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The aim of a multispectral system is to recover a spectral function at each image pixel, but when a scene is
digitally imaged under a light of unknown spectral power distribution (SPD), the image pixels give incom-
plete information about the spectral reflectances of objects in the scene. We have analyzed how accurately
the spectra of artificial fluorescent light sources can be recovered with a digital CCD camera. The red-
green-blue (RGB) sensor outputs are modified by the use of successive cutoff color filters. Four algorithms
for simplifying the spectra datasets are used: nonnegative matrix factorization (NMF), independent com-
ponent analysis (ICA), a direct pseudoinverse method, and principal component analysis (PCA). The
algorithms are tested using both simulated data and data from a real RGB digital camera. The methods are
compared in terms of the minimum rank of factorization and the number of sensors required to derive
acceptable spectral and colorimetric SPD estimations; the PCA results are also given for the sake of
comparison. The results show that all the algorithms surpass the PCA when a reduced number of sensors
is used. The experimental results suggest a significant loss of quality when more than one color filter is used,
which agrees with the previous results for reflectances. Nevertheless, an RGB digital camera with or
without a prefilter is found to provide good spectral and colorimetric recovery of indoor fluorescent lighting
and can be used for color correction without the need of a telespectroradiometer. © 2007 Optical Society
of America

OCIS codes: 330.1710, 330.1730, 150.0150, 150.2950.

1. Introduction

Multispectral analysis and synthesis of the spectral
power distribution (SPD) of illuminants and spectral
reflectances has been explored extensively during
recent years [1–9]. Spectral imaging combines the
strength of conventional imaging with that of spectros-
copy to accomplish tasks that each cannot perform
separately. The product of a spectral imaging system is
a stack of images of the same object or scene, each at a
different spectral narrow band. The field is divided into
techniques called multispectral, hyperspectral, and ul-
traspectral. While no formal definition exists, the dif-
ference is usually based on the number of bands.
Multispectral deals with several images (from 6 to 31)

at discrete and fairly narrow bands, which is what
distinguishes multispectral in the visible from conven-
tional red-green-blue (RGB) image capturing. Hyper-
spectral deals with imaging narrow spectral bands (up
to 100) over a contiguous spectral range. Ultraspectral
is typically reserved for interferometer-type imaging
sensors with a very fine spectral resolution and deals
with more than 100 bands. These sensors often have a
low spatial resolution of several pixels only, a restric-
tion imposed by the high data rate. These devices,
when combined with computational image-processing
algorithms, can produce the spectra of all the pixels in
the scene. Therefore they are an alternative to the
traditional spectroradiometers that have so far been
used for this purpose, with their limited portability,
low spatial resolution, and high cost. Different compu-
tational approaches have been introduced to improve
both the spectral and colorimetric quality of spectral
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recovery and to reduce the number of components
needed to estimate the computed spectra [4–7,10–12].
When a scene is digitally imaged under an unknown
light the image gives incomplete information about the
spectral properties of the objects in the scene. Never-
theless spectral imaging is able to produce the spectral
reflectance and�or spectral radiance of objects, which
is of relevance in object and material recognition. In
practice, imaging systems used to acquire scene reflec-
tances have to be calibrated immediately after acqui-
sition. This means that the light spectrum reflected
from a neutral reference surface embedded in the
scene should be recorded with a telespectroradiometer
and the color signal at each pixel normalized against
that derived from the white surface. Thus because of
the time and money involved, spectral calibration may
seriously limit the use of spectral imaging devices to
derive simplified illuminant-independent images.

In a previous work we found that it was possible to
recover daylight spectra with high spectral and color-
imetric accuracy with a reduced number of spectral
bands. We used an RGB camera with or without a
prefilter (e.g., a CCD camera coupled or not with suc-
cessive cutoff filters) and found with considerable ac-
curacy a matrix that converted the camera outputs
from a white paper to an estimated spectrum for the
light [7]. The method, which we called direct pseudo-
inverse, was similar to the generalized pseudoinverse
[13] and was based on an a priori analysis of the dig-
ital outputs generated by a training set of lights
of known spectra. The results suggested that the di-
rect pseudoinverse method surpasses methods based
on eigenvector analysis with simple inversion and
pseudoinverse transformation. The great advantage of
this method when compared with many multiband im-
aging devices such as the liquid-crystal tunable filter
(LCTF) is the simplification of the capture procedure
using only three to nine spectral bands. The direct
pseudoinverse algorithm was found to give good color-
imetric performance with only six bands (e.g., the RGB
camera without and with one cutoff filter) and con-
firmed the possibility of using a trichromatic RGB dig-
ital camera to recover daylight illuminants as well as
spectral reflectances [8]. In addition it was unneces-
sary to use either the spectral sensitivities of the cam-
era sensors or eigenvector analysis. The training set of
illuminants was clearly dominated by daylight spec-
tra, and thus narrow and prominent emission peaks at
certain wavelengths did not influence the analysis. We
found that it was difficult to obtain a low-dimension
basis to accommodate the diversity of a complete set of
commercial fluorescent sources [10]. Using a global
basis, which included daylight and blackbody spectra
and the standard illuminants of the CIE, the SPD
recoveries of commercial fluorescents, though accept-
able, especially for colorimetric purposes, could not be
considered completely satisfactory at least for spectral
purposes. The direct pseudoinverse approach does not
use eigenvectors and may prove to be a good alterna-
tive to spectral devices that need to estimate indoor
illumination.

