
Developing an optimum computer-designed
multispectral system comprising a
monochrome CCD camera and
a liquid-crystal tunable filter

Miguel A. López-Álvarez,1,* Javier Hernández-Andrés,2 and Javier Romero2

1Hewlett-Packard Spain, Large Format Printing Division, 08174 Sant Cugat del Vallès, Barcelona, Spain
2Colour Imaging Laboratory, Departamento de Óptica, Universidad de Granada, 18071 Granada, Spain

*Corresponding author: migangel@ugr.es

Received 26 March 2008; revised 7 July 2008; accepted 9 July 2008;
posted 15 July 2008 (Doc. ID 94283); published 19 August 2008

In a previous work [J. Opt. Soc. Am. A 24, 942 (2007)] we made a complete theoretical and computational
study of the influence of several parameters on the behavior of a planned multispectral system for ima-
ging skylight, including the number of sensors and the spectral estimation algorithm. Here we follow up
this study by using all the information obtained in the computational simulations to implement a real
multispectral imaging system based on a monochrome CCD camera and a liquid-crystal tunable filter
(LCTF). We were able to construct the optimum Gaussian sensors found in the simulations by adjusting
the exposure times of some of the transmittance modes of the LCTF, hence obtaining really accurate
spectral estimations of skylight with only a few optimum sensors. © 2008 Optical Society of America

OCIS codes: 150.2950, 280.0280, 040.0040.

1. Introduction

Over the past ten years several authors have contrib-
uted to the development of the theory behind multi-
spectral imaging systems [1–6], and in doing so have
proved the reliability of these devices for making
accurate estimations of spectral-power distributions
(SPDs) in every pixel of the imaged scene [1]. Most
of these works focus on recovering the spectral reflec-
tance of objects or the combined color signal [7–9], but
little information has been published about spectral
estimationofnatural illuminants [10–12].Theadvan-
tagesofusingsuchsystemsinsteadof traditionalspec-
troradiometers are numerous. For example, we can
obtain a radiance spectrum for each pixel of the ima-
ging matrix, typically a charge-coupled device (CCD)
or a complementary-metal-oxide-semiconductor de-
vice (CMOS) [13]. Moreover, multispectral systems

are cheaper, lighter, and more portable than classical
spectroradiometers.

Here we focus our interest on studying skylight, an
important natural illuminant [14,15], from the spec-
tral curves of which we can extract information about
climate parameters such as the optical depth or the
Angstrom exponent [15], which inform us about the
size and concentration of aerosol particles. Recently
we also suggested the possibility of developing com-
puter algorithms for automatic cloud detection and
classification based on the spectral information esti-
mated from multispectral images of the sky. A huge
database of multispectral skylight images could be
interesting for scientists of many disciplines, since
it would provide images of the entire skydome with
high spatial and spectral resolution that could be
used in many areas of research.

In previous works [10,11] we published a complete
theoretical study about a planned optimum multi-
spectral system for the spectral imaging of sky-
light. By developing computational simulations we
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obtained very interesting results concerning the in-
fluence on the behavior of the multispectral system
of several parameters, such as the spectral responsiv-
ity of its sensors, the number and type of sensors, the
spectral estimation method and linear bases chosen,
the number and quality of training spectra, and the
noise that always affects any electronic device. As a
result we found that when certain values for these
parameters were set we could make very accurate
spectral reconstructions. Thus, we now intend to
use these previous results to build a prototype of this
optimum multispectral system by using a cooled,
12 bit, monochrome CCD camera (Model Retiga QI-
maging SRV1340) and an LCTF (Model Varispec,
from CRi). Given the possibility of making a complete
calibration [16] of the elements of the multispectral
system, we also obtained spectral measurements of
skylight radiance by direct radiometric wavelength
sampling. We show how the optimum configuration
found for the system in the computational study pro-
vides better spectral recoveries and results much
faster.
InSection2weresumetheresultsofpreviouspapers

[10,11] by showing the optimum configuration of the
system that can be implemented when we use the de-
vices available in our laboratory. We also describe the
training and test sets of experimental measurements
of spectral skylight used in this study. In Section 3 we
show how to obtain spectral measurements with the
CCDcameraandtheLCTFwhenthesedevicesarecor-
rectly calibrated (themeasurement process is done by
developingadirect radiometricwavelengthsampling,
which is here described in detail), and we plot the re-
sults when using the system in this configuration. In
Section 4we obtain spectral estimations byusing a re-
gressionmodelwith the 33 channels or transmittance
modes [1] of the LCTFand compare it with the results
obtained when we use the optimum configuration for
the system (Section 5). Finally, we give some ideas
aboutfutureworkanddiscusstheprosandconsofeach
of the configurations proposed for the multispectral
system.

