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A linear pseudo-inverse method for unsupervised illuminant recovery from natural scenes is presented.
The algorithm, which uses a digital RGB camera, selects the naturally occurring bright areas (not ne-
cessarily the white ones) in natural images and converts the RGB digital counts directly into the spectral
power distribution of the illuminants using a learning-based spectral procedure. Computations show a
good spectral and colorimetric performance when only three sensors (a three-band RGB camera) are
used. These results go against previous findings concerning the recovery of spectral reflectances and
radiances, which claimed that the greater the number of sensors, the better the spectral performance.
Combining the device with the appropriate computations can yield spectral information about objects
and illuminants simultaneously, avoiding the need for spectroradiometric measurements. The method
works well and needs neither a white reference located in the natural scene nor direct measurements of
the spectral power distribution of the light. © 2008 Optical Society of America

OCIS codes: 150.2950, 150.0150, 330.1710.

1. Introduction

The color of objects depends upon the spectral reflec-
tance properties of their surfaces and the spectral
power distribution (SPD) of the light that illuminates
them [1]. Therefore the color of a natural scene cap-
tured by any conventional or digital camera can vary
considerably when the ambient light changes. Most
commercial digital cameras incorporate a simple
white balance mechanism to solve this problem,
but more sophisticated spectral imaging devices
either directly measure the light impinging on the
scene or derive some canonical image that is inde-
pendent of the illuminant conditions. In the former
situation a white reference surface has to be located
within the scene and its spectral radiance measured
with a telespectroradiometer [2]. In the latter case
different strategies, usually referred to as color con-
stancy algorithms, are used to obtain color-constant
image descriptors [3].

Spectral imaging has been used extensively during
the past decade to obtain spectral functions in each
image pixel [2,4–11]. Unlike conventional imaging
devices, they capture illuminant-independent images
and allow accurate spectral and colorimetric repro-
duction of color images under any lighting conditions.
The experimental setups canbe verydifferent in prac-
tice. Multispectral imaging uses several images
(usually no more than a few tens) with discrete and
fairly narrow bands. Hyperspectral techniques deal
with imaging narrow spectral bands (up to 100) over
a contiguous spectral range. Ultraspectral devices
(with more than 100 bands) are typically designed
for interferometer-type imaging sensors.While no for-
mal procedure exists, in practice the spectral imaging
systems used to acquire scene reflectances have to
measure, immediately after acquisition, the illumina-
tion impingingupon the scene.Thismeans that aneu-
tral reference surface embedded in the scene should
be recorded with a telespectroradiometer [6,7], which
can be critical, particularly for hyperspectral devices
consisting of a digital monochromatic camera with a
liquid crystal tunable filter dealingwith imaging over
a contiguous spectral range and over a fixed exposure
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time for each band. If atmospheric conditions change
during the band capture, the device can fail to associ-
ate the appropriate radiance with the band. Thus,
spectral calibration may limit the use of spectral
imaging devices to derive simplified illuminant-
independent images. Different authors have relied
on the underlying smoothness of signal spectra, with
illuminants and spectral reflectances represented by
low-dimensional models based either on principal-
component analysis or independent-component ana-
lysis to develop a multispectral imaging system [12–

17], butwhena scene is digitally imagedunder light of
unknown SPD the image pixels give incomplete infor-
mation about the spectral reflectances of the objects
in the scene. Thus the use of spectral imaging devices
to recover the spectral reflectanceor spectral radiance
at a single pixel requires previous measurements of
the illumination impinging on a scene.
Over recent years different color-constancy algo-

rithms have also been proposed for a priori illumi-
nant estimation. In computational vision and
digital photography, color constancy seeks a color-
constant description of images under varying illumi-
nant conditions instead of estimating the spectrum of
the light, as spectral imaging does. The methods can
usually be categorized into statistical-based models
and physics-based models [18–22]. The statistical-
based algorithms, which embrace the statistical
knowledge of the possible image colors (possible sur-
face reflectances and SPDs of illuminants), are ro-
bust but also very sensitive to the learning test
data. Color-by-correlation and gamut-mapping algo-
rithms, which have been widely analyzed and tested
[21–23], provide excellent results, but large data-
bases of real images are needed to obtain good algo-
rithm performance.
The physics-based algorithms rely fundamentally

