

ately for each channel and the AND logic operator was

ig. 1. Input color image captured under illuminant D65. Ob-
ect O1 was the target when the scene was captured under this
lluminant.
20 March 2004 � Vol. 43, No. 9 � APPLIED OPTICS 1883
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pplied with the usual threshold of 50% of the max-
mum as the positive discrimination threshold.

The results of the three approaches are summa-
ized in Tables 3–5. With the RGB multichannel
orrelation, both O1 and O4 are identified as targets
or all test illuminants. Even under the reference
lluminant the RGB decomposition experienced prob-
ems with the discrimination of object O1. There
ere also false alarms between objects O1 and O3
nder the orange illuminant. The correlation based
n the CIELab system improved the RGB results and
revented all the false alarms except that for O4
nder the A illuminant. The method of coefficient
orrelation, however, provided enough discrimina-
ion for recognition of O1 under each test illuminant
ithout errors. An example of the results derived

rom correlation coefficients 	1
xy, 	2

xy, and 	3
xy is set

ut in Fig. 3, which shows the correlation peaks ob-
ained when the scene was captured under illumi-
ant A.
The results also suggest that the greater the num-

er of basis vectors selected to represent each reflec-
ance, the better the method’s discrimination
apability. When PCA is used to describe the data,
he first basis vector S1��� is related to the mean of
���. This could explain why correlation coefficient
1

xy fails to identify any difference between the
ource and the target objects. Thus an application
f the AND logic operator to only two parameters
lone, the 	2

xy and 	3
xy coefficients, permits discrim-

nation of the target. This result also coincides with
he CIELab results because it is enough to use only
he a* and b* coordinates to recognize the target
nder all illuminant conditions. In this way it is
ossible to reduce the computation time in color rec-
gnition when the targets or the sources are chromat-
cally complex. Because there is considerable
vidence that PCA provides a reasonable description
f many surfaces with a small number of basis vectors

Table 1. RGB Components of the Six Color A

Object R

O1 64 96 29 70 137 97 126 42
O2 28 30 29 78 137 97 68 73
O3 70 57 112 60 80 97 104 14
O4 64 96 64 70 137 28 126 42

aFrom left to right for each R, G, and B component, the column
1–O4.

Table 2. RGB Color Difference �RGB between Color Object O1
Captured under the D65 Illuminant and Objects O2–O4 Captured under

Each of the Test Illuminants

Test Illuminant

Color Difference �RGB

Object O2 Object O3 Object O4

D65 23 26 15
A 61 62 43
10,000K 57 57 40
Orange 22 32 21
884 APPLIED OPTICS � Vol. 43, No. 9 � 20 March 2004
n � 3 . . . 7�,18–21 we could expand this analysis to
igher-order coefficients such as 	4

xy and 	5
xy.

herefore the correlation expressed by Eq. �6� could
e extended to more than three coefficients to derive
set of correlation planes c	�x, y, j� of the desirable

imension j � n. This ability gives our technique a
reat advantage compared with other multichannel
echniques because we are not limited to only three
olor components �i.e., the RGB values or the L*a*b*
oordinates� for performing optical recognition. In

ig. 2. �a� Normalized spectral sensitivity of the three sensors, R,
, and B, of the JVC TK-1270E camera. �b� Spectral power dis-

ributions of test illuminants D65, A, 10,000 K, and orange.

of Objects O1–O4 under the D65 Illuminanta

G B

104 125 78 130 22 74 53 56 78
29 125 78 41 107 74 35 56 78
68 37 78 53 16 34 102 65 78

104 125 68 130 22 130 53 56 41

es correspond to each of the six color areas that compose objects
reas

37
37
73

126

valu
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his case it is clear that additional RGB components
re required in Eq. �7� for solution of the coefficients
e.g., use of six digital counts IN�x, y� per pixel allows
or the use of six eigenvectors for spectral reconstruc-
ion�.30 It is a matter for further studies to consider
ultifilter trichromatic image devices that allow the

se of more than three eigenvectors to reconstruct
pectra and the application of these devices to optical
attern recognition.

