Spectral-reflectance linear models for optical
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We propose a new method of color-pattern recognition by optical correlation that uses a linear description
of spectral reflectance functions and the spectral power distribution of illuminants that contains few
parameters. We report on a method of preprocessing color input scenes in which the spectral functions
are derived from linear models based on principal-component analysis. This multichannel algorithm
transforms the red—green—blue (RGB) components into a new set of components that permit a general-
ization of the matched filter operations that are usually applied in optical pattern recognition with
more-stable results under changes in illumination in the source images. The correlation is made in the
subspace spanned by the coefficients that describe all reflectances according to a suitable basis for linear
representation. First we illustrate the method in a control experiment in which the scenes are captured
under known conditions of illumination. The discrimination capability of the algorithm improves upon
the conventional RGB multichannel decomposition used in optical correlators when scenes are captured
under different illuminant conditions and is slightly better than color recognition based on uniform color
spaces (e.g., the CIELab system). Then we test the coefficient method in situations in which the target
is captured under a reference illuminant and the scene that contains the target under an unknown

spectrally different illuminant.

We show that the method prevents false alarms caused by changes in

the illuminant and that only two coefficients suffice to discriminate polychromatic objects. © 2004

Optical Society of America
OCIS codes:

1. Introduction

In addition to shape and size, color is one of the most
important characteristics in the discrimination and
recognition of objects. The introduction of color in-
formation in pattern recognition by optical correla-
tion is usually made by means of a multichannel
correlation technique that decomposes the source and
the target color images in three [red—green—blue
(RGB)] channels.’-4 The correlation is made sepa-
rately for each channel, and arithmetic or logical
point-wise operations can be used to derive the final
output. A common way in which objects are opti-
cally recognized is by use of a multichannel joint-
transform correlator in which a filter matched to the
target is used in each channel.?

Different methods to enhance the differences be-
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tween the images of the channels to achieve better
recognition have been proposed.6-8 Some of these
transformations benefit color-vision models and
transform the color channels into three color signals
that correspond to one achromatic channel—the lu-
minance channel—and two opponent channels—the
red—green and the Dblue—yellow channels.” This
method increases discriminability when it is com-
pared with the RGB transformation and even reduces
the number of effective channels that contribute to
color correlation, with the two opponent channels be-
ing sufficient for good color correlation. The use of
color transformations that are not based on human
visual models has also been effective in increasing the
discrimination of color objects and preventing false
alarms for objects that are equal in shape but differ-
ent in color.® An alternative way to include color
information in optical pattern recognition is by the
use of the three-dimensional (3D) color correla-
tion.?10 The colors of images are introduced as a
third dimension in addition to spatial variables, and
thus a 3D Fourier transform can be defined. The
technique encodes 3D functions onto two-
dimensional functions and leads to new encoding pro-
posals in optical correlators.!



Although satisfactory results can be obtained with
the techniques described above, changes in the illu-
minant may cause difficulties in recognizing color
objects. Only a few studies that address the prob-
lem of finding optical pattern-recognition architec-
tures that are not susceptible to changes in the
illuminant have been published.'213 In one of these
publications!2 the use of uniform color spaces, which
are more stable in the face of these changes, is con-
sidered. For common illuminants the transforma-
tion from RGB to the coordinates of the CIELAB
system allows us to overcome some of the recognition
difficulties that occur when there is a change in the
illuminant that we have mentioned. The correlation
made among luminance, chroma, and hue channels
provides better discrimination than conventional
RGB techniques. The drawback of the method is
that the matrices that transform the RGB values to
the XYZ tristimulus values depend on the particular
choice of illumination (i.e., the spectral power distri-
bution of the light source). But the use of only two
channels (the luminance and the hue channels) sim-
plifies recognition and leads to pattern recognition
results that are stable when the illuminant changes.

Color objects can be also recognized based on com-
putational algorithms that are color constant. Color
indexing involves matching color-space histograms
and departs from other recognition techniques based
on the geometrical properties of objects.’* One iden-
tifies objects by comparing their color components
with the color components of each object in a previ-
ously defined database; the intersection of histo-
grams is usually used to recognize the color object.
Before histogramming, illuminant-invariant descrip-
tors can be defined to derive pattern recognition in-
dependently of changes of illuminant.’> Whereas
optical pattern recognition seeks correlation peaks
that correspond to the spatial position of the target in
the image, computational color-constancy algorithms
usually recover an illuminant-independent represen-
tation of the color images or the retrieval of images
from large collections of image databases.15-17

The study presented here describes what is to our
knowledge a new method of optical color-pattern rec-
ognition that leads to discrimination results that are
independent of the spectral changes of the illuminant
under which an image is captured. It is a mul-
tichannel algorithm that uses a linear model based on
principal-component analysis (PCA), which repre-
sents the spectral reflectance function of each image
pixel on a suitable basis for linear representation. A
correlation is then made throughout the spatial dis-
tribution of the coefficients derived from the linear
representation of each reflectance function. When
the illuminant is unknown, or when it is difficult to
obtain a spectroradiometric measurement of it, we
used an illuminant-estimation hypothesis before
making the correlation. The method is tested with
various test illuminants and compared with the mul-
tichannel RGB and CIELab techniques; an improve-
ment in the discrimination capability of optical color-
pattern recognition is shown when the target is

captured under one illuminant and the source under
a spectrally different and a priori unknown illumi-
nant.