on how light interacts with the object surface. Be-
cause of the complexity of this interaction it is neces-
sary to introduce some approximations and to relax
the constraints embedded within the physical phe-
nomenon of light interaction. The dichromatic reflec-
tance model assumes that the color signal can be
decomposed into two additive terms, one originating
in the interface reflectance and the other associated
with the diffuse reflectance [24]. This algorithm has
proved to be of particular interest in multichannel
cameras in which a set of a reduced number of broad-
band color filters are coupled to a monochrome CCD
camera [4]. A combination of statistical- and physics-
based models has also been put forward as an alter-
native to deciding which method to apply according
to the image content [20].
The target of our work here has been to estimate

the SPD of the illumination of a natural scene. By
using an RGB digital camera and by capturing the
same image with and without a cutoff color filter
in front of the camera lens the effective number of
camera sensors can be increased [16]. Computational
results are shown for different natural scenes and
daylight illuminant conditions. The main difference

from earlier multispectral imaging techniques for il-
luminant or radiance recoveries [16,17] is that we did
not use any white reference surface in the scene. In
previous studies [9,17] we found that it was possible
to use a white reference surface and a linear pseudo-
inverse algorithm to recover the SPD of illuminants
with good spectral and colorimetric performance. A
direct mapping between RGBs and illuminant spec-
tra led to excellent spectral recoveries for daylight,
which was characterized by relatively smooth spec-
tral profiles (with the exception of some particular
absorption bands beyond the visible spectrum) and
was very similar for most of the hours during a clear
day [9,25]. Nevertheless, spectral performance may
decrease if more than three sensors are used in mul-
tispectral-illuminant estimation [17]. Mosny and
Funt [26] also developed a multispectral experiment
with different color-constancy algorithms and have
shown that increasing the number of camera sensors
from three to six or nine does not significantly im-
prove the accuracy of illuminant estimation. For dif-
ferent indoor scenes under a relatively small set of
artificial illuminants, their results suggest that illu-
minant recovery benefits from the use of a six-
channel camera but that little improvement is to
be gained by adding successive color filters.

In the following sections we analyze the use of a
linear pseudo-inverse method for multispectral re-
covery of the SPD of the illuminants of natural
scenes. This is particularly important for spectral
imaging devices because our algorithm needs neither
a white reference located in the scene nor telespec-
troradiometer measurement of the SPD of the light
coming from this white surface. The results are
discussed in terms of spectral and colorimetric
performance in the analysis and synthesis of natural
color images. A comparative analysis with other
color-constancy algorithms that use only three
color channels (max-RGB, gray-world, color-by-
correlation, and dichromatic) is also presented.

2. Methods

A. Computations for Spectral Image Acquisition

When a CCD digital color camera is pointed at a sur-
face with spectral reflectance function r x, the re-
sponse of the kth sensor for pixel x can be modeled
linearly by

ρx
k ¼

X700

λ¼400
ExðλÞr xðλÞQkðλÞΔλ; ð1Þ

where QkðλÞ is the spectral sensitivity of the kth sen-
sor and ExðλÞ is the SPD of the illuminant impinging
on the surface; both functions are sampled at 5nm
intervals in the visible range of 400–700nm. But
any real spectral device is affected by image noise,
which can degrade both its spectral and colorimetric
performance [10]. There are different noise sources,
which include fixed pattern noise, dark current noise,
shot noise, amplifier noise, and quantization noise.
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Assuming a linear response for the CCD camera sen-
sor outputs, the noisy sensor responses ρ0 can be re-
presented as a function of the noise-free sensor
responses ρ as