. Correlation Results When the Illuminant was Unknown

hen the illuminant conditions were unknown we
pplied the reference surface algorithm explained in

Table 3. Correlation and Discrimination Results Obtained from Conven

Illuminant Channel O1 O2

D65 R 3.647 � 1014 2.517 �
G 4.311 � 1014 2.323 �
B 2.127 � 1014 9.851 �

Recognized AND Yes No

A R 3.096 � 1014 2.099 �
G 1.616 � 1014 8.748 �
B 4.906 � 1013 2.426 �

Recognized AND Yes No

10,000K R 1.413 � 1014 9.979 �
G 2.058 � 1014 1.108 �
B 1.252 � 1014 6.094 �

Recognized AND Yes No

Orange R 5.252 � 1014 3.531 �
G 4.672 � 1014 2.523 �
B 1.344 � 1014 6.656 �

Recognized AND Yes No

aThe target is object O1 under illuminant D65.

Table 4. Correlation and Discrimination Results Obtained from M
under Known Ill

Illuminant Channel O1 O2

D65 L* 1.246 � 1011 8.977 �
a* 5.564 � 1012 1.251 �
b* 2.969 � 108 7.672 �

Recognized AND Yes No

A L* 1.313 � 1013 1.072 �
a* 1.430 � 1014 2.984 �
b* 6.505 � 109 2.627 �

Recognized AND Yes No

10,000K L* 9.757 � 103 9.896 �
a* 5.705 � 102 1.279 �
b* 3.800 � 102 1.510 �

Recognized AND Yes No

Orange L* 1.234 � 1013 1.003 �
a* 1.333 � 1014 2.669 �
b* 6.294 � 109 2.140 �

Recognized AND Yes No

aThe target is object O1 under illuminant D65.
ection 4. The reference surface was placed in the
ower left corner of the scene, as shown in Fig. 4, and
ntensity IN,W of the corresponding image pixels was
aptured. The white reference surface was chip
umber 19 of the GretagMacbeth ColorChecker. As

n the previous case, object O1 was the target when
he scene was captured under illuminant D65, and
he scene was captured under four unknown test il-
uminants, which are were assumed to be character-
zed by a broadband and smoothed spectrum.

The first step in solving Eq. �4� was selection of
ppropriate basis functions Ei��� for any SPD of the
lluminants. A set of 83 SPDs of illuminants that

RGB Multichannel Decomposition under Known Illuminant Conditionsa

Object

50% ThresholdO3 O4

2.360 � 1014 2.793 � 1014 1.824 � 1014

1.917 � 1014 4.760 � 1014 2.380 � 1014

1.026 � 1014 2.165 � 1014 1.083 � 1014

No Yes

2.058 � 1014 2.319 � 1014 1.548 � 1014

7.114 � 1013 1.770 � 1014 8.852 � 1013

2.735 � 1013 5.305 � 1013 2.652 � 1013

No Yes

9.440 � 1013 1.082 � 1014 7.065 � 1013

9.405 � 1013 2.260 � 1014 1.130 � 1014

6.322 � 1013 1.318 � 1014 6.590 � 1013

No Yes

3.274 � 1014 4.036 � 1014 2.626 � 1014

2.588 � 1015 5.175 � 1014 2.588 � 1014

7.272 � 1013 1.481 � 1014 5.740 � 1013

Yes Yes

annel Decomposition Based on the CIELab Color Transformation
nt Conditionsa

Object

50% ThresholdO3 O4

7.685 � 1010 1.320 � 1011 6.814 � 1010

1.538 � 1012 4.219 � 1012 2.782 � 1012

1.157 � 108 1.004 � 108 1.485 � 108

No No

9.742 � 1012 1.279 � 1013 6.566 � 1012

3.490 � 1013 1.098 � 1014 7.149 � 1013

3.485 � 109 3.262 � 108 3.253 � 109

No Yes

9.963 � 103 9.768 � 103 5.228 � 103

2.000 � 102 4.517 � 102 2.852 � 102

8.100 � 103 1.250 � 102 1.900 � 102

No No

9.408 � 1012 1.212 � 1013 6.169 � 1012

3.652 � 1013 9.997 � 1013 6.664 � 1013

3.382 � 109 2.144 � 109 3.147 � 109

No No
tional

1014

1014

1013

1014

1013

1013

1013

1014

1013

1014

1014

1013
ultich
umina

1010

1012

107

1013

1013

109

103

102

102

1013

1013

109
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The target is object O1 under illuminant D65.