2. Computational Results

We used a model proposed by Maloney and Wandell
[17], which is a widely accepted [1–9] theoretical
model of the responses of the camera, ρ (a column
vector of k rows corresponding to the k channels or
sensors available), when a given radiance spectrum,
E (a column vector of N rows corresponding to the N
different wavelengths sampled in the visible spec-
trum), impinges on it. Thus,

ρ ¼ RtEþ σ; ð1Þ

where R is an N × k matrix containing the spectral
responsivities of the k sensors at N sampled wave-
lengths (superscript t denotes its transpose), and σ
is a k row vector of uncorrelated components of noise
that affect each sensor separately [1,10].

The goal here is to recover spectrum E from re-
sponses ρ of the sensors. Different spectral estimation
methods [3–5,10,17,18] have been used to try to solve
this problem. Our previous study [10] was focused on
comparing the accuracy of the spectral reconstruc-
tions obtained with each of these methods when the
optimum sensors found for them in each case were
used. We found that the Linear Pseudoinverse meth-
od (sometimes erroneously called the Wiener method
because of their mathematical similarity) and the
Imai–Berns method [3] provided good spectral recon-
structions,with the additional advantage—compared
to other spectral estimation methods—that it is not
necessary to know the spectral responsivity of camera
R in practical situations where computer simulations
are not involved. These twomethodswere fast in their
calculations and also very robust against noise. The
only drawback of the Imai–Berns method is that it
needs a representative linear basis of spectra for
training, but this may be an advantage in situations
withhighnoise, because a reduction of the dimension-
ality can be achieved by using basis vectors and this
may help to reduce the influence of noise [5,9,10]. The
task of calculating a basis is fairly easy by means of
principal component analysis [1] (PCA), nonnegative
matrix factorization (NMF) [19] or the independent
component analysis (ICA) [20] of a training set of spec-
tral measurements. These mathematical tools coin-
cide in providing a set of vectors that can be used to
express a given spectrum as a linear combination:

E ¼ Vϵ; ð2Þ

where V is an N × n matrix containing the first n
vectors used for reconstructing N wavelengths (n is
always less than or equal to N and is usually chosen
to equal k, the number of sensors, which often
gives the best results [3,10]). Vector ϵ is an n rowed
vector that contains the coefficients of the linear
combination.

We use the Imai–Berns method here because with
ourLCTFwe canbuild the optimumset of five sensors
found with this method when the noise simulated at
the camera gives a value of 26dB for the signal-to-
noise ratio (SNR). This noise level was really close
to the real noise in our camera, which was estimated
bymeasuring the variancewhen imaging an integrat-
ing sphere [16] that serves as a perfectly homoge-
neous and constant object. As some authors have
indicated [5], the closest the estimated noise used
to find the optimum sensors is to the real noise level,
thebetter those filterswill bewhen implementedwith
the real system.Wemust point out that using only the
Imai–Berns method does not mean that we cannot
use other spectral estimation methods with our sys-
tem, just that the optimumsensors found for the other
methods studied are not achievable with our LCTF.

In Fig. 1 we show the 33 transmittancemodesmea-
sured for our LCTF in the laboratory. Figure 2 shows
the five optimumsensors thatwe intend to implement
and how these sensors can be obtained with seven
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modes of our filter by adjusting the exposure times
and summing up the contributions of modes 3, 4,
and 5 (corresponding to the third optimum sensor),
where the spectral responsitivity of the CCD (shown
in Fig. 3) has been taken into account.We also use the
Imai–Berns method and the Linear Pseudoinverse
method with the 33 channels (Section 4) already
available with our multispectral system to compare
the quality of the spectral reconstructions when we
use only five optimum sensors (Section 5).
We need to train the system before using the two

spectral estimation methods mentioned above, since
these algorithms use the information obtained from a
training set of spectra to provide good spectral recon-
structions from the sensors’ responses. For the Imai–
Berns method we directly establish a relationship
between the sensors’ responses ρ and coefficients ϵ,
which now includes a column in ρts and ϵts for each
of the m training spectra (subscript ts stands for
training spectra), and we obtain