2. Linear Description of Surfaces and llluminants
in Color Images

Let us assume a scene viewed under a given illumi-
nation and captured by a color camera. According to
basic concepts of image acquisition, the intensity of
each image pixel can be expressed as

In(x, y) = >, gx(N)S(x, y, D E(x, y, VAN, (1)

where N represents each of the channels that capture
the color image [e.g., N = 3 for conventional CCD
color cameras with three channels (R, G, and B],
gn(N) is the spectral sensitivity of each channel, S(x,
v, \) is the spectral reflectance function of the pixel (x,
y), and E(x, y, \) is the spectral power distribution
(SPD) of the illuminant under which the image is
captured at pixel (x,y). We assume that the image
is uniformly illuminated, and thus in Eq. (1) we sub-
stitute £(\), which does not depend upon pixel coor-
dinates, for E(x, y, \).

It is possible to find!® square-integrable functions
S;(\) (j =1, 2,...) such that for any surface reflec-
tance S(x, y, \) there is a single set of real numbers
o;(x, y), and thus

S(x, 5, M) = 2 a;(x, y)S;(N). 2)
Jj=1

The S;(\) functions form a basis of linear function
space L? and allow the function S(x, y, \) to be rep-
resented by the vector of coefficients ¢ = [o,7, .. .,
0,,”]. We can act in a similar way and find square-
integrable functions E;(\) ¢ = 1, 2, .. .) such that for
any SPD of illuminant E()\) there is a single set of real
numbers, €;, and thus

E0) =X eB ), )

where we have assumed that the illumination is spa-
tially uniform. The E;(\) functions allow SPD E(\)
to be represented by the vector of coefficients € =
[€1,..., &,]. It should be noted that, whereas the
spectral reflectance function and the SPD of the illu-
minant depend on the wavelength, coefficients o~
and ¢; do not; coefficients o vary only in relation to
spatial coordinates (x, y). By incorporating Eq. (2)
into Eq. (1) we can express the intensity of the mul-
tichannel image as

In(x, y) = 2 2 0;(%, Y)Evin (4)
i=1 j=1

where the factor v, = 2, gn(N)S;(\) E;(N)AN contains
only fixed elements that are independent of the image
captured once the bases of linear representation have
been selected. Most of the spectral reflectance func-
tions and SPDs of illuminants can be described by
small-dimensional linear models; earlier studies
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have shown that five to seven eigenvectors suffice for
adequate reconstructions of surfaces,’8-21 and only
three to five are required for illuminants.22-2¢ The
algorithm that we have developed here will use only
three eigenvectors for surfaces and illuminants.
This economy is of particular interest when we cap-
ture the input images with a CCD color camera.
The selection of 3D linear models is imposed by the
fact that if we had three RGB values we thus needed
three eigenvalues to ensure correspondence between
the camera responses and the number of eigenvec-
tors. Better representations could have been ob-
tained with a greater number of eigenvectors, but our
election was a compromise between more-accurate
spectral representations and lower computational
costs (remember that the purpose of the recognition
algorithm is to obtain a correlation peak and not to
recover an illuminant-independent image similar to
the original image).

3. Outline of the Color-Correlation Method

The originality of the study presented here lies in the
use of linear models in optical color-pattern recogni-
tion. The linear models are derived from PCA,
which represents the spectral reflectance function of
each image pixel and the SPD of the illuminant on
suitable bases. The linear description of surfaces
and illuminants is well documented in the literature,
but until now, and to our knowledge, this linear de-
scription of spectral functions has not been applied in
multichannel optical correlation for color-pattern rec-
ognition. We propose to implement the correlation
throughout the spatial distribution of coefficients o~
derived from the linear representations of the reflec-
tance functions because these coefficients vary only in
relation to the spatial coordinates. Previously we
needed to express the intensity of each image pixel
according to Eq. (4), which would imply the election of
the basis functions S;(\) and E;(\) for an adequate
representation of the spectral reflectance functions
and the SPD of the illuminant.

Let us consider first, to illustrate the algorithm’s
performance, the trivial case in which the illuminant
is known. In this case we can always get the coeffi-
cient o, that determines each surface reflectance
simply by solving the linear equation set of Eq. (4).
This process can be reduced to a matrix inversion
when the number of channels that specifies the image
is N = n; ie.,

O_xy — ,yfllxy, (5)

where the quantities on the right-hand side of Eq. (5)
are all known. We propose to transform the source
and the target color images according to Eq. (5).
Based on this transformation, recognition can be
achieved from the finite subspace of the o™ coeffi-
cients, and the matched filter operations that are
usually applied in optical pattern recognition can be
generalized. Let o.(x, y) and o,(x, y) represent the
input coefficients associated with the transformed
source image and the impulse response of a Fourier
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filter associated with the target to be discriminated,
respectively. The correlation between the trans-
formed color image and the filter impulse response is
defined as

dx—1 dy—-1
e, y, 0) = > > oy, ¥, oF(x —x, 5" =y, )
x'=0 y'=0
(j=1...n), 6)

where dx and dy are the dimensions of the image and
J is the number of channels (dimension of the surface
reflectance basis), which are processed indepen-
dently.