ρ0 ¼ ρþ η ¼ CE; ð2Þ

where ρ is a k × N matrix whose columns contain the
sensor responses for each of the N image pixels, η is a
k × N matrix vector of uncorrelated components that
affects each sensor separately, C is a k × n matrix
whose rows contain the wavelength-by-wavelength
multiplication (n means the number of wavelength
samples) of the surface reflectance and the sensor
sensitivities, and E is a n × N matrix whose rows con-
tain the SPD of the illuminant. In what follows we
simulated thermal and shot noise with standard de-
viations of 3% (that correspond to a signal-to-noise
ratio of around 30dB) which is an average noise
value for nonrefrigerated color cameras. Although
we simulated the additive noise from the calculated
set of noise-free sensor responses ρ, it is straightfor-
ward from Eq. (2) that noise is also affecting the coef-
ficients of the matrix.
An estimate of a set of test spectra may then be

obtained from the corresponding set of camera re-
sponses ρ0 by solving the underestimation problem,
e.g., increasing the number, k, of the camera sensors
by using successive cutoff filters in front of the cam-
era lens as each cutoff filter generates three new sen-
sitivity curves. These new sensitivities may be more
or less correlated with the old ones depending on the
shape of the spectral transmittance of the cutoff fil-
ters used. We first simulated digital counts by using
the spectral sensitivities of a Retiga 1300 digital
CCD color camera (QImaging Corporation, Canada)
with 12 bit intensity resolution per channel. Camera
responses ρ in Eqs. (1) and (2) are based on a set of
camera sensitivities but are only used to generate a
set of noise-free fictitious data. The RGB camera out-
puts are modified to use a three- to six-band spectral
camera when no color filter (k ¼ 3) or one successive
color filter (k ¼ 6) is used (Fig. 1). Following from pre-

vious results, [17] the color glass filter GG475 from
OWIS GmbH was selected. Although the spectral
transmittance of this color filter does not seem to
generate an appropriate set of three new indepen-
dent spectral sensitivities because it modifies the
blue sensor response much more than the other
two, it corresponded to that producing the best re-
sults. Some results will be cited later in case of using
another cutoff filter less correlated with our camera
RGB sensors.

B. Linear Pseudo-Inverse Illuminant Estimation

A priori the linear pseudo-inverse algorithm needs to
apply a learning-based procedure by assigning sen-
sor outputs to one reference surface in the scene.
We begin by segmenting the images and selecting
the bright areas (not necessarily the whitest) in the
natural scenes. To form the sensor outputs for the
training set of illuminants we use a seeded-
region growing procedure. It starts with assigned
luminance seeds and grows segmented areas by mer-
ging a pixel into its nearest neighboring seed area.
For automatic seed selection, we first calculate the
luminance component of each image as the sum of
the red, green, and blue components. Next we imple-
ment a MATLAB routine that thresholds this
luminance component and produces binary images
containing labels for the segmented areas [27]. Simi-
lar areas are merged, and finally a single image with
different seeded regions is derived for each scene and
each training illuminant. Since image complexity
can vary from one image to another, we further used
different threshold values. Thus, if a high luminance
threshold level is used, a smaller number of seeded
areas is derived, while more segmented areas will be
obtained for small threshold values. The segmenta-
tion procedure and its implementation is simple,
computationally effective, and very fast in terms of
computation times.

For spectral-illuminant recovery, it was shown that
a direct relationship between the camera responses
and the SPD of the illuminants can be established
[17]. The method is based on a direct transformation

Fig. 1. (a) Spectral sensitivities of the RGB digital camera (QImaging Retiga 1300); (b) spectral transmittance of the GG475 colored-glass
filter from OWIS GmbH.
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between the estimated illuminant spectra E (an n × 1
vector) and sensor responses ρ0 (a k × 1 vector) ex-
pressed by

E ¼ Fρ0: ð3Þ

In this expression, the matrix F is derived following a
linear pseudo-inverse method by