εts ¼ Gρts; ð3Þ

where matrix G is an n × kmatrix that is determined
empirically by a least-squares analysis of the train-
ing-spectra measurements. Hence it is not necessary
to measure spectral sensitivities R of the camera to
use this method with real sensor-response measure-
ments [10]. We can estimate G via a least-squares
analysis by pseudoinverting the k ×m matrix, ρts :

G ¼ εtsρþts: ð4Þ

In our case, the recovered skylight spectrum is sim-
ply calculated in this method from sensors’ responses
ρ by

ER ¼ VGρ: ð5Þ

Here the information provided by the training spec-
tra is included in V and in G.

If we use the Linear Pseudoinverse method, we
must establish a relationship directly between sen-
sors’ responses of the training set ρts and training
spectra Ets:

W ¼ Etsρþts: ð6Þ

Thus we can obtain spectral estimations with the
Linear Pseudoinverse method exactly in the way
shown in Eq. (5) by replacing VG with the matrix W.

It is desirable to use different sets of spectral mea-
surements as training and test sets. As the training
set inthisstudyweuseadatabaseof1567spectralsky-
lightmeasurements takenby our group between 1997
and 1999 [21] in Granada (Spain, 37:16°N, 3:60°W,
680 m.a.s.l.) with a LICOR spectrorradiometer, at
manydifferentsolarelevations,withdifferentrelative
azimuths towards the sun and during different sea-
sons of the year; each spectrum ranged from 380 to
780nm in 5nmsteps. By that timewehadnot yet con-
structed our multispectral system and so we have no
experimental information on responses of the camera

Fig. 1. (Color online) Spectral transmittance of the 33 modes of
the Varispec liquid-crystal tunable filter measured three times in
our laboratory (error bars show the standard deviation obtained at
each sampled wavelength).

Fig. 2. (Color online) Five optimum sensors found in the compu-
tational simulations (solid line) for the Imai–Berns method with a
SNR equal to 26dB. Seven transmittance modes of the LCTF
(dashed line) used to implement the theoretical optimum sensors.

Fig. 3. (Color online) Spectral responsivity of the CCD camera
(Model Retiga QImaging SRV1394) measured at our laboratory.
Error bars show the uncertainty in these measurements.
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ρts butwecancalculatethetheoretical responsesofour
multispectral system (which is correctly calibrated) to
these spectra anduse them inEq. (4) to obtain thema-
trixG. This step is explained indetail inSection4.Asa
testset,weuseasetof125spectralmeasurementsalso
taken in Granada in 2007 over a period of 7 months,
which now does include the information of the experi-
mental camera responses, ρ. This set of spectra was
measured simultaneouslywith ourmultispectral sys-
tem and a SpectraScan PR650 spectroradiometer be-
tween 380 and 780nm in 4nmsteps.We try to recover
spectraEof the test set byusing the information regis-
tered with camera ρ and the information provided by
the training set (Ets, ϵts, and the calculated ρts; these
parametersareneededtocalculatematrixG). InFig.4
we show the chromaticity coordinates, in the CIE-31
space, of the 1567 skylight spectra belonging to the
training set (its correlated color temperatures (CCT)
ranging from 3500K to infinity; we must say that
two measurements of this set do not have an assoc-
iatedCCTbecause their chromaticities lie too far from

the Planckian locus [21]), while in Fig. 5 we show the
same diagram for the test set of 125 measurements
(with CCTs ranging from 8300K to 32; 000K).