It is difficult to handle this trivial case with real
images for which the SPD of illumination can be
known only from spectroradiometric measurements,
but it illustrates quite well how the multichannel
transformation allows us to preserve the spatial in-
formation of the image (shape, size, etc.) and avoid
any dependence on the spectral characteristics of the
illumination. Nevertheless, in other situations it is
clear from Eq. (4) that we need an estimation algo-
rithm of the illumination—what it is usually called
an illuminant estimation hypothesis—in the scene to
solve for coefficients 0. The use of the optical cor-
relation method proposed here could potentially be a
color-pattern-recognition technique that is invariant
to changes in the illuminant, either a priori known or
unknown.

4. llluminant-Estimation Hypothesis

There are several ways to get information about the
illumination and to reduce the uncertainty of Eq. (4).
The illuminant-estimation approaches that have
been used in various color-constancy algorithms
make use of scene averages, highlights, shadows, mu-
tual illumination, or subspace constraints.18.25-28
The purpose of our study is not to develop a color-
constant image but to benefit from these color-
constancy algorithms to obtain correlation peaks that
do not vary when the illuminant changes. So we
consider one of the simplest illuminant-estimation
hypotheses found in the literature to test the corre-
lation results derived from the multichannel trans-
formation associated with Eq. (5) because it suffices
to produce good discrimination results by optical cor-
relation. This hypothesis makes use of a reference
white, which will be a diffuse white surface and must
be placed within the scene to be captured. Following
the linear description of surfaces and illuminants de-
rived from Eqs. (1)—(4), the intensity of the mul-
tichannel image of the white surface can be expressed
as

Iyw(x,y) = E E Sw(x, y, NEE(N)gn(N)AN

Noi=1

=> & > Swlx, v, VE;(Mgy(M)AX |,
i=1 A
(7



where Sy/(x, y, \) is the a priori known reflectance of
the white surface placed at coordinates (x, y). The
factor in brackets contains only fixed elements, which
are independent of the image once a suitable basis for
linear representation of illuminants has been se-
lected. The quantities Iy y(x, y) are all known from
the location of the white surface in the captured im-
age.

Thus, if the number of channels that specifies the
image is N = m, the linear system of Eq. (7) can be
solved for each ¢;. By substituting the obtained co-
efficients €, into Eq. (4) we can recover the coefficient
o;” for each image pixel as

o = AP, (8)

where A, = 27 €v;;x is the N X m lighting matrix
derived from the illuminant-estimation algorithm.
This equation is analogous to Eq. (5) and allows us to
derive a multichannel representation of the image
that does not depend on the spectral changes in the
illumination under which the image is captured.

5. Results

To demonstrate the possibilities of using the linear
models in optical color-pattern recognition, first we
show in Subsection 5.A the results derived from a
control experiment in which the spectral power dis-
tribution of the illuminant is known a priori. The
discrimination capability of the method is compared
with that derived from RGB and CIELab multichan-
nel decompositions. Next, in Subsection 5.B we ap-
ply the illuminant-estimation hypothesis to obtain
color correlation under conditions of unknown illumi-
nant. Last, in Subsection 5.C we show an example
of the discrimination results derived from an outdoor
color scene that was captured under daylight illumi-
nation.

A. Control Experiment when the llluminant was Known

Let us take the scene in Fig. 1 in which object O1 is
the target when the scene is captured under illumi-
nant D65, which is chosen here as the reference illu-
minant. The colored areas of the target (and of the
scene also) reproduce different objects from the Gre-
tagMacbeth ColorChecker chart. Inasmuch as opti-
cal correlation depends strongly on the spatial
characteristics of the objects to be discriminated, ob-
jects O1-04 were all of the same shape but different
in color (see Table 1). In addition, the colored areas
of object O4 were selected in such a way that the
differences in RGB values compared with those of O1
were small under each of the test illuminants. The
RGB components of each color area that composes
each object and the RGB color differences are listed in
Table 2. The color areas of objects O1 and O4 were
chosen such that it was difficult to discriminate these
two color objects under the different illuminant con-

Fig. 1. Input color image captured under illuminant D65. Ob-
ject O1 was the target when the scene was captured under this
illuminant.

ditions. The RGB color difference was calculated
from the formula

ARGB = [(R, — R)*+ (G, — G)* + (B, — B))*]"”
i=2,3,4),

where we obtained R, G, and B by averaging the RGB
color components of the six color areas that compose
objects O1-04.