Different approaches have been proposed for classi-
fying and characterizing fluorescent scene illumina-
tion based on a classification procedure with a reduced
set of tabulated fluorescents instead of recovering their
spectral profiles. Tominaga et al. [14–17] used an
LCTF coupled with a monochrome CCD camera and
approached the problem with a proposal including two
different methods. On the one hand, they used an il-
luminant classification algorithm based on a gamut-
based correlation between image colors and a reference
illuminant gamut of colors, and on the other, a peak-
detection technique to analyze the second derivative
spectrum throughout the multiple images captured by
their device. Although the latter procedure used nei-
ther a linear model nor the color temperature of the
illuminants, the classification results were constrained
into only three groups of fluorescent lights.

Multispectral imaging techniques have been applied
to the recovery of spectral reflectances, SPDs of illu-
minants and spectral radiances either by exploiting
the smoothness of the reflectance spectra, using low-
dimensional linear models, or by determining empiri-
cal relationships between spectra and digital counts
[18,19]. Apart from finite-dimensional models of spec-
tra based on principal component analysis (PCA),
methods such as independent component analysis
(ICA) and nonnegative matrix factorization (NMF)
have been developed as alternative mathematical ap-
proaches to describing spectral functions. ICA seeks to
represent multivariate signal data in a linear non-
orthogonal system by maximizing the mutual statisti-
cal independence of the source signals. The basis
functions derived from ICA are not orthogonal and are
defined by second- and higher-order statistics of the
data and are as statistically independent as the data
allow; this is an important difference when compared
with the orthogonal bases obtained from PCA. NMF
algorithms also seek a linear representation similar to
that derived from ICA, but they impose an additional
nonnegativity constraint in that only additive linear
combinations of basis functions are allowed. These
mathematical techniques have proved to be of partic-
ular interest in the design of physically realizable sen-
sors for recovering spectral functions [20]; thus the
algorithms are used to derive appropriate bases for
identifying the pseudoinverse of the basis vectors
with the optical sensors to be used by a spectral device.
The methods have also been a subject of study by
comparing their performance for spectral recovery of
reflectances and color signals, with ICA giving a com-
pression index comparable to JPEG but with more
complex computations [21].

The aim of our present work was to analyze how well
the spectra of artificial fluorescent light sources could
be recovered with a digital CCD camera. The RGB
sensor outputs were modified by the use of successive
cutoff color filters; we used one or two broadband color
filters to increase the number of spectral bands of the
camera. We evaluated the spectral and colorimetric
recovery of incandescent and fluorescent illuminants
using nonnegative matrix factorization, independent
component analysis, and a direct pseudoinverse ap-
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proach. Computational and experimental results are
shown with or without a prefilter. None of the recovery
algorithms used here needed information about the
spectral sensitivities of the camera sensors or eigen-
vectors to estimate the spectral power distributions of
illuminants. The different mathematical algorithms
have been compared in terms of the number of sensors
and dimensionality reduction (rank of factorization)
with particular interest in how the algorithms recov-
ered the spiky spectral profiles that characterize the
SPDs of fluorescents. Because of the difficulties in-
volved in recovering these spiky SPDs with most linear
algorithms we also analyzed a classification of artificial
illuminants with reduced computational cost with the
idea of reaching a compromise between perfect spec-
tral recovery (e.g., illuminant identification for color
constancy) and the minimum possible number of spec-
tral descriptors to allow an acceptable spectral and
colorimetric description of indoor illumination.

2. Illuminant-Recovery Methods

When a CCD digital color camera is pointed at a
surface with spectral reflectance function rx���, the
response of the kth sensor for pixel x can be modeled
linearly by

�k
x � �

��400

700

Ex���rx���Qk�����, (1)

where Qk��� is the spectral sensitivity of the kth sen-
sor, and Ex��� is the SPD of the illuminant impinging
on the surface, both functions sampled at 5 nm inter-
vals in the visible range of 400–700 nm. Thus Eq. (1)
can be rewritten in matrix notation as

� � CE, (2)

where � is a k � N matrix the columns of which
contain the sensor responses for each of the N image
pixels, and C is a k � n matrix (n � 61 wavelengths)
the rows of which contain the wavelength-by-
wavelength multiplication of the reference white
surface reflectance and sensor sensitivities. As we
showed in a previous study [7] a linear system of k
equations with n unknowns should be resolved from
Eq. (2) to determine the SPD E if the spectral re-
flectance r of a reference surface embedded in a
scene and its corresponding digital counts � are
known. To solve this underestimation problem, the
number, k, of the camera sensors can be increased by
using successive cutoff filters in front of the camera
lens as each cutoff filter generates three new sensi-
tivity curves. Thus we are increasing the number of
degrees of freedom and have more equations to solve
for more possible unknowns [7,19,22,23].