1

ere measured by different authors24,31 was selected.
he illuminant set included daylight spectra, incan-
escent lights, and lights with different color temper-
tures; we discarded the fluorescent illuminants to
nsure that there would be a minimum number of
hree basis vectors in the following calculations.23

i��� were obtained through a PCA of these illumi-
ants, and the dimension of the basis was fixed at

� 3; the first three eigenvectors are shown in Fig.
�a�. Then we used these basis functions in Eq. �7�
o recover coefficient εi of each unknown illuminant
ondition under which the scene was captured. But
ow good is the illuminant estimation? Figure 5�b�
hows an example of the linear recovery of test illu-
inant 4; in this figure we compare the theoretical

nd the estimated SPDs of the illuminants. The
886 APPLIED OPTICS � Vol. 43, No. 9 � 20 March 2004
riginal SPD of the illuminant was not known a priori
n the correlation method and is shown here only to
est the illuminant estimation hypothesis. To quan-
ify the quality of the reconstructions we calculated
he values of the goodness-of-fit coefficient �GFC�,
hich measures the spectral similarities between the
riginal and the estimated spectral functions, for
hese results. The GFC is based on Schwartz’s in-
quality and is defined as

GFC �

��
j

f ��j� fr��j��
��

j
� f ��j��

2�1�2��
j

� fr��j��
2�1�2 , (9)
ig. 3. Correlation peaks derived from coefficients 	1
xy, 	2

xy, and 	3
xy when the scene was captured under illuminant A. The x and y

oordinates represent spatial positions in the image. Correlation axes have been normalized in this figure for clarity.
Table 5. Correlation and Discrimination Results Obtained from Multichannel Decomposition Expressed as Three Coefficients
under Known Illuminant Conditionsa

Illuminant Channel

Object

50% ThresholdO1 O2 O3 O4

D65 Coefficient 1 7.880 � 10�2 5.710 � 10�2 6.157 � 10�2 5.828 � 10�2 3.940 � 10�2

Coefficient 2 2.196 � 10�3 1.142 � 10�5 1.071 � 10�5 2.400 � 10�3 1.200 � 10�3

Coefficient 3 3.050 � 10�4 4.342 � 10�5 6.078 � 10�5 1.103 � 10�4 1.525 � 10�4

Recognized AND Yes No No No

A Coefficient 1 8.020 � 10�2 5.896 � 10�2 6.356 � 10�2 5.997 � 10�2 4.010 � 10�2

Coefficient 2 2.110 � 10�3 1.064 � 10�5 1.274 � 10�4 2.291 � 10�3 1.150 � 10�3

Coefficient 3 2.663 � 10�4 3.140 � 10�5 6.910 � 10�5 9.648 � 10�5 1.332 � 10�4

Recognized AND Yes No No No

10,000K Coefficient 1 7.690 � 10�2 5.516 � 10�2 6.013 � 10�2 5.674 � 10�2 3.845 � 10�2

Coefficient 2 2.400 � 10�3 1.164 � 10�5 9.621 � 10�5 2.401 � 10�3 1.200 � 10�3

Coefficient 3 2.995 � 10�4 4.133 � 10�5 6.622 � 10�5 1.011 � 10�4 1.497 � 10�4

Recognized AND Yes No No No

Orange Coefficient 1 8.060 � 10�2 5.863 � 10�2 6.270 � 10�2 5.987 � 10�2 4.030 � 10�2

Coefficient 2 2.180 � 10�3 1.049 � 10�5 1.122 � 10�4 2.400 � 10�3 1.200 � 10�3

Coefficient 3 2.838 � 10�4 3.820 � 10�5 5.989 � 10�5 1.029 � 10�4 1.419 � 10�4

Recognized AND Yes No No No

a
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here f ��� and fr��� are the original and the esti-
ated spectral functions, respectively. The GFC

alues runs from 0 to 1, so the mathematical recon-
truction of the function would be better as the GFC
alues approach unity.23,32 We present in Table 6
he GFC values for the test illuminants used here.
ll the GFC values are close to 0.99, with the excep-

ion of that for illuminant 1, and an average GFC
alue of 0.9887 was obtained. Because the GFC is
he multiple correlation coefficient R and the square
oot of the variance-accounted-for coefficient, this
eans that we have missed only approximately 2% of

he energy in the reconstructions. Even though the
pectral similarities between the original and the re-
overed spectral functions are not mathematically
erfect, the recognition rates will not be severely af-
ected by this fact, as we show below.