F ¼ Eo½ðρ0T
o ρ0

oÞ−1ρ0T
o � ¼ Eoρ0þ

o ; ð4Þ

where Eo (an n × t matrix, with t being the number of
training illuminants) and ρ0

o (a k × t matrix) are the
SPDs and their corresponding sensor outputs for the
training set of illuminants, and ρ0þ

o is the pseudo-
inverse matrix of ρ0

o. Therefore, using this method
with experimental RGB values, there is no need to
use any mathematical base or to know the spectral
sensitivity of the camera sensors.
Thus, suppose we are given m seeded regions for

the same image under a fixed training illuminant.
We can average the sensor outputs for the set of pix-
els belonging to the same seed and form a k × m
matrix of sensor responses ρ0

o for this training illu-
mination. Repeating this procedure for each training
illuminant, a set of t sensor response matrices
fρ0

o;1;ρ0
o;2;…;ρ0

o;tg is obtained and concatenated in
a rowwise manner; this procedure is iteratively re-
peated with each of the natural scenes to derive
the overall sensor output matrix ρ0

o. After the seg-
mentation and the learning-phase procedure each
ρ0

o is assigned to one individual illuminant spec-
trum, which is replicated m times. In this work
the sensor output matrix comprised k × 28; 834 digi-
tal counts, as we had 28,834 pixels corresponding to
the segmentation for the training scenes described
below, thus yielding a matrix training set of illumi-
nants Eo of 61 × 28; 834 spectra each defined over
400–700nm sampled at 5nm intervals. Finally ma-
trices ρ0

o and Eo are used in Eq. (4) to estimate the
recovery matrix F.

C. Hyperspectral Data, Illuminants, and Computations

A set of spectral data from nine natural scenes, seven
of rural environments and two of urban environ-
ments, was used for image reproduction under differ-
ent illuminant conditions. The images, which contain
rocks, trees, leaves, grass, and earth, were acquired
in daylight between mid-morning and mid-afternoon
and were illuminated by direct sunlight from a clear
sky. Additional details of the scenes, the hyperspec-
tral imaging system, and calibration procedure can
be found in [7]. For the present work different frag-
ments of these scenes were used for the training and
testing sets.
The training set of images was made up of nine dif-

ferent fragments, one for each scene, of 400 × 400 pix-
els and reproduced under 100 phases of daylight
measured previously in our laboratory [13]. The test
set comprised 12 fragments of 400 × 400 pixels (none
of their pixels in common with the training set, but

extracted from the same scenes), and the radiance for
each pixel was calculated by using as illumination 25
different daylights not included in the training set.

D. Comparative Color-Constancy Methods

For comparison with the spectral-illuminant estima-
tion method introduced in the subsection above, we
implemented different standard color-constancy al-
gorithms. Unlike spectral imaging, color-constancy
models do not recover the spectrum of the illumina-
tion thrown onto a scene but seek a color image
rendered under a reference light, and thus the pro-
jection of the color of the light onto the camera
RGB sensors is generally enough. Because we are
using bright segmented areas, we first implement
a dichromatic method, which assumes that the cam-
era sensor RGB outputs lie in a two-dimensional
plane, one corresponding to the reflectance proper-
ties of the surfaces and the other describing the
SPD of the interface [28].

Another successful color-constancy algorithm is
color-by-correlation (CbC), which estimates the scene
illuminant by determining a priori a set of plausible
illuminant colors [22]. These two methods lead to
very good color-constancy results but are computa-
tionally complex, requiring a large image data base
for the training phase. Thus we have also used two
additional color-constancy algorithms that estimate
the color of the illuminant by using a simpler and fas-
ter, though somewhat less accurate, procedure than
the previous ones. The gray-world algorithm as-
sumes that the average reflectance in an image is
achromatic and uses the fact that the mean camera
sensor response for each channel gives information
about the color of the light source [29]. Finally, we
use the max-RGB algorithm, which estimates the il-
luminant color prevailing in a scene by determining
the maximum sensor outputs in each channel of the
color image [30]. This algorithm, which is very com-
mon in digital image processing, assumes the pre-
sence of a white point in the image and assumes
that this point is that which most reflects the light
over a scene.