3. Spectral Measurements of Skylight by Direct
Radiometric Sampling

In Figs. 1 and 3 we show the results of calibrating the
LCTF and the CCD camera. Thus we have two pre-
cise devices that can be used together to obtain spec-
troradiometric measurements by taking advantage
of two things: the radiometric information provided
by the CCD camera and the narrow spectral band in
the visible range selected with the LCTF. The main
assumptions here are two. First, each of the trans-
mittance modes of the LCTF is narrow enough to as-
sume that the radiance information received by the
camera when a filter mode is tuned corresponds to
the central wavelength alone, i.e., we assume that
the modes of the LCTF are equivalent to monochro-
matic filters. Since the typical spectral accuracy of
spectroradiometric devices is 4nm, monochromatic
in this context means to use a spectral width of about
that range. The full width at half-maximum (FWHM)
of the modes of the LCTF is between 7 and 15nm,

Fig. 4. (a) CIE-31 chromaticity diagram for the 1567 spectral
measurements of skylight belonging to the training set. (b) Detail
of (a).

Fig. 5. (a) CIE-31 chromaticity diagram for the 125 spectral mea-
surements of skylight belonging to the test set. (b) Detail of (a).
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depending on the central wavelength chosen, and
thus we can accept the assumption of monochroma-
ticity. Second, the radiometric information given by
the CCD camera is accurate enough to guarantee
that it does not depend on the wavelength, the expo-
sure time, or other external factors. Ferrero et al. [16]
described a precise procedure to assure this by
means of a complete radiometric calibration elimi-
nating the influence of noise and thus we have
followed their recommendations.
The direct radiometric sampling of the visible spec-

trum consists of tuning the LCTF into a central
wavelength between 400 and 720nm (in 10nm steps,
which are the available modes of our filter) and then
taking a picture (corrected for noise influence [16]), of
the sky in this case. By doing this, we obtain a radio-
metric sample of the selected wavelength for every
mode of the LCTF, hence covering the whole visible
spectrum. This method has the advantage of not
needing a training set of spectra, while spectral es-
timationmethods do. Nevertheless, a complete radio-
metric calibration of the CCD and the filter must be
made before using this procedure, and the spectral
range covered is reduced to the maximum and mini-
mum central wavelengths achievable with the LCTF.
While using the spectral estimation methods, we can
obtain information in the whole spectral range
covered by the training set, which is usually a little
larger, as can be seen in Section 4.
Spectral responsivity RðλÞ of our monochrome

CCD camera was calculated from a proposed model
by Ferrero et al. [16]:

RðλÞ ¼ Cc

EðλÞtexp
; ð7Þ

whereCc refers to the corrected pixel value (eliminat-
ing all the possible noise and correcting from spatial
nonuniformity [22]), EðλÞ is the spectral radiance im-
pinging on the CCD, and texp is the exposure time
used for imaging. In this procedure of radiometric
sampling, we take one picture for every wavelength
selected by the LCTF, which we denote by subindex
k. Thus, if we include the effect of filtering at every
wavelength by using the LCTFand assume that EðλÞ
remains constant during all the imaging process, we
can rewrite Eq. (7) as

Fk ¼ Cc
k

Ektexp;k
; k ¼ 1;……33; ð8Þ

where Fk is equal to the product of the spectral re-
sponsivity of the CCD and the LCTF transmittance
when mode k is selected and Ek is the value of EðλÞ at
the wavelength chosen by the filter when mode k is
tuned. Finally, texp;k and Ck

c are the exposure time
used and the pixel level registered for the corre-
sponding picture, respectively. We can easily calcu-

late the spectral radiance from Eq. (8) as

Ek ¼ Cc
k

Fktexp;k
; k ¼ 1;……33: ð9Þ

In Table 1 we show the mean values (�standard
deviations) for the various quality metrics used to
compare the similarity between each pair of simulta-
neous spectrameasuredwith the PR650 and ourmul-
tispectral system over the set of 125 spectral
measurements taken in Granada in 2007 by using
the radiometric sampling procedure. Since the test
set was acquired with the PR650 spectroradiometer
between380and780nmin steps of4nm,and themul-
tispectral system in this radiometric sampling config-
uration gets spectral information between 400 and
720nm every 10nm, a conversion of the data from
the PR650 was made prior to comparing the spectra
from both instruments. Hence, we discarded the data
below400nmandabove720nm,andwemadea linear
interpolation to get spectral data every 10nm (some
intermediate data were also discarded). The metrics
shown [11,23] are the goodness-fit-coefficient (GFC)
(which is the cosine of the angle between two spectra
if these are intended to be vectors in a Hilbert space),
the colorimetric CIELAB ΔE�

ab distance, the percen-
tage of the integrated-radiance-error metric [IRE
(%)] (which is a relative measure of the difference in
the total energy of the two spectral curves compared),
and the colorimetric and spectral combined metric
(CSCM)proposed [10,11,23] to comparespectraofnat-
ural illuminants fromcolorimetric andspectral points
of view, which has also been used by other researchers
[24]. The equations defining these four metrics are
shown here (EðλÞ represents the original spectrum
while ERðλÞ stands for the recovered spectrum).

GFC ¼

����
P

j
EðλjÞERðλjÞ

����
����
P

j
½EðλjÞ�2

����
1=2

����
P

j
½ERðλjÞ�2

����
1=2

; ð10Þ

ΔE�
ab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔL�2 þΔa�2 þΔb�2

p
; ð11Þ

IREð%Þ ¼ 100

����
P

N
j¼1 EðλjÞ � ERðλjÞ

����
P

N
j¼1 EðλjÞ

; ð12Þ

Table 1. Mean � Standard Deviation Values of Various Metricsa

GFC CIELAB ΔE�
ab IRE (%) CSCM

0:998� 0:002 1:26� 0:37 13:10� 7:08 15:52� 7:33

aOver the test set of 125 spectral measurements taken in Gran-
ada in 2007 when using the radiometric sampling method
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CSCM ¼ Ln½1þ 1000ð1 −GFCÞ� þΔE�
ab þ IREð%Þ:

ð13Þ
We must point out that the CIELAB ΔE�

ab metric
is intended to compare two reflectance spectra under
a given illuminant and not for comparing illuminants
directly. Nevertheless, we can assume that the two
SPD of the illuminants we want to compare impinge
on a perfectly reflective white patch, and that we are
seeing these two assumed patches under the equie-
nergetic (spectrally flat) illuminant. By doing this,
we can obtain the CIELAB ΔE�

ab error between
two illuminants even though this metric is not in-
tended for this aim.
Three examples of spectral reconstructions made

by using this method, corresponding to (a) the 10th,
(b) the 50th, and (c) the 90th percentiles of the CSCM
metric over the test set of 125 skylightmeasurements
are shown in Fig. 6, where it can be seen how the spec-
tralmeasurements given by themultispectral system
are quite similar to those given by the spectro-
radiometer PR650, although there is a tendency to
overestimate the total energy of the spectra, which
implies that high values are obtained for the IRE
(%) metric. This could be due to a systematic differ-
ence between the theoretically expected pixel values
and the real ones,Cc, registered at the camera, which
is brought about by the inexact assumption of mono-
chromaticity of the LCTF transmittance modes.
Nevertheless, the quality of the spectral measure-
ments taken with the multispectral system in this
configuration of radiometric sampling may be accu-
rate enough for certain purposes when studying sky-
light, where the total energy estimation is not of
paramount importance and we may only need the
relative SPD.

4. Spectral Estimation Using a Regression Model with
33 Channels

Here we use the information provided by the CCD
camera in every one of the 33 available channels of
the LCTF to obtain spectral estimations of skylight
using both the Imai–Berns and the Linear Pseudoin-
verse methods referred to in Section 2. The main
drawback of using such methods is the need to train
the system, i.e., to establish a relationship between
the training set of spectra and their known sensors’
responses. If we intend to use different test and train-
ing setswe cannot also use the set of 125 spectralmea-
surements taken in 2007 as a training set. Thus we
should use the set of 1567 skylight spectra measured
between1997and1999asa training set.Wemust face
two drawbacks when using this approach. First, the
set of 1567 measurements have a sampling interval
of 5nm, while the test set of 125 measurements have
a sampling interval of4nm.Wesolved this problemby
making a linear interpolation of the data at 5nm
down to 4nm, which is not a major source of error
since both sampling intervals are accurate enough
to register spectral skylight information. The second
problem is that we do not have the information re-

lated to the sensors’ responses corresponding to those
1567 spectra because our multispectral system was
not available at that time. This problem can be solved
by simulating the sensors’ responses of our system to