We made a simulation in which the scene in Fig. 1
was captured with a CCD color camera (JVC TK-
1270E), and thus N = 3 in the following calculations
[Fig. 2(a)]. The scene was captured under four test
illuminants: D65, A, 10,000 K, and a simulated or-
ange illuminant that corresponds to equienergy light
filtered by an orange plastic filter [Fig. 2(b)]. The
S;(\) basis functions were obtained first through a
PCA of the 24 surface reflectance functions of the
ColorChecker. The dimension of the basis was fixed
at n = 3, which corresponds to the number of RGB
channels. Then we used Eq. (4) to transform both
the target under the reference illuminant and the
source image under each of the test illuminants. We
performed three numerical correlations: First, we
used the conventional RGB multichannel decomposi-
tion, which transformed the color images into the
three color channels R, G, and B.3 Second, we used
the CIELab multichannel decomposition3; for each
of the illuminants a linear transformation from the
RGB values to CIELab coordinates was derived,29
and then the source and the target were transformed
to three color components, L*, a*, and b*. Third, we
performed our multichannel decomposition ex-
pressed in terms of three coefficients, o, 05, and
o5, In all cases the correlation was made sepa-
rately for each channel and the AND logic operator was
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Table 1.

RGB Components of the Six Color Areas of Objects 01-04 under the D65 llluminant®

Object R G B
01 64 96 29 70 137 97 126 42 37 104 125 78 130 22 74 53 56 78
02 28 30 29 78 137 97 68 73 37 29 125 78 41 107 74 35 56 78
03 70 57 112 60 80 97 104 14 73 68 37 78 53 16 34 102 65 78
04 64 96 64 70 137 28 126 42 126 104 125 68 130 22 130 53 56 41

“From left to right for each R, G, and B component, the column values correspond to each of the six color areas that compose objects

01-04.

applied with the usual threshold of 50% of the max-
imum as the positive discrimination threshold.

The results of the three approaches are summa-
rized in Tables 3-5. With the RGB multichannel
correlation, both O1 and O4 are identified as targets
for all test illuminants. Even under the reference
illuminant the RGB decomposition experienced prob-
lems with the discrimination of object O1l. There
were also false alarms between objects O1 and O3
under the orange illuminant. The correlation based
on the CIELab system improved the RGB results and
prevented all the false alarms except that for O4
under the A illuminant. The method of coefficient
correlation, however, provided enough discrimina-
tion for recognition of O1 under each test illuminant
without errors. An example of the results derived
from correlation coefficients 0,7, 05, and o3 is set
out in Fig. 3, which shows the correlation peaks ob-
tained when the scene was captured under illumi-
nant A.

The results also suggest that the greater the num-
ber of basis vectors selected to represent each reflec-
tance, the better the method’s discrimination
capability. When PCA is used to describe the data,
the first basis vector S;(\) is related to the mean of
S(N\). This could explain why correlation coefficient
o, fails to identify any difference between the
source and the target objects. Thus an application
of the anD logic operator to only two parameters
alone, the ¢,™ and o5 coefficients, permits discrim-
ination of the target. This result also coincides with
the CIELab results because it is enough to use only
the a* and b* coordinates to recognize the target
under all illuminant conditions. In this way it is
possible to reduce the computation time in color rec-
ognition when the targets or the sources are chromat-
ically complex. Because there is considerable
evidence that PCA provides a reasonable description
of many surfaces with a small number of basis vectors

Table 2. RGB Color Difference ARGB between Color Object O1
Captured under the D65 llluminant and Objects 02-04 Captured under
Each of the Test llluminants

Color Difference ARGB

Test Illuminant Object 02 Object O3 Object O4
D65 23 26 15
A 61 62 43
10,000K 57 57 40
Orange 22 32 21
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(n = 3...7),18-21 we could expand this analysis to
higher-order coefficients such as o, and ogz”.
Therefore the correlation expressed by Eq. (6) could
be extended to more than three coefficients to derive
a set of correlation planes c,(x, y, j) of the desirable
dimension j = n. This ability gives our technique a
great advantage compared with other multichannel
techniques because we are not limited to only three
color components (i.e., the RGB values or the L*a*b*
coordinates) for performing optical recognition. In
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Table 3. Correlation and Discrimination Results Obtained from Conventional RGB Multichannel Decomposition under Known llluminant Conditions”

Object

Illuminant Channel 01 02 03 04 50% Threshold

D65 R 3.647 x 1014 2.517 X 104 2.360 x 104 2.793 x 104 1.824 x 10**
G 4.311 x 10 2.323 x 10 1.917 x 104 4.760 x 10™ 2.380 X 104
B 2.127 X 1014 9.851 X 1013 1.026 x 104 2.165 X 104 1.083 x 10

Recognized AND Yes No No Yes

A R 3.096 x 10™ 2.099 x 10™ 2.058 x 10 2.319 x 104 1.548 x 104
G 1.616 x 10 8.748 X 1013 7.114 X 1013 1.770 x 10 8.852 x 1013
B 4.906 x 103 2.426 X 103 2.735 x 103 5.305 x 103 2.652 x 1013

Recognized AND Yes No No Yes

10,000K R 1.413 x 10 9.979 x 1013 9.440 X 1013 1.082 x 10 7.065 x 1013
G 2.058 X 104 1.108 x 10** 9.405 x 103 2.260 x 104 1.130 x 10**
B 1.252 x 104 6.094 x 102 6.322 x 103 1.318 x 104 6.590 X 1012