3. Results

In evaluating the results we have analyzed the per-
formance of the algorithm in a variety of different
quality measures.We used four very commonmetrics
to quantify both the spectral and colorimetric quality
of the recovered illuminant: the goodness-of-fit coef-
ficient (GFC), the CIELab color difference ΔE�

ab, the
root-mean-square error (RMSE), and the angular er-
ror (AE) [31,32]. The GFC is based on Schwartz’s in-
equality and is defined as the cosine of the angle
between the original signal f ðλÞ and the recovered
signal f r ðλÞ; thus

GFC ¼
P700

λ¼400 f ðλÞf r ðλÞ�P700
λ¼400 f ðλÞ2

�
1=2

�P700
λ¼400 f r ðλÞ2

�
1=2 : ð5Þ
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This measurement of spectral similarity has the ad-
vantage of not being affected by scale factors. Color-
imetrically accurate illuminant estimations require
GFC > 0:995; GFC > 0:999 indicates quite good
spectral fit, and GFC > 0:9999 an almost exact fit
[13]. The CIELab color difference ΔE�

ab was used
to evaluate colorimetric quality and was calculated
with reference to the color signal of a white patch
in the scene for illuminant estimation. The third
measure was the AE, defined as

AE ¼ cos−1ðρl · ρeÞ; ð6Þ

where ρ1 and ρe are the color components of the light
source and the algorithm’s estimate of the color of the
light source, respectively. Finally, the RMSE was
also used.

A. Spectral and Colorimetric Performance

We obtained one recovery matrix, F, using the linear
pseudo-inverse method, and derived two different il-
luminant estimation sets. The first involved only the
training set of illuminants, which theoretically will
give the best expected results, and the second the
camera responses related to the test illuminant spec-
tra. Table 1 summarizes the mean (and sample stan-
dard deviation) of the values of GFC, ΔE�

ab, and AE
where the plausible illuminant is obtained by using
the camera without (k ¼ 3) and with (k ¼ 6) a colored
cutoff filter.
There were two important results. On the one

hand, for both the training and the test sets the re-
covery quality did not improve as the number of cam-
era sensors increased. The GFC values are close to
0.9950, and theΔE�

ab color differences do not exceed
3 units, implying that there would be good spectral
and colorimetric performance if no cutoff filter were
used. The performance of the illuminant recoveries
dramatically worsened with the introduction of a
colored filter. These results suggest that a three-
channel color camera is sufficient to make a very
good estimation of the illuminant, even for the test
set of images and illuminants.
On the other hand, results deriving from the con-

trol and test data sets were very similar, at least for
k ¼ 3 sensors. This behavior did not appear when the
linear pseudo-inverse method was applied for reflec-
tance and color signal recoveries [16], but we have to
take into account that those results were derived

from noise-free data. The results presented here sug-
gest an overestimation of the learning phase of the
algorithm, which is particularly important for the
training set and k ¼ 6 sensors.

Figure 2 shows examples of spectral-illuminant
recovery for different scenes. The examples in the
left-hand panels are for the digital RGB camera with-
out a color filter, and those in the right-hand panels
for the camera with one successive color filter. Even
for the daylight spectra measured at dawn (not as
spectrally smooth as the ones measured at midday)
there are few noticeable spectral differences between
the recovered and the original signals with the three-
band spectral camera. Nevertheless, the plots in the
right-hand panels suggest that the use of a six-band
camera does not improve the recovery qualities inde-
pendently of the spectral profile of the daylight.

The question immediately arises as to whether our
findings for k ¼ 6 sensors originate directly from a
bad choice of sensor output matrix ρ0

o, thus giving
a poor recovery matrix F in Eq. (4). Consequently
we responded in two ways.