Next we used Eq. �8� to transform the color images
nder each of the unknown illuminants and to re-
over coefficients 	j

xy. The correlation was per-
ormed between these coefficients and the
orresponding coefficients of the target. The results
re summarized in Tables 7–9 for the three mul-
ichannel techniques. On one hand, the results
how the poor discrimination of the RGB multichan-
el correlation inasmuch as it identifies O1 and O4 as
he targets for all the test illuminants. When we use
he CIELab system the results are satisfactory and
resent false alarms for objects O1, O3, and O4 under
est illuminant 4 only. On the other hand, the illu-
inant estimation hypothesis and the method of co-

fficients provide enough discrimination to permit O1
o be recognized under all the test illuminants, even
hough the color appearance of the target under ref-
rence illuminant D65 �O1 in the upper left corner of
ig. 1� was completely different from its correspond-

ig. 4. Input color image captured under test illuminant 4. The
hite surface placed at the lower left corner of the scene was used

or the illuminant-estimation hypothesis.
ng image under each of the unknown illuminations
e.g., O1 in Fig. 4 under test illuminant 4�. This
esult confirms the good discrimination capability of
he proposed algorithm, independently of the spectral
hanges in the illumination. Figure 6 shows exam-
les of the correlation results derived from the
IELab system and from coefficients 	1

xy, 	2
xy, and

3
xy when the source image was captured under one

f the test illuminants.

ig. 5. �a� First three basis functions derived from PCA for the set
f 83 illuminants used. �b� Original and estimated SPDs of test
lluminant 4 derived from the illuminant-estimation algorithm.

Table 6. GFC and Root-Mean-Square Error Obtained for the Four Test
Illuminants

Illuminant GFC Root-Mean-Square Error

1 0.9746 0.1685
2 0.9896 0.0964
3 0.9945 0.1087
4 0.9962 0.0567
20 March 2004 � Vol. 43, No. 9 � APPLIED OPTICS 1887
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. Color Object Discrimination under Outdoor
llumination

e show here an example of the correlation and dis-
rimination results derived from an outdoor color
cene. The source was the GretagMacbeth Color-
hecker chart, and we captured it under daylight

llumination. As shown in Fig. 7�a�, the target was
he color area O1, which corresponds to yellow chip
umber 16 of the ColorChecker chart, and the refer-
nce white was placed at the lower left corner of the
cene, which coincides with chip number 19 of the
olor chart. The scene was captured under daylight

Table 7. Correlation and Discrimination Results Obta
under Several Unkno

Illuminant Channel O1 O2

Test 1 R 5.356 � 1014 3.583 �
G 3.506 � 1014 1.893 �
B 8.047 � 1013 3.983 �

Recognized AND Yes No

Test 2 R 1.573 � 1014 1.106 �
G 2.614 � 1014 1.408 �
B 1.609 � 1014 7.847 �

Recognized AND Yes No

Test 3 R 5.074 � 1014 3.422 �
G 5.098 � 1014 2.741 �
B 1.825 � 1014 8.900 �

Recognized AND Yes No

Test 4 R 2.626 � 1014 1.759 �
G 9.639 � 1013 5.274 �
B 1.777 � 1013 9.175 �

Recognized AND Yes No

aThe target is object O1 under illuminant D65.

Table 8. Correlation and Discrimination Results Obtained from M
under Several Unkno

Illuminant Channel O1 O2

Test 1 L* 1.534 � 1013 1.249 �
a* 1.121 � 1014 1.666 �
b* 7.522 � 109 2.991 �

Recognized AND Yes No

Test 2 L* 1.412 � 1013 1.159 �
a* 1.973 � 1014 5.428 �
b* 8.708 � 109 3.164 �

Recognized AND Yes No

Test 3 L* 1.300 � 1013 1.059 �
a* 1.505 � 1014 3.383 �
b* 7.274 � 109 2.719 �

Recognized AND Yes No

Test 4 L* 1.492 � 1013 1.217 �
a* 5.331 � 1013 5.466 �
b* 6.154 � 109 3.056 �

Recognized AND Yes No

aThe target is object O1 under the illuminant D65.
888 APPLIED OPTICS � Vol. 43, No. 9 � 20 March 2004
llumination on a clear day by a geometry that
voided the highlights in the image; the time expo-
ure was adjusted before image capture to discard
ny saturated digital counts. The target and the
ource images were transformed independently ac-
ording to Eq. �7�, and the correlation described by
ultichannel Eq. �6� was obtained. Figure 7�b� re-