We first simulated digital counts using the spectral
sensitivities of a Retiga 1300 digital CCD color cam-
era (QImaging Corp., Canada) with 12 bits intensity
resolution per channel. We assume that the camera is
pointing at chip number 19 from the ColorChecker,
X-Rite Inc. and GretagMacbeth AG, USA, which has
a known spectral reflectance, and modeled the CCD
response according to Eq. (2). Matrix C in Eq. (2) is

based on a set of camera sensitivities but is used to
generate only a set of noise-free fictitious data. The
algorithms being tested then proceed without using
the camera’s sensitivity data. The RGB camera out-
puts are modified to use a 3-, 6-, 9-, or 12-band spec-
tral camera (Fig. 1); in this way the number of
sensors was k � 3, 6, 9, or 12. The colored filters were
colored glass filters OG550, RG630, and BG12 from
OWIS GmbH, Staufen, Germany.

Following the usual procedure we used a set of spec-
tra for training and a different set for testing the per-
formance of the algorithms. The training set was
composed of 82 SPDs of fluorescent-type illuminants,
and the test set comprised a set of 20 commercial flu-
orescent and incandescent lights that were not in-
cluded in the training set [24]. The training set
included the common three groups into which the
SPDs of fluorescents are usually categorized according
to their spectral profile (the common fluorescents F1 to
F6, the high-color-rendering fluorescents F7 to F9, and
the triple-band fluorescents F10 to F12) [25]. Figure 2
shows the color distributions in the CIELab a*b* space
when the white surface was illuminated by each illu-
minant from the training and test sets. Equation (2)
was used to derive the digital counts under different
illuminant conditions, and these fictitious data acted
to simulate the camera in Section 3. Different mathe-
matical approaches were used to resolve Eq. (2) for the
SPDs of the illuminants.

A. Nonnegative Matrix Factorization Algorithms

Given a nonnegative data matrix, E (an n � m ma-
trix), nonnegative matrix factorization finds an ap-
proximate factorization into two nonnegative matrix
factors, W (an n � u matrix of basis vectors) and H
(a u � m matrix of u coefficient vectors), where the

Fig. 1. Spectral sensitivities of the 3-, 6-, 9-, and 12-band spectral
camera. Dashed and solid curves represent the unmodified and
modified bands of the RGB digital camera sensors, respectively.
The successive cutoff filters were the OG550, RG630, and BG12
colored-glass filters from OWIS GmbH.
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so-called rank of factorization, u, is smaller than ei-
ther n or m and allows us to introduce the general
concept of dimensionality reduction and its relation-
ship to matrix factorization [26,27]. In this work the
data matrix is a set of unknown illuminant spectra, E
(an n � m matrix of m � 20 illuminant spectra sam-
pled at n � 61 wavelengths in the visible range of
400–700 nm), which will be derived using a relation-
ship involving the coefficient vector within each col-
umn of H (an u � m matrix) as

E � WH. (3)

Since the intention of spectral recovery is to esti-
mate the illuminant spectra from the responses of a
CCD color camera, we first computed a set of sensor
outputs, �o (a k � t matrix of t � 82 training spectra
captured by k sensors) and coefficient matrix, Ho (a
u � t matrix), from a training set of illuminants. Thus,
given a data matrix of unknown illuminant spectra, E,
the sensor outputs of which are � (a k � m matrix), the
corresponding coefficient matrix, H, is computed
from the training set as

H � �Ho��o
T�o��1�o

T�� � �Ho�o
���, (4)

where �o
� is the pseudoinverse matrix of �o. Equation

(3) is then applied to recover the estimated spectra.
To reduce the computational cost of spectral estima-
tion the rank of factorization, u, can be adjusted ac-
cording to the input data matrix. We have resorted to
two NMF algorithms, which use two different error
functions for the optimum choice of W and H, these
being the Euclidean and the divergence updates by
Lee and Seung [28].

B. Independent Component Analysis Algorithm

Independent component analysis (ICA) is a statisti-
cal, computational technique for developing the hid-

den factors that underlie sets of random variables
and measurements. The ICA algorithm approximates
data using a similar decomposition to that in Eq. (3)
and finds basis vectors that are uncorrelated and also
independent but not necessarily orthogonal. The data
variables are assumed to be linear mixtures of some
unknown latent variables and the mixing system is
also unknown. The latent variables are assumed to be
non-Gaussian and mutually independent, and are
known as the independent source or factor compo-
nents of the observed data [27,29]. ICA assumes that
the data set E can be represented as a linear combi-
nation of a set of independent source components, hi.
Thus E � WH � �i wihi, where W is a scalar square
matrix and the rows of W (components wi) are the
basis functions. Note that the data set E has the same
meaning as it does in the NMF calculations. Thus,
assuming a set of unknown illuminant spectra, E (an
n � m matrix of m � 20 illuminant spectra), we can
follow the same steps as in the derivation of Eqs. (3)
and (4) to recover the estimated spectra. We used
here the fast-ICA algorithm by Hyvarinen [29], which
is a computationally highly efficient and faster
method for performing the estimation of ICA.