First, we started by choosing a different colored fil-
ter to generate three new distinct spectral sensitiv-
ities. An additive combination of the color glass
filters BG12 and OG550 from OWIS GmbH was se-
lected as a new successive cutoff filter, and the recov-
ery matrix F was recalculated for the training set of
illuminants. The correlation coefficient between the
61 × 3 matrices of spectral sensitivities without and
with the GG475 prefilter was 0.8393. This value sug-
gests, as expected from Fig. 1, a significant overlap
among sensor sensitivities with only five of the six
sensor channels producing clearly different sensors
responses. In contrast, the correlation coefficient
for the BG12 and OG550 combination prefilter was
0.7520, which, in principle, should be a way of in-
creasing the effective number of spectral bands.
But in the latter case the average GFC value and
ΔE�

ab were 0.9427 (standard deviation std ¼
0:0158) and 8.5 (std ¼ 1:5), implying that there
would be no improvement for k ¼ 6 sensors when
a very different cutoff filter was used. Although
pseudo-inverting Eq. (3) can be an optimal solution
to solve for the matrix F, the procedure involves
not only ρ0, which are the sensor responses for a test
condition, but also ρ0

o, which are the sensor re-
sponses for a training set condition. Therefore, noise
can degrade the optimal mapping between RGB and

Table 1. Linear Pseudo-Inverse Illuminant Estimation Using a 50% Luminance Thresholda

GFC ΔE�
ab AE (deg)

Filter Mean Std Mean Std Mean Std

Control performance
Without filter 0.9952 0.0080 2.9 2.0 4.9 3.3
With GG575 filter 0.9442 0.0148 8.7 1.5 18.9 2.6

Test performance
Without filter 0.9943 0.0119 3.2 2.6 5.3 4.6
With GG575 filter 0.9616 0.0097 7.6 1.1 15.8 1.9

aThe sensor output matrix was derived using a local mean calculated individually for each seeded area.
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spectra after solving for Eq. (3). We should keep in
mind that we are increasing the number of camera
sensors by adding broadband filters in front of our
digital RGB camera lens and not by adding narrow-
band filters as hyperspectral devices do.
Second, we recalculated the matrix ρ0

o, using dif-
ferent luminance threshold values in determining
the seeded regions for each scene. Figure 3 shows
an example of the influence of the segmentation pro-
cedure on the quality of illuminant recoveries. The
upper row illustrates how the number of seeded re-
gions (different colors in the plots) changes as the
threshold value increases. The lower part of the fig-
ure shows the cumulative distribution plots for the
spectral performance of this scene under the 100
training illuminants, and the whole figure shows
the proportion of spectral recoveries that takes on
values of less than or equal to some GFC values,
without (left-hand plot) and with (right-hand plot)
the prefilter. What is clear is that the performance
of the linear pseudo-inverse algorithm is very good
for the three-channel camera, giving very similar re-
sults for all threshold values, but the results worsen
for the six-channel camera, which yields a wide dis-
persion in the spectral performance according to the

threshold value used. Figure 4 summarizes the re-
sults for the control set of illuminants.

The effects of threshold values and number of fil-
ters have been tested by a repeated-measures analy-
sis of variance of three factors: the number of sensors
(two levels, k ¼ 3 or k ¼ 6), the metric (four levels,
GFC, RMSE, ΔE�

ab, and AE) and the threshold (five
levels, u ¼ 10; 30; 50; 70; 90). We obtain very good
spectral and colorimetric accuracy for the three-
channel camera without prefilter. Our results show
that both the spectral and colorimetric performance
for k ¼ 3 sensors do not depend on the number of the
selected seeded regions (p ≫ 0:05). The average GFC
and ΔE�

ab color difference for all of the threshold
values are 0.995 and 2.9, respectively. In contast,
the results for k ¼ 6 sensors not only worsen but
are also different for the various threshold values
used. We found an average GFC and ΔE�

ab of
0.9420 and 8.8, respectively, indicating a poor quality
of illuminant recovery with the six-channel camera.
There are also significant differences for all the
metrics (p ≪ 0:05) according to the threshold value.
Post hoc comparisons suggest significant differences
between GFC, ΔE�

ab, and AE for a threshold of
70% (p ≪ 0:05) and close to significant for the RMSE
(p ¼ 0:04).

Fig. 2. Examples of the spectral-illuminant recovery (left-hand panels) with k ¼ 3 sensors and (right-hand panels) with k ¼ 6 sensors for
different illuminants and scenes (—, original spectrum; •, recovered spectrum).
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better in terms of AE and also gives very good results
for the RMSE (of only 0.0019). The max-linear
pseudo-inverse gives the worst results, suggesting
a limitation of the method if you overload the linear
pseudo-inverse algorithm. Nevertheless, with regard
to color differences, the corresponding averageΔE�

ab
is around 3 units, indicating a good colorimetric color
reproduction.