umes the discrimination results from each of coeffi-
ients 	1

xy, 	2
xy and 	3

xy. The numbers in
arentheses are the corresponding threshold values
f 50% of the maximum correlation peaks. After the
ND operator was applied to the three planes, the

from Conventional RGB Multichannel Decomposition
uminant Conditionsa

Object

50% ThresholdO3 O4

3.286 � 1014 4.093 � 1014 2.678 � 1014

1.513 � 1014 3.882 � 1014 1.941 � 1014

4.351 � 1013 9.074 � 1013 4.537 � 1013

No Yes

1.026 � 1014 1.211 � 1014 7.865 � 1013

1.179 � 1014 2.888 � 1014 1.444 � 1014

8.069 � 1013 1.698 � 1014 8.490 � 1013

No Yes

3.195 � 1014 3.879 � 1014 2.537 � 1014

2.233 � 1014 5.644 � 1014 2.822 � 1014

9.556 � 1013 2.007 � 1014 1.004 � 1014

No Yes

1.755 � 1014 1.966 � 1014 1.131 � 1014

4.263 � 1013 1.059 � 1014 5.296 � 1013

1.060 � 1013 1.976 � 1013 9.875 � 1012

No Yes

annel Decomposition Based on the CIELab Color Transformation
uminant Conditionsa

Object

50% ThresholdO3 O4

1.190 � 1013 1.359 � 1013 7.669 � 1012

5.042 � 1013 8.032 � 1013 6.060 � 1013

4.368 � 109 3.332 � 109 3.771 � 109

No No

1.064 � 1013 1.348 � 1013 7.062 � 1012

2.569 � 1013 1.458 � 1014 9.866 � 1013

3.705 � 109 3.646 � 109 4.354 � 109

No No

9.963 � 1012 1.281 � 1013 6.502 � 1012

3.096 � 1013 1.116 � 1014 7.524 � 1013

3.668 � 109 3.329 � 109 3.637 � 109

No No

1.216 � 1013 1.435 � 1013 7.461 � 1012

5.270 � 1013 3.458 � 1013 2.733 � 1013

3.785 � 109 3.370 � 109 3.077 � 109

Yes Yes
ined
wn Ill

1014

1014

1013

1014

1014

1013

1014

1014

1013

1014

1013

1012
ultich
wn Ill

1013

1013

109

1013

1013

109

1013

1013

109

1013

1013

109
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The target is object O1 under illuminant D65.
ig. 6. �a� Correlation peaks derived from the CIELab coordinates when the scene was captured under test illuminant 4. The x and y
oordinates represent spatial positions in the image. �b� Correlation peaks derived from coefficients 	1

xy, 	2
xy, and 	3

xy when the scene
as captured under test illuminant 4. The x and y coordinates represent spatial positions in the image.
Table 9. Correlation and Discrimination Results Obtained from Multichannel Decomposition Expressed as Three Coefficients
under Several Unknown Illuminant Conditionsa

Illuminant Channel

Object

50%ThresholdO1 O2 O3 O4

Test 1 Coefficient 1 1.105 � 10�1 8.050 � 10�2 8.261 � 10�2 8.371 � 10�2 5.525 � 10�2

Coefficient 2 2.870 � 10�3 2.135 � 10�5 4.405 � 10�5 3.110 � 10�3 1.550 � 10�3

Coefficient 3 4.646 � 10�4 6.796 � 10�5 6.240 � 10�5 1.853 � 10�4 2.320 � 10�4

Recognized AND Yes No No No

Test 2 Coefficient 1 9.854 � 10�2 6.897 � 10�2 7.295 � 10�2 7.393 � 10�2 4.925 � 10�2

Coefficient 2 2.740 � 10�3 1.858 � 10�5 1.104 � 10�4 2.951 � 10�3 1.500 � 10�3

Coefficient 3 4.230 � 10�4 5.746 � 10�5 5.595 � 10�5 1.459 � 10�4 2.115 � 10�4

Recognized AND Yes No No No

Test 3 Coefficient 1 7.586 � 10�2 5.408 � 10�2 5.766 � 10�2 5.656 � 10�2 3.795 � 10�2

Coefficient 2 2.014 � 10�3 1.462 � 10�5 1.112 � 10�4 2.172 � 10�3 1.100 � 10�3

Coefficient 3 3.099 � 10�4 4.198 � 10�5 4.116 � 10�5 1.137 � 10�4 1.549 � 10�4

Recognized AND Yes No No No

Test 4 Coefficient 1 9.616 � 10�2 7.111 � 10�2 7.481 � 10�2 7.331 � 10�2 4.810 � 10�2