Recognized AND Yes No No Yes

Orange R 5.252 x 1014 3.531 X 104 3.274 x 104 4.036 x 104 2.626 X 104
G 4.672 X 10 2.523 x 10 2.588 x 10'° 5.175 x 10 2.588 x 104
B 1.344 x 10 6.656 X 1013 7.272 X 1013 1.481 x 10 5.740 X 1013

Recognized AND Yes No Yes Yes

“The target is object O1 under illuminant D65.

this case it is clear that additional RGB components
are required in Eq. (7) for solution of the coefficients
[e.g., use of six digital counts I(x, y) per pixel allows
for the use of six eigenvectors for spectral reconstruc-
tion].30 It is a matter for further studies to consider
multifilter trichromatic image devices that allow the
use of more than three eigenvectors to reconstruct
spectra and the application of these devices to optical
pattern recognition.

B. Correlation Results When the llluminant was Unknown

When the illuminant conditions were unknown we
applied the reference surface algorithm explained in

Section 4. The reference surface was placed in the
lower left corner of the scene, as shown in Fig. 4, and
intensity I v of the corresponding image pixels was
captured. The white reference surface was chip
number 19 of the GretagMacbeth ColorChecker. As
in the previous case, object O1 was the target when
the scene was captured under illuminant D65, and
the scene was captured under four unknown test il-
luminants, which are were assumed to be character-
ized by a broadband and smoothed spectrum.

The first step in solving Eq. (4) was selection of
appropriate basis functions E;(\) for any SPD of the
illuminants. A set of 83 SPDs of illuminants that

Table 4. Correlation and Discrimination Results Obtained from Multichannel Decomposition Based on the CIELab Color Transformation
under Known llluminant Conditions®

Object

Illuminant Channel 01 02 03 04 50% Threshold

D65 L* 1.246 x 10 8.977 x 10'° 7.685 x 101° 1.320 x 10t 6.814 x 10'°
a* 5.564 x 1012 1.251 x 1012 1.538 x 1012 4.219 x 102 2.782 X 102
b* 2.969 x 108 7.672 X 107 1.157 x 108 1.004 x 108 1.485 x 108

Recognized AND Yes No No No

A L* 1.313 x 1013 1.072 x 103 9.742 X 1012 1.279 x 10%3 6.566 X 102
a* 1.430 x 104 2.984 x 10'? 3.490 x 10%? 1.098 x 104 7.149 x 10%?
b* 6.505 x 10° 2.627 x 10° 3.485 x 10° 3.262 x 10° 3.253 x 10°

Recognized AND Yes No No Yes

10,000K L* 9.757 x 103 9.896 x 103 9.963 x 103 9.768 x 10° 5.228 x 10°
a* 5.705 x 102 1.279 x 102 2.000 x 102 4517 x 10? 2.852 x 102
b* 3.800 x 102 1.510 x 102 8.100 x 10° 1.250 X 102 1.900 x 102

Recognized AND Yes No No No

Orange L* 1.234 x 1013 1.003 x 103 9.408 x 102 1.212 x 10*? 6.169 x 10'2
a* 1.333 x 104 2.669 x 102 3.652 x 10 9.997 x 103 6.664 x 103
b* 6.294 x 10° 2.140 x 10° 3.382 x 10° 2.144 x 10° 3.147 x 10°

Recognized AND Yes No No No

“The target is object O1 under illuminant D65.
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Table 5.

Correlation and Discrimination Results Obtained from Multichannel Decomposition Expressed as Three Coefficients

under Known llluminant Conditions®

Object

INluminant Channel 01 02 03 04 50% Threshold

D65 Coefficient 1 7.880 x 1072 5.710 X 10~ 2 6.157 X 102 5.828 X 102 3.940 X 102
Coefficient 2 2.196 X 1072 1.142 X 10°° 1.071 X 10°° 2.400 x 102 1.200 X 1073
Coefficient 3 3.050 x 10* 4.342 X 10°° 6.078 X 105 1.103 X 10™* 1.525 X 10°*

Recognized AND Yes No No No

A Coefficient 1 8.020 X 1072 5.896 X 102 6.356 X 1072 5.997 X 102 4.010 X 102
Coefficient 2 2.110 X 103 1.064 x 10°° 1274 X 10°* 2.291 X 1073 1.150 X 102
Coefficient 3 2.663 X 104 3.140 X 10°° 6.910 X 10°° 9.648 X 10°° 1.332 X 107+

Recognized AND Yes No No No

10,000K Coefficient 1 7.690 X 102 5.516 X 10 2 6.013 X 10 2 5.674 X 102 3.845 X 102
Coefficient 2 2.400 X 1073 1.164 X 10°° 9.621 X 10°° 2.401 X 1072 1.200 x 1073
Coefficient 3 2.995 X 10~ 4.133 X 10°° 6.622 x 10°° 1.011 x 104 1.497 X 1074