C. Direct Pseudoinverse Method

This method is also based on a pseudoinverse trans-
formation between the estimated illuminant spectra,
E, (an n � m matrix, with m � 20) and sensor re-
sponses, � (a k � m matrix) expressed by

E � F�. (5)

In this expression matrix F (an n � k matrix) is
derived following a pseudoinverse method by

F � Eo���o
T�o��1�o

T� � Eo�o
�, (6)

where Eo (an n � t matrix, with t � 82) and �o
(a k � t matrix) are the SPDs, and their correspond-
ing sensor outputs for the training set of illuminants
and �o

� are the pseudoinverse matrices of �o [7].
Equation (5) is equivalent to an analysis in which an
orthonormal basis such as the orthonormal basis of
the sensor output vectors is found.

D. Principal Component Analysis

Principal component analysis (PCA) is the most usual
approach for reducing multidimensional datasets to
lower dimensions. It is based on the fact that it is
possible to find square-integrable functions Vi����i �
1, 2, . . . , M� and a single set of real numbers, �i, such
that E��� � �i�1

M �iVi��� where coefficients �i are ob-
tained by orthogonal projection over the basis func-
tions [22]. Most of the SPDs of natural illuminants
can be described by small-dimensional linear models
and earlier studies have shown that 3 to 7 eigenvec-
tors, which can be obtained by PCA, suffice for ade-
quate reconstructions of the illuminants [9–12,23].
Using Eq. (2) and this linear representation, a two-
step M � k transformation is derived by fitting the k
digital signals and the M eigenvector coefficients, �i.

Fig. 2. The CIELab a*b* color distributions obtained for chip 19
of the MacBeth ColorChecker under each of the training and test
illuminants.
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A relationship between the sensor camera and the
digital counts can be established by the usual pseudo-
inverse calculations [7] as

G � ��T���T��1, (7)

and the estimated SPDs of the illuminants can be
obtained from the matrix product

Ee � V�G��. (8)

The method requires a careful choice of k sensors
since their number determines the dimension of the
base derived from PCA and influences the spectral
and colorimetric quality of the SPD estimation [4,5].

E. Metrics for Quality Evaluation and Classification

To quantify the quality of the reconstructions we
used the following metrics: the goodness-of-fit-
coefficient (GFC) and the CIELab color difference,
�Eab* [30,31]. The GFC is based on Schwartz’s in-
equality and is defined as the cosine of the angle
between the original signal f��� and the recovered
signal fr���, thus

GFC �
	�

j
f��j�fr��j�	

�	�
j

�f��j��2		�
j

�fr��j��2	�1�2. (9)

This measurement of spectral similarity has the ad-
vantage of not being affected by scaled factors. Colo-
rimetrically accurate illuminant estimations require
GFC 
 0.995; GFC 
 0.999 indicates quite good spec-
tral fit, and GFC 
 0.9999 an almost-exact fit [12].
The CIELab color-difference formula was used to
evaluate colorimetric quality and was calculated with
reference to the color signal of a white patch in the
scene for illuminant estimation; a D65 illuminant
was assumed for the evaluation of color differences.
Differences of less than 3 CIELab units between the
original and the estimated spectra were considered to
be acceptable [30–33].

3. Computational Results

We made an experiment to evaluate the performance
of the above methods first using simulated digital
counts. Subsequently, we used a real RGB digital
camera, the same as that described to compute the
digital counts. The experimental setup is dealt with
in Section 4.

A. Comparison Between Methods

To analyze the differences between the various recov-
ery algorithms we first used the same SPDs for both
the training phase, according to Eqs. (4) and (6), and
the test phase to study the spectral recovery perfor-
mance. Figure 3 illustrates the average colorimetric
��Eab*� performances when the algorithms are used

Fig. 3. CIELab color differences derived from the algorithms tested using different numbers of sensors and factorization rank. The results
are mean values for the training set of fluorescent illuminants.
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with different ranks of factorization for the training
set of illuminants. The rank of factorization u � 29
was chosen according to the convergence rate derived
from the original ICA algorithm [28]. It should be
noted that where no bars appear in the figures it
means that the algorithm does not converge appro-
priately (e.g., ICA for u � 29 coefficients) or that it
makes no sense (e.g., direct pseudoinverse algorithm,
as it does not use coefficients).