4. Discussion

We have investigated the question of how to apply a
linear pseudo-inverse method for unsupervised illu-
minant recovery from natural scenes. The method
we have introduced is a spectral-imaging learning-
based algorithm that directly relates camera sensor
outputs and illuminant spectra. The RGB sensor
outputs can be modified by the use of a successive
cutoff color filter, and thus the algorithm needs no
information about the spectral sensitivities of the
camera sensors or eigenvectors to estimate the SPDs
of illuminants.
Our results suggest that daylight spectra can be re-

covered with acceptable spectral and colorimetric ac-
curacy with a three-band camera (e.g., a digital RGB
camera without a prefilter). Although linear pseudo-
inverse approaches have been applied successfully for
color signals and natural reflectance recoveries [16],
the results suggest serious limitations of the algo-
rithm for multispectral-illuminant recovery when
more than three sensors are used. One reason for
the poor results for the six-band color camera could
be the inappropriate choice of the particular color cut-
off filter, but we have obtained similar low spectral
and colorimetric performance when other uncorre-
lated sets of RGB sensors were used. In a previous
computational work [16] we found that a noise-free
RGBcamera coupledwith color filters provided signif-
icantly better recovery of radiance and spectral reflec-
tances in natural scenes than an RGB camera alone.
However, later results suggest that digital cameras
affected by high noise levels do not improve the per-
formance of the algorithm for recovering illuminants
[17]. This also agrees with the results anticipated by
Mosny andFunt [26],who foundminor improvements
by extending the number of channels from RGB cam-
eras to six and nine. Thus the influence of noise in the
recovering process could bemore relevant than the se-
lection of filters, at least for spectral applications
using digital RGB cameras with a prefilter.
With our results, we seek not only to establish the

limits of spectral direct mapping for illuminant esti-
mation, but also to provide a newmultispectral color-
constancy approach. By combining the device with
the appropriate computations, spectral information
about objects and illuminants can be obtained simul-

taneously without any spectroradiometric measure-
ment. But will the method work well for a wider
variety of indoor scenes that include fluorescent illu-
minants? Nothing precludes the application of our
method to indoor scenes, although it can fail to de-
scribe some kind of fluorescent illuminants appropri-
ately. These limitations were already demonstrated
in previous work [17], and some examples with in-
door scenes and artificial illuminants suggest similar
performance here. Figure 6 illustrates the recovery
results for an indoor scene and two artificial illumi-
nants without a prefilter. In this example the train-
ing set of illuminants was composed of 82 SPDs of
fluorescent-type illuminants, and the test set com-
prised a set of 20 commercial fluorescent and incan-
descent lights that were not included in the training
set (see [17] for more details about these SPDs); two
fragments of the toys hyperspectral scene [7] were
used with the training set of illuminants, and one
fragment with the test illuminants (with none of
their pixels in commonwith the training set). Results
suggest good colorimetric performance, but we find a
dependency on the spectral profile of the artificial il-
luminant. As expected, an RGB digital camera with-
out prefilter does not provide recoveries of artificial
lighting as well as with daylight, and it can fail to
describe some kind of fluorescent illuminants appro-
priately [17]. Nevertheless this simple example de-
monstrates that the linear pseudo-inverse method
for unsupervised illuminant recovery could also work
for indoor scenes with an adequate training.

The advantage of the linear pseudo-inverse illumi-
nant estimation algorithm is that it recovers not only
the color of the light but also the illuminant spec-
trum. Comparing this method with other color-
constancy algorithms, the spectral and colorimetric
performances surpass other approaches. Our results
are close in performance to those deriving from the
color-by-correlation method, but avoid a huge data-
base for training and show that multispectral ima-
ging fundamentals can also be used for illuminant
estimation in color-constancy applications.
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