Fig. 6. (Color online) (a) 10th percentile (CSCM ¼ 6:00), (b) 50th
percentile (CSCM ¼ 15:35), and (c) 90th percentile (CSCM ¼
25:05) over the test set of 125 spectral measurements taken in
Granada in 2007 when using the radiometric sampling method.
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the training set of 1567 spectra [see Eq. (7)], keeping
inmind that the spectral responsivity of the cameraR
is already corrected from noise influence during the
calibration [16] (i.e., noise is taken into account in
R as explained in Eq. (7) above):

Cc
k;ts ¼ REtstexp;k ð14Þ

and identifying the kth component of the vector ρ of
the sensors’ responses with the corresponding cor-
rected pixel value divided by the exposure time used
for it. Thus,

ρk ¼ Cc
k

texp;k
k ¼ 1;……33: ð15Þ

If we look at Eq. (5), the spectral estimations are
calculated as

ER ¼ Xρ; ð16Þ

whereX ¼ VG for the Imai–Bernsmethod andX ¼ W
for theLinear Pseudoinversemethod [seeEqs. (4) and
(6)]. Hence, for the Imai–Berns method we must also
select linear basis V of representative vectors, which
is unnecessary with the Linear Pseudoinverse meth-
od.We choose PCA for constructing this basis because
it is the most widely used strategy [1–5,7–11,17,18].
We use different numbers of PCA basis vectors to find
the optimumnumber of themtobeusedwith thismul-
tispectral system of 33 channels.
In Table 2 we show the results obtained when we

recover the 125 skylight spectra of the test set by
using the Linear Pseudoinverse method with the 33
channels available. These results are significatively
better than those for the radiometric sampling meth-
od in Table 1 (only the GFC metric is slightly worse,
probably due to the higher spectral resolution
achieved now, as we show below), thus proving that
the training of the system by simulating the sensors’
responses to the set of 1567 spectra is correct. Figure 7
shows the 10, 50, and 90 percentiles of the CSCMme-
tric when recovering the 125 spectra of the test set
with the Linear Pseudoinverse method with 33 chan-
nels (just as Fig. 6 did for the radiometric sampling
method). Now the spectral range of these estimations
is seen to extend to the interval between 380 and
780nm, which corresponds to the specifications of
the spectroradiometer used to measure the training
set in 1997 (as mentioned in Section 2), but with a
spectral resolution of 4nmbecause of the linear inter-
polationweperformed—aswe explained above in this

same section—from the original training set sampled
at 5nm. It should also be remembered that the spec-
tral range covered in Section 3 was from 400nm up to
720nm, with a spectral resolution of 10nm, corre-

Table 2. Mean � Standard Deviation Values of Various Metricsa

GFC CIELAB ΔE�
ab IRE (%) CSCM

0:998� 0:001 0:85� 0:21 6:30� 5:43 8:51� 5:57

aOver the test set of 125 spectral measurements taken in Gran-
ada in 2007 when using the Linear Pseudoinverse method with 33
channels

Fig. 7. (Color online) (a) 10th percentile (CSCM ¼ 3:28), (b) 50th
percentile (CSCM ¼ 6:73), and (c) 90th percentile (CSCM ¼ 15:65)
over the test set of 125 spectral measurements taken in Granada
in 2007 when using the Linear Pseudoinverse method with k ¼ 33.
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sponding to the minimum and maximum central
wavelengths tunable with the LCTF (each of these
central tunable wavelengths was 10nm apart from
its neighbors). This extension of the spectral range
covered will also occur with the Imai–Berns method
later; it does not mean that the CCD provides more
information now, but that the spectral estimation
methods are capable of predicting the spectral shape
of the curves throughout the whole range covered by
the training set, even if there are no sensors in some
spectral regions. This can be done by taking advan-
tage of the statistical information obtained by train-
ing the system. Nevertheless, it can be seen in Fig. 7
that the spectral estimations achieved are extremely
accurate when compared with the measurements
made simultaneously with the PR650, thus proving
the Linear Pseudoinverse method’s reliability in ob-
taining good spectral reconstructions of skylight.
In Table 3 we show the results of the Imai–Berns

methodwhenusing the33channels of our system.Dif-
ferent numbers of basis vectors n were used to find
the optimum value of this parameter, which turned
out toben ¼ 6.Other studiesofmultispectral systems
[2,3,10,11] showed that the best results are found
when we use the same number of vectors n as sensors
k, but this seems tobe trueonlywithasmallnumberof
sensors. In Table 3 we have included the case where
n ¼ 101 because this means that we use all the avail-
able PCA vectors, and then the Imai–Berns and the
LinearPseudoinversemethodsare formally thesame,
as can be seen in Eq. (17), which is easily derived from
Eqs. (2) and (4)–(6). Thus,