The recovery colorimetric quality clearly improves
concomitantly with an increase in both the number of
camera filters and the rank of factorization. The re-
sults show that even with only three sensors the color
differences are approximately or less than 2 CIELab
units (which indicates a good colorimetric estimation)
for all methods. PCA always provides the worst re-
sults, but this is an expected result because of the
spiky spectral profiles of the SPDs, which correspond
to the SPDs of the fluorescent lights that we used
here. By introducing more color filters the recovery
quality is significantly better (less than 0.2 CIELab
units for two color filters and the maximum rank of
factorization). Table 1 shows the mean GFC and

�E*ab values calculated across all the training illu-
minant spectra; only results from the maximum rank
of factorization are shown for color filter combina-
tions. The results show very good spectral recoveries
for 9 and 12 sensors with GFC values above 0.999 for
the NMF, ICA, and direct pseudoinverse algorithms.
In addition, our results suggest that the ICA and
direct pseudoinverse approaches lead to very similar
results and surpass NMFs for 6 and 9 sensors. In a
previous work we found that daylight spectra could
be recovered with a reduced number of sensors based
on an a priori analysis of a set of RGB signals from a
white surface captured by a digital CCD camera [7].
The results shown here from the ICA and the direct
pseudoinverse methods confirm the CCD’s potential
as an illuminant-estimation device even for a reduced
training set of illuminants and the spiky profiles of
some of these SPDs.

The advantage of the NMF algorithm is that we
can adjust the size of the coefficient matrix, H, to
minimize the computational cost of SPD recovery.
The effects of rank of factorization and number of
filters were tested by a repeated-measured analysis

Table 2. Mean and Sample Standard Deviation of GFC and �E*ab Values Obtained for the Test Spectraa

Measure Algorithm

Number of Sensors

k � 3 k � 6 k � 9 k � 12

Mean SD Mean SD Mean SD Mean SD

GFC NMF Euclidean 0.95062 0.06239 0.97873 0.02209 0.97961 0.02272 0.98474 0.02428
NMF divergence 0.95065 0.06240 0.97949 0.02280 0.97949 0.02280 0.98431 0.02501
ICA 0.95062 0.06240 0.97870 0.02207 0.97981 0.02238 0.98472 0.02492
Direct pseudoinv 0.95065 0.06240 0.97873 0.02205 0.97984 0.02236 0.98480 0.02489
PCA 0.89926 0.07683 0.94410 0.04599 0.98543 0.01167 0.93557 0.10765

�E*ab NMF Euclidean 1.9421 1.7096 0.7395 0.7485 0.4043 0.4300 0.2886 0.3435
NMF divergence 1.9479 1.7170 0.3926 0.3946 0.3926 0.3946 0.3297 0.3180
ICA 1.9464 1.7161 0.7438 0.7472 0.3625 0.3400 0.2142 0.3082
Direct pseudoinv 1.9467 1.7169 0.7451 0.7473 0.3621 0.3406 0.2118 0.3085
PCA 3.0078 1.5298 1.8320 1.3003 0.4600 0.2593 0.6372 0.9146

aOnly the maximum rank of factorization (u � 29 in the case of NMF algorithms) is shown for each number of filters.

Table 1. Mean and Sample Standard Deviation of GFC and �E*ab Values Obtained for the Training Spectraa

Measure Algorithm

Number of Sensors

k � 3 k � 6 k � 9 k � 12

Mean SD Mean SD Mean SD Mean SD

GFC NMF Euclidean 0.98004 0.04226 0.98004 0.04226 0.98004 0.04226 0.99972 0.00054
NMF divergence 0.98004 0.04226 0.98004 0.04226 0.98004 0.04226 0.99972 0.00059
ICA 0.98005 0.04225 0.99704 0.00701 0.99920 0.00220 0.99973 0.00053
Direct pseudoinv 0.98005 0.04225 0.99704 0.00701 0.99920 0.00220 0.99973 0.00053
PCA 0.96405 0.04509 0.97663 0.04030 0.99316 0.01640 0.99803 0.00350

�E*ab NMF Euclidean 1.5467 1.3898 0.2912 0.2834 0.0909 0.1215 0.0567 0.0631
NMF divergence 1.5484 1.3962 0.0860 0.1194 0.0860 0.1194 0.0615 0.0616
ICA 1.5484 1.3958 0.2920 0.2860 0.0819 0.1215 0.0228 0.0424
Direct pseudoinv 1.5484 1.3958 0.2920 0.2860 0.0819 0.1215 0.0228 0.0424
PCA 2.0200 1.3700 0.9005 1.2500 0.1522 0.2223 0.0620 0.0853

aOnly the maximum rank of factorization (u � 29 in the case of NMF algorithms) is shown for each number of filters.
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of variance (ANOVA) of three factors: the algorithm
(three levels: NMF Euclidean, NMF Divergence, and
PCA), the number of sensors (four levels: k � 3, 6, 9,
or 12) and the rank of factorization (five levels: u � 3,
6, 9, 12, or 29). Thus we first analyzed the statistical
differences between the NMF and PCA algorithms
using a 3 � 4 � 5 multivariate analysis of variance
(MANOVA) because ICA and direct pseudoinverse
methods do not allow different ranks of factorization.
We found significant differences for GFC �p �� 0.05�
depending upon the algorithm, number of sensors,
and the ranks of factorization to be used. Our results
suggest no interaction between the factors algorithm
and rank u, although it is close to significant (p �
0.059). Post hoc comparisons do not suggest signifi-
cant differences between NMF Euclidean and NMF
Divergence (p � 1.00), although the difference be-
tween them and PCA is significant �p �� 0.05�, as
shown in Table 1. For the factor sensor we found
significant differences in the GFC values as a func-
tion of the number of color filters used, although val-
ues are close to significance level (p � 0.023) for
two- and three-color filters (k � 9 and k � 12, respec-
tively) suggesting asymptotic values for GFC when
more than two color filters are used. We did not find
the triple interaction among factors to be significant
(p � 0.729).