Recognized AND Yes No No No

Orange Coefficient 1 8.060 X 102 5.863 X 102 6.270 X 102 5.987 X 102 4.030 X 102
Coefficient 2 2.180 x 1072 1.049 X 10°° 1.122 x 104 2.400 X 1073 1.200 X 1073
Coefficient 3 2.838 X 10°* 3.820 X 10 °° 5.989 x 105 1.029 x 10* 1.419 X 10°*

Recognized AND Yes No No No

“The target is object O1 under illuminant D65.

were measured by different authors2+3! was selected.
The illuminant set included daylight spectra, incan-
descent lights, and lights with different color temper-
atures; we discarded the fluorescent illuminants to
ensure that there would be a minimum number of
three basis vectors in the following calculations.23
E.(\) were obtained through a PCA of these illumi-
nants, and the dimension of the basis was fixed at
m = 3; the first three eigenvectors are shown in Fig.
5(a). Then we used these basis functions in Eq. (7)
to recover coefficient €; of each unknown illuminant
condition under which the scene was captured. But
how good is the illuminant estimation? Figure 5(b)
shows an example of the linear recovery of test illu-
minant 4; in this figure we compare the theoretical

original SPD of the illuminant was not known a priori
in the correlation method and is shown here only to
test the illuminant estimation hypothesis. To quan-
tify the quality of the reconstructions we calculated
the values of the goodness-of-fit coefficient (GFC),
which measures the spectral similarities between the
original and the estimated spectral functions, for
these results. The GFC is based on Schwartz’s in-
equality and is defined as

S FO£00)

1/2

GFC = 9

1/2 »

S0P S R0

and the estimated SPDs of the illuminants. The
Coef 1 Coef 2 Coef 3
Q4
08 04 08 | 08
o3 02

0.6 o1 | 06 o1 l

04 04

0.2 0.2

0 0

250 250

200 20?

250
200

150

50 100

X

50

opg 250

X

Fig. 3. Correlation peaks derived from coefficients 0,*, 65, and 05 when the scene was captured under illuminant A. The x and y

coordinates represent spatial positions in the image.
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Correlation axes have been normalized in this figure for clarity.



Fig. 4. Input color image captured under test illuminant 4. The
white surface placed at the lower left corner of the scene was used
for the illuminant-estimation hypothesis.

where f(\) and f.(\) are the original and the esti-
mated spectral functions, respectively. The GFC
values runs from 0 to 1, so the mathematical recon-
struction of the function would be better as the GFC
values approach unity.2332 We present in Table 6
the GFC values for the test illuminants used here.
All the GFC values are close to 0.99, with the excep-
tion of that for illuminant 1, and an average GFC
value of 0.9887 was obtained. Because the GFC is
the multiple correlation coefficient R and the square
root of the variance-accounted-for coefficient, this
means that we have missed only approximately 2% of
the energy in the reconstructions. Even though the
spectral similarities between the original and the re-
covered spectral functions are not mathematically
perfect, the recognition rates will not be severely af-
fected by this fact, as we show below.

Next we used Eq. (8) to transform the color images
under each of the unknown illuminants and to re-
cover coefficients o/¥. The correlation was per-
formed between these coefficients and the
corresponding coefficients of the target. The results
are summarized in Tables 7-9 for the three mul-
tichannel techniques. On one hand, the results
show the poor discrimination of the RGB multichan-
nel correlation inasmuch as it identifies O1 and O4 as
the targets for all the test illuminants. When we use
the CIELab system the results are satisfactory and
present false alarms for objects O1, O3, and O4 under
test illuminant 4 only. On the other hand, the illu-
minant estimation hypothesis and the method of co-
efficients provide enough discrimination to permit O1
to be recognized under all the test illuminants, even
though the color appearance of the target under ref-
erence illuminant D65 (O1 in the upper left corner of
Fig. 1) was completely different from its correspond-
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Fig.5. (a)First three basis functions derived from PCA for the set
of 83 illuminants used. (b) Original and estimated SPDs of test
illuminant 4 derived from the illuminant-estimation algorithm.

ing image under each of the unknown illuminations
(e.g., O1 in Fig. 4 under test illuminant 4). This
result confirms the good discrimination capability of
the proposed algorithm, independently of the spectral
changes in the illumination. Figure 6 shows exam-
ples of the correlation results derived from the
CIELab system and from coefficients o;%, 05, and
05 when the source image was captured under one
of the test illuminants.