Coefficient 2 2.418 � 10�3 1.264 � 10�5 1.552 � 10�4 2.604 � 10�3 1.300 � 10�3

Coefficient 3 3.621 � 10�4 3.820 � 10�5 5.628 � 10�5 1.416 � 10�4 1.810 � 10�4

Recognized AND Yes No No No

a
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1

oefficient correlation method led to a positive dis-
rimination of color object O1. Nevertheless, the
orrelation peaks are wider than those obtained in
he examples above, and additional peaks appear
round the target, although they do not lead to false
larms. This is so because the color areas are not so
early spatially uniform as the simulated areas used

n the scenes of Fig. 4. Two main reasons can ex-
lain these results: First, capturing color with a
CD is a noisy process, even when the camera is

arefully calibrated and the dark noise is appropri-
tely subtracted from the RGB values of each pixel;
econd, the results suggest that the linear models of
educed dimension used here probably do not suffice
or an adequate description of surface reflectances.
t will be important in future studies to analyze the
se of multispectral object recognition with more
han three coefficients, as we commented above, and
ts influence on the design of the matched filters used
n the optical correlation architecture.

. Conclusions

e have introduced what to our knowledge is a new
ethod of multichannel decomposition of color im-

ges based on a linear description of spectral surfaces
nd illuminants that permits the introduction of color
nformation in optical pattern recognition. The

ethod uses linear models based on principal-
omponent analysis to represent the spectral reflec-
ance function of each image pixel and the spectral
ower distribution of the light sources in suitable

ig. 7. �a� Image of the GretagMacbeth ColorChecker capture
oefficients 	1

xy, 	2
xy, and 	3

xy; the values of 50% of the maximum
890 APPLIED OPTICS � Vol. 43, No. 9 � 20 March 2004
asis for linear representation. We first demon-
trated the discrimination capability of the method
nder controlled illuminant conditions. The coeffi-
ient method can discriminate polychromatic objects,
nd the results are independent of any changes in the
lluminant under which the scene is captured. The
orrelation results are satisfactory even for the low-
imensional basis used to represent the surface re-
ectance function of the image pixels. The
iscrimination capability of this method is clearly an
mprovement on that obtained with RGB multichan-
el decomposition and is slightly better than those of
ther approaches used in optical correlation, such as
he CIELab system, that are based on uniform color
paces.
Also, we have demonstrated that optical color-

attern recognition can be achieved under conditions
f unknown illuminants. In this case the use of a
eference surface that is captured within the input
olor scene allows an illuminant-estimation algo-
ithm to be used, which will lead to positive discrim-
nation in situations when the target is captured
nder a reference illuminant and the scene contain-

ng the target is captured under an unknown, spec-
rally different illuminant. Although the recovered
PD of the illuminant was not mathematically per-

ect, the coefficient method provides reasonably good
nvariant color recognition. It is clear that the spec-
ral recovery of surfaces and illuminants is limited by
he dimensionality of the linear bases. More com-
licated and efficient algorithms can be used to esti-

der daylight illumination. �b� Correlation peaks derived from
shown in parentheses.
d un
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ate the illumination. The small number of basis
ectors used here, only three, is a compromise selec-
ion but allows us to illustrate the potential use of the
ethod.
The results also suggest that the computation of

nly two of the coefficients �	2
xy and 	3

xy� alone gives
o false alarms between the source and the target

mages. But we believe that a potential use of the
oefficient correlation method is precisely suited for
he possibility of using more than three color compo-
ents in optical pattern recognition, which can lead to
etter spectral surface description and accurate color
bject recognition. The linear description of both
he source and the target color images leads to a
ultichannel correlation of a range as high as the

imension of the bases chosen to describe the sur-
aces and illuminants. The additional advantage of
he coefficient correlation is that once the linear basis
as been selected it allows the user to transform the

nput image into a subspace where the spatial infor-
ation is preserved and the dependence on the spec-

ral content of the illumination is discarded.

This study was supported by the Comisión Inter-
inisterial de Ciencia y Tecnologı́a, Ministerio de
ducación y Ciencia, Spain �grant BMF2000-1473�.

eferences and Notes
1. F. T. S. Yu, “Color image recognition by spectral-spatial

matched filtering,” Opt. Eng. 23, 690–695 �1984�.
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