As far as the colorimetric differences are con-
cerned, our results show significant differences for
the three factors �p �� 0.05�, with the double inter-
action algorithm � rank and sensor � rank being
significant but not the triple interaction (p � 0.628).
Once more, post hoc analysis suggests significant dif-
ferences between the NMF and PCA algorithms
�p �� 0.05�, but no differences are found between
NMF Euclidean and NMF Divergence. The number
of filters used is also significant for colorimetric qual-
ity, suggesting an asymptotic value for color differ-
ences (in this case values are close to significance
with p � 0.059). On the other hand, the factor rank is
significant for colorimetric quality, with the largest
differences found for u � 3, whatever the algorithm
and number of sensors used.

We then included ICA and direct pseudoinverse
into the statistical analysis by fixing u � 29 for NMFs
and PCA. A 3 � 4 MANOVA shows that the factors
algorithm and sensor and their corresponding inter-
actions are significant �p �� 0.05� for spectral and
colorimetric quality. Post hoc analysis shows that
PCA obtained the worst results, both for spectral
quality (average GFC value of 0.9800 versus 0.9940
for the other algorithms) and colorimetric quality (av-
erage �E*ab of 0.78 versus 0.48 for the others). The
difference between the use of two or three filters is
close to significant (p � 0.03), confirming a maximum
quality for more than two color filters. The statistical
results show that the larger differences correspond to
the use of a naive RGB camera (GFC value of 0.997
and �E*ab of 1.642 on average for all factors). Thus
we can conclude that introducing more than two col-
ored filters is unlikely to produce significant improve-
ment in spectral and colorimetric quality, with PCA

deriving the worst results. In addition, a reduction of
dimensionality to u � 3 clearly affects colorimetric
quality whatever the algorithm and number of col-
ored filters used.

B. Spectral and Colorimetric Qualities for Test Spectra

We use here the test set of illuminants, which are not
included in the training data set, to analyze the per-
formance of the recovery algorithms. Table 2 shows
the mean (and sample standard deviation) of GFC
and �E*ab values calculated across all test spectra
for each number of filters and the maximum rank of
factorization. First, the results confirm that both re-
covery quality and performance increase concomi-
tantly with the number of sensors, as expected from
previous results. The values are above 0.984 for GFC
and around 0.2 �E*ab for color differences when the
maximum number of sensors are used, but not for
PCA. We find that the spectral-recovery quality de-
rived from PCA is poor, even for k � 12 sensors (GFC
approximately 0.935), although the colorimetric qual-

Fig. 4. Cumulative distribution function for the GFC (upper plot)
and color difference (lower plot) data derived from the direct
pseudoinverse method. The results are for the test set of fluores-
cent illuminants and different numbers of sensors.
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ity is acceptable, with color differences of around 0.6
�E*ab for the best result.

Second, metric selection is crucial for the spiky
spectral profile of fluorescents. Figure 4 shows the
cumulative distribution function for the spectral
and colorimetric performance derived from the di-
rect pseudoinverse method. The figure shows the pro-
portion of spectral recoveries that takes on values
less than or equal to some GFC and �E*ab values.
What is clear is that the variety of fluorescents com-
prising the test illuminant set now leads to lower
average GFC values. Nevertheless, the colorimetric
quality is acceptable for three sensors (7 of 20 test
fluorescents lead to �E*ab 
 2) and very good when
the camera is combined with color filters. Figure 5
shows examples of spectral recovery for fluorescent
illuminants with different spectral profiles and using
different numbers of sensors. The examples on the
top row are for spectrally and colorimetrically accu-
rate illuminant estimations with GFC 
 0.995 and
�E*ab �� 1 and those on the bottom row are from
colorimetrically accurate estimations with low color
differences but lower spectral quality according to

GFC values. These examples clearly reveal the dif-
ferences between spectral and colorimetric metrics
when prominent spectral emission peaks appear in
the SPD of fluorescents. This is particularly evident
for those illuminants that show a relatively smooth
spectral profile, for which the recoveries are far from
being spectrally accurate (see Fig. 5). Nevertheless,
color differences are below 2 CIELab units between
the original and the estimated spectra and thus can
be considered acceptable [18,30,31]. We have tested
the differences between spectral and colorimetric
qualities using a 5 � 4 MANOVA, which includes
the effects of the algorithm and the number of sen-
sors. For both GFC and color differences we found
no significant differences between the algorithms
�p �� 0.05� and the statistical influence on the num-
ber of color filters used (p � 0.002). We did find,
however, significant interaction between the algo-
rithm and the number of sensors for the measurement
�E*ab �p �� 0.05� while there was no interaction for
the factor GFC (p � 0.544). Thus the statistical anal-
ysis suggests that spectral estimation is a multidi-
mensional problem and a combination of different

Fig. 5. Examples of SPD recoveries from the computational results and different algorithms, with different numbers, k, of sensors.
Original (—) and recovered (o) spectra are shown.
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metrics should be used because a single quality num-
ber may not possibly show significant variations [30].