Table 6. GFC and Root-Mean-Square Error Obtained for the Four Test
llluminants

ITluminant GFC Root-Mean-Square Error
1 0.9746 0.1685
2 0.9896 0.0964
3 0.9945 0.1087
4 0.9962 0.0567
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Table 7. Correlation and Discrimination Results Obtained from Conventional RGB Multichannel Decomposition
under Several Unknown llluminant Conditions®

Object

Illuminant Channel 01 02 03 04 50% Threshold

Test 1 R 5.356 x 104 3.583 x 104 3.286 x 104 4.093 x 104 2.678 X 104
G 3.506 x 104 1.893 x 104 1.513 x 1014 3.882 x 104 1.941 x 10
B 8.047 x 10'2 3.983 x 10'® 4.351 x 10*2 9.074 x 10*® 4.537 X 10'2

Recognized AND Yes No No Yes

Test 2 R 1.573 x 104 1.106 x 104 1.026 x 104 1.211 x 10 7.865 X 103
G 2.614 x 10™ 1.408 x 10+ 1.179 x 10™* 2.888 x 10 1.444 x 104
B 1.609 x 104 7.847 x 101 8.069 x 102 1.698 x 104 8.490 x 1013

Recognized AND Yes No No Yes

Test 3 R 5.074 X 10 3.422 x 10™ 3.195 x 104 3.879 x 10™ 2.537 X 10
G 5.098 x 104 2.741 x 104 2.233 X 104 5.644 x 1014 2.822 X 1014
B 1.825 x 104 8.900 x 103 9.556 x 10 2.007 x 104 1.004 x 104

Recognized AND Yes No No Yes

Test 4 R 2.626 x 104 1.759 x 104 1.755 x 104 1.966 x 104 1.131 x 104
G 9.639 x 1013 5.274 x 1013 4.263 x 103 1.059 x 10 5.296 x 1013
B 1.777 x 1013 9.175 x 1012 1.060 x 1013 1.976 x 10%? 9.875 X 1012

Recognized AND Yes No No Yes

“The target is object O1 under illuminant D65.

C. Color Object Discrimination under Outdoor
lllumination

We show here an example of the correlation and dis-
crimination results derived from an outdoor color
scene. The source was the GretagMacbeth Color-
Checker chart, and we captured it under daylight
illumination. As shown in Fig. 7(a), the target was
the color area O1, which corresponds to yellow chip
number 16 of the ColorChecker chart, and the refer-
ence white was placed at the lower left corner of the
scene, which coincides with chip number 19 of the
color chart. The scene was captured under daylight

illumination on a clear day by a geometry that
avoided the highlights in the image; the time expo-
sure was adjusted before image capture to discard
any saturated digital counts. The target and the
source images were transformed independently ac-
cording to Eq. (7), and the correlation described by
multichannel Eq. (6) was obtained. Figure 7(b) re-
sumes the discrimination results from each of coeffi-
cients 0,7, 05 and o03Y. The numbers in
parentheses are the corresponding threshold values
of 50% of the maximum correlation peaks. After the
AND operator was applied to the three planes, the

Table 8. Correlation and Discrimination Results Obtained from Multichannel Decomposition Based on the CIELab Color Transformation
under Several Unknown llluminant Conditions®

Object

Illuminant Channel 01 02 03 04 50% Threshold

Test 1 L* 1.534 x 1013 1.249 x 103 1.190 x 1013 1.359 x 103 7.669 x 102
a* 1.121 x 10 1.666 x 103 5.042 x 102 8.032 x 10'3 6.060 x 103
b* 7.522 % 10° 2.991 x 10° 4.368 x 10° 3.332 x 10° 3.771 x 10°

Recognized AND Yes No No No

Test 2 L* 1.412 x 10%3 1.159 x 1013 1.064 x 103 1.348 x 10%3 7.062 X 10'2
a* 1.973 x 104 5.428 x 10'? 2.569 x 103 1.458 x 104 9.866 x 10'?
b* 8.708 x 10° 3.164 x 10° 3.705 x 10° 3.646 x 10° 4.354 x 10°

Recognized AND Yes No No No

Test 3 L* 1.300 x 10%? 1.059 x 103 9.963 x 102 1.281 x 10%? 6.502 x 10'2
a* 1.505 x 104 3.383 x 10'3 3.096 x 1012 1.116 x 10 7.524 x 1013
b* 7.274 X 10° 2.719 x 10° 3.668 x 10° 3.329 x 10° 3.637 x 10°

Recognized AND Yes No No No

Test 4 L* 1.492 x 1013 1.217 x 103 1.216 x 103 1.435 x 1013 7.461 x 102
a* 5.331 x 10'? 5.466 x 10'? 5.270 X 103 3.458 x 10'? 2.733 x 10'3
b* 6.154 x 10° 3.056 x 10° 3.785 x 10° 3.370 x 10° 3.077 x 10°

Recognized AND Yes No Yes Yes

“The target is object O1 under the illuminant D65.
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Table 9.