4. Experimental Results

We next used real data obtained from the same Re-
tiga 1300 digital CCD color camera from QImaging
under the same conditions to recover the spectra of
illuminants and compare them with a spectroradiom-
eter. The camera outputs were corrected for any non-
linearity by capturing the six gray patches of the
GretagMacBeth ColorChecker and simultaneously
measuring their radiance with a PR650 spectroradi-
ometer from Photoresearch, Chatsworth, California,
USA. We averaged the sensor outputs over a 10 �
10 pixel image fragment and fixed the camera aper-
ture at 5.6. The dark current was subtracted from the
camera sensors, and all the sensor responses were
normalized by the corresponding exposure times.

The experimental data to be applied in Eq. (2) were
now the camera responses for the achromatic chip
number 19 of the GretagMacBeth ColorChecker
when illuminated by the following commercial fluo-
rescent lights: Digilite, Trilite, and Opus (Bowens
International Limited, Essex, UK) together with a
combination of the three lamps. As explained in Sec-

tion 2, the RGB camera outputs were modified using
successive cutoff color filters. As a consequence of our
computational results we decided to use only the 3-,
6-, and 9-band spectral camera (Fig. 1), as derived
from the OG550 and RG630 colored filters.

Table 3 shows the average spectral and colorimetric
quality for the experimental results when the NMF
Euclidean and the direct pseudoinverse algorithms are
used. Recovery quality depended upon the number of
sensors, as we have described above for the computa-
tional results. The average spectral performance for
the direct pseudoinverse method was found to be 0.9
with color differences of around 3 units. Nevertheless,
average quality results fell when more than one color
filter was used. This clearly differs from the previous
computational tests and gives an idea of the influence
of noise upon this kind of spectral estimation, with
the spiky spectral profile of fluorescents amplifying
this effect [5]. Figure 6 shows examples of spectral
recoveries using the camera with and without prefil-
ters, in which the plots show once more that good
spectral recoveries do not imply good colorimetric
performance. These results agree with those found
for reflectances in which performance deteriorates
concomitantly with an increase in the dimensionality
of the linear models, and median �E*ab values
within the interval 2.13–3.92 when different dimen-
sional linear models and polynomial methods are
used [18].

5. Chromatic Difference Versus Spectral Recovery

The above results suggest that it is possible to convert
with considerable accuracy the camera outputs from
a neutral surface when illuminated by some kind of
fluorescent light to an estimated spectrum for that
light. It is impossible to find a priori a single corre-
spondence between RGBs and SPDs of illuminants,
but can we identify a fluorescent light using the RGB
values alone without firstly recovering its spectra?
We now show that we can if we take into account that

Table 3. Average Spectral and Colorimetric Performance of the
Experimental Results for the NMF Euclidean (Using the Maximum Rank

of Factorization) and Direct Pseudoinverse Methods with Different
Numbers of Sensors

NMF Euclidean
Direct

Pseudoinverse

GFC �E*ab GFC �E*ab

k � 3 Mean 0.89881 4.39 0.90120 3.03
SD 0.07802 2.93 0.08220 2.83

k � 6 Mean 0.81420 11.92 0.81241 11.90
SD 0.18021 7.21 0.18462 7.11

k � 9 Mean 0.68772 16.72 0.68283 16.54
SD 0.05310 5.44 0.05311 5.65

Fig. 6. Examples of experimental SPD recoveries using a real RGB digital camera coupled with different numbers, k, of color filters; the
results are for the direct pseudoinverse method. Original (—) and recovered (o) spectra are shown.
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the set of commercial available fluorescents is of a
reduced size, at least in terms of very different spec-
tral profiles. What we must do first is solve for a set
of fluorescents that induces the same sensor outputs
when they illuminate a neutral surface. The chip
number 19 from the GretagMacBeth ColorChecker
will be used as a neutral white surface in the follow-
ing calculations. In mathematical terms, denoting
the sensor outputs of the training illuminants as the
k � m vector, P, (with m � 82 SPDs, as used in
Section 3), the corresponding solution for the sensor
outputs of the test illuminant � is also a k � m vector
(with either m � 20 SPDs, as in the computational
results shown in Section 3, or m � 6, as in the Section
4), which is derived by solving for

min��
i�1

k

��i � Pi�2�1�2

; �k � 3, 6, 9, 12�, (10)

where k is the number of sensors (e.g., the RGB cam-
era with successive cutoff filters). This means that we
are minimizing the distance between the chromatic
coordinates of the test and training illuminants in the
sensor output space and not in the spectra domain.
With this minimization procedure we tried to solve
for the chromaticity region covered by the fluores-
cents in the chromaticity space (see Fig. 2).

Table 4 shows the average spectral and colorimet-
ric results for the illuminant identification. The train-
ing illuminant selected was the closest to the test
illuminant in the k-dimensional space of digital
counts. On the one hand, our results suggest a good
colorimetric quality, with �E*ab values of around 2,
although spectral quality is only around 0.97, while
on the other hand an increase in the number of col-
ored filters used does not improve recovery quality.
This suggests a good performance for a reduced num-
ber of sensors with the additional advantage com-
pared with others that no previous classification of
fluorescents is needed in the training set of illumi-
nants [17].

6. Summary and Conclusions

We have used four different algorithms based on dif-
ferent mathematical approaches to recover the SPDs

of fluorescent lights both computationally and exper-
imentally. The spectral profiles of these lights are
characterized by the presence of prominent peaks
along the visible spectrum, and these peaks are dif-
ficult to recover using PCA with a reduced number of
parameters and eigenvectors. First, our computa-
tional results suggest that fluorescent lights can be
recovered with acceptable spectral and colorimetric
accuracy using no information about the spectral sen-
sitivities of the camera sensors or eigenvectors. The
greater the number of sensors the better the compu-
tational results, whatever the algorithm used, al-
though NMF, ICA, and direct pseudoinverse always
surpass the spectral and colorimetric quality of re-
coveries deriving from PCA. Another difference be-
tween the algorithms is that NMF algorithms allow
the use of variable ranks of factorization, u, but the
ICA [28] does not converge appropriately for u � 29
and acceptable results are obtained only for u � 25.

Apart from the different objective functions used by
the NMF algorithms, they differ in terms of compu-
tation times. The times of the Euclidean distance
algorithm tend to be less than the divergence algo-
rithm but the latter involves fewer floating-point op-
erations [34]. We studied the performance of the
Euclidean and the divergence algorithms in compar-
ison with the ICA and the direct-mapping approach.
The computational results show slight differences be-
tween the Euclidean and divergence algorithms, but
it is not clear which outperforms the other in terms of
time and computational compression. Although NMF
algorithms may reduce the computational cost of
spectral devices, our experiments suggest that ICA,
and in particular direct pseudoinverse, due to its sim-
plicity, outperforms the NMF approaches, even for
fluorescent lights and even using a reduced training
set of illuminants. The relatively low quality of the
experimental recoveries when compared with our
earlier findings may be surprising, particularly the
results that suggest a decreasing trend in quality
concomitant with an increase in the number of sen-
sors [7]. On the contrary, the use of fluorescents gives
an idea of the influence in the direct pseudoinverse
method of the spectral gamut produced by the train-
ing and test sets of illuminants. The colors produced
by the daylight spectra are much reduced when com-
pared to the gamut produced by the fluorescents, and
thus it is difficult to find a good correspondence be-
tween test RGBs and training spectra for fluorescent
lights when the direct pseudoinverse is applied.

We have also shown that it is possible to map test
fluorescents within the sensor-output space of the
camera by solving for a set of fluorescents that in-
duces the same sensor outputs when illuminating a
neutral surface. The results agree with previous al-
gorithms that seek illuminants for color constancy
using color by correlation [35] in which case the chro-
maticity coordinates of an unknown scene illuminant
are determined by seeking the correlation between
the R, G, and B in an image and a training set of
RGBs derived from a large image database repro-
duced under different illuminant conditions. Our ex-

Table 4. Average Spectral and Colorimetric Quality Classification of
Test Illuminants Using the Direct Pseudoinverse Method with Different

Numbers of Sensorsa

Simulated Digital
Counts

Experimental
Results

GFC �E*ab GFC �E*ab

k � 3 Mean 0.9474 2.33 0.9128 1.67
SD 0.0811 2.08 0.0637 0.68

k � 6 Mean 0.9816 2.20 0.7978 4.33
SD 0.0153 0.98 0.0492 0.99

k � 9 Mean 0.9715 2.36 0.7975 9.26
SD 0.0312 0.83 0.0052 0.14

k � 12 Mean 0.9741 2.37
SD 0.0284 0.89

aThe results are for computational and experimental results.
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perimental results go to support previous results
indicating the suitability of using a reduced number
of sensors and rank of factorization. Although spec-
tral and colorimetric quality are not as good as with
simulated digital counts, it is possible to identify flu-
orescent spectra using a naive RGB digital camera
without the constraint of increasing the dimension-
ality of camera signals by incorporating narrowband
filters. This could be an alternative way of identifying
spectra using spectral devices with a small number of
parameters when it is not possible to have access to a
spectroradiometer.

This work was supported by Spanish Ministry of
Education and Science through grant DP12004-03734.
The authors thank their English colleague A. L. Tate
for revising their text.
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