Correlation and Discrimination Results Obtained from Multichannel Decomposition Expressed as Three Coefficients
under Several Unknown llluminant Conditions®

Object

INluminant Channel 01 02 03 04 50%Threshold

Test 1 Coefficient 1 1.105 x 1071 8.050 x 1072 8.261 x 1072 8.371 x 1072 5.525 X 102
Coefficient 2 2.870 x 1073 2.135 X 107° 4.405 X 107° 3.110 x 1073 1.550 x 1073
Coefficient 3 4.646 x 107 6.796 X 10°° 6.240 X 107° 1.853 x 104 2.320 x 10~

Recognized AND Yes No No No

Test 2 Coefficient 1 9.854 X 1072 6.897 X 1072 7.295 X 1072 7.393 X 1072 4.925 X 1072
Coefficient 2 2.740 x 1073 1.858 x 10°° 1.104 x 1074 2.951 x 1073 1.500 x 102
Coefficient 3 4230 X 107* 5.746 X 107° 5.595 X 107° 1.459 x 107 2.115 x 10~*

Recognized AND Yes No No No

Test 3 Coefficient 1 7.586 X 102 5.408 X 102 5.766 X 102 5.656 X 1072 3.795 X 1072
Coefficient 2 2.014 x 1073 1.462 x 107° 1.112 x 107 2.172 x 1073 1.100 x 1073
Coefficient 3 3.099 x 107* 4.198 x 107° 4.116 X 107° 1.137 x 10°* 1.549 x 10

Recognized AND Yes No No No

Test 4 Coefficient 1 9.616 x 1072 7.111 x 1072 7.481 X 1072 7.331 x 1072 4.810 x 1072
Coefficient 2 2.418 x 1073 1.264 x 107° 1.552 x 1074 2.604 x 1073 1.300 x 1073
Coefficient 3 3.621 X 10°* 3.820 X 10°° 5.628 x 107° 1.416 x 1074 1.810 x 1074

Recognized AND Yes No No No

“The target is object O1 under illuminant D65.

Fig. 6. (a) Correlation peaks derived from the CIELab coordinates when the scene was captured under test illuminant 4. The x and y
coordinates represent spatial positions in the image. (b) Correlation peaks derived from coefficients 0,%, 05, and o5 when the scene
was captured under test illuminant 4. The x and y coordinates represent spatial positions in the image.
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coefficient correlation method led to a positive dis-
crimination of color object O1l. Nevertheless, the
correlation peaks are wider than those obtained in
the examples above, and additional peaks appear
around the target, although they do not lead to false
alarms. This is so because the color areas are not so
nearly spatially uniform as the simulated areas used
in the scenes of Fig. 4. Two main reasons can ex-
plain these results: First, capturing color with a
CCD is a noisy process, even when the camera is
carefully calibrated and the dark noise is appropri-
ately subtracted from the RGB values of each pixel;
second, the results suggest that the linear models of
reduced dimension used here probably do not suffice
for an adequate description of surface reflectances.
It will be important in future studies to analyze the
use of multispectral object recognition with more
than three coefficients, as we commented above, and
its influence on the design of the matched filters used
in the optical correlation architecture.

6. Conclusions

We have introduced what to our knowledge is a new
method of multichannel decomposition of color im-
ages based on a linear description of spectral surfaces
and illuminants that permits the introduction of color
information in optical pattern recognition. The
method uses linear models based on principal-
component analysis to represent the spectral reflec-
tance function of each image pixel and the spectral
power distribution of the light sources in suitable

1890 APPLIED OPTICS / Vol. 43, No. 9 / 20 March 2004

basis for linear representation. We first demon-
strated the discrimination capability of the method
under controlled illuminant conditions. The coeffi-
cient method can discriminate polychromatic objects,
and the results are independent of any changes in the
illuminant under which the scene is captured. The
correlation results are satisfactory even for the low-
dimensional basis used to represent the surface re-
flectance function of the image pixels. The
discrimination capability of this method is clearly an
improvement on that obtained with RGB multichan-
nel decomposition and is slightly better than those of
other approaches used in optical correlation, such as
the CIELab system, that are based on uniform color
spaces.

Also, we have demonstrated that optical color-
pattern recognition can be achieved under conditions
of unknown illuminants. In this case the use of a
reference surface that is captured within the input
color scene allows an illuminant-estimation algo-
rithm to be used, which will lead to positive discrim-
ination in situations when the target is captured
under a reference illuminant and the scene contain-
ing the target is captured under an unknown, spec-
trally different illuminant. Although the recovered
SPD of the illuminant was not mathematically per-
fect, the coefficient method provides reasonably good
invariant color recognition. It is clear that the spec-
tral recovery of surfaces and illuminants is limited by
the dimensionality of the linear bases. More com-
plicated and efficient algorithms can be used to esti-



mate the illumination. The small number of basis
vectors used here, only three, is a compromise selec-
tion but allows us to illustrate the potential use of the
method.

The results also suggest that the computation of
only two of the coefficients (o5 and o3™) alone gives
no false alarms between the source and the target
images. But we believe that a potential use of the
coefficient correlation method is precisely suited for
the possibility of using more than three color compo-
nents in optical pattern recognition, which can lead to
better spectral surface description and accurate color
object recognition. The linear description of both
the source and the target color images leads to a
multichannel correlation of a range as high as the
dimension of the bases chosen to describe the sur-
faces and illuminants. The additional advantage of
the coefficient correlation is that once the linear basis
has been selected it allows the user to transform the
input image into a subspace where the spatial infor-
mation is preserved and the dependence on the spec-
tral content of the illumination is discarded.

This study was supported by the Comisién Inter-
ministerial de Ciencia y Tecnologia, Ministerio de
Educacion y Ciencia, Spain (grant BMF2000-1473).
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