ER ¼ VGρ ¼ Vεtsρþtsρ ¼ Etsρþtsρ ¼ Wρ; ð17Þ

in which case the results for the Imai–Berns method
with n ¼ 101 and the Linear Pseudoinverse method
are exactly the same (see Tables 2 and 3). The corre-
sponding 10th, 50th, and 90th percentile curves for
the Imai–Berns method with k ¼ 33 and n ¼ 6 are
shown in Fig. 8. If we compare Tables 2 and 3 we
can see that the Imai–Berns method is slightly better
than theLinearPseudoinversemethodwhen33 chan-
nels are involved because the reduction in dimension-

ality achieved byusingn ¼ 6helps to reduce the effect
of noise.

5. Spectral Estimation Using Five Optimum Sensors

In Fig. 2 we showed how to implement the five opti-
mumsensors found for the Imai–Bernsmethod (using
five PCA vectors) in computational simulations [10]
with our LCTF (see Fig. 1) by adjusting the exposure
time of each transmittance mode. In this section we
show the results obtainedwhenweuse ourmultispec-
tral system in this optimum configuration with only

Table 3. Mean � Standard Deviation Values of Various Metricsa

n GFC
CIELAB
ΔE�

ab IRE (%) CSCM

3 0:998� 0:001 1:19� 0:29 6:33� 5:28 8:74� 5:32
4 0:998� 0:001 0:97� 0:22 6:33� 5:46 8:52� 5:58
5 0:998� 0:001 0:70� 0:23 6:31� 5:44 8:24� 5:62
6 0:998 � 0:001 0:70 � 0:23 6:31 � 5:43 8:23 � 5:58
7 0:998� 0:001 0:71� 0:23 6:30� 5:42 8:26� 5:57
8 0:998� 0:001 0:88� 0:22 6:29� 5:41 8:41� 5:52
15 0:997� 0:001 0:82� 0:2 6:31� 5:44 8:40� 5:59
33 0:997� 0:001 0:85� 0:21 6:30� 5:43 8:49� 5:57
101 0:997� 0:001 0:85� 0:21 6:30� 5:43 8:51� 5:57

aOver the test set of 125 spectral measurements taken in Gran-
ada in 2007 when using the Imai–Berns method with 33 channels

Fig. 8. (Color online) (a) 10th percentile (CSCM ¼ 3:00), (b) 50th
percentile (CSCM ¼ 6:44), and (c) 90th percentile (CSCM ¼ 15:48)
over the test set of 125 spectral measurements taken in Granada
in 2007when using the Imai–Bernsmethodwith k ¼ 33 and n ¼ 6.
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seven channels implementing the five intended opti-
mum sensors. We also trained the system here with
the 1567 spectra measured in Granada between
1997 and 1999 by simulating their sensors’ responses,
as shown in Eq. (14). Table 4 shows that the values for
themetrics used are very similar to the ones obtained
in Section 4 with a larger number of channels. It can
also be seen that the spectral curves obtained are very
accurate (Fig. 9). The advantage of using this config-
uration is important, since the spectral estimations
are of about the same quality as those in previous sec-
tions, but at a fivefold lower cost in time (we use only 7
modes of the LCTF instead of 33, whichmeans a total
processing time of 13 s against 1 min). Hence, we
strongly recommend an optimization study prior to
using the multispectral imaging system.

6. Conclusions

We have proved that accurate multispectral estima-
tions of skylight can be obtained by using a mono-
chrome CCD camera attached to a liquid-crystal
tunable filter. The spectral curves of skylight ob-
tained with such a system are very similar to those
measured simultaneously with a spectroradiometer
but have the several advantages of price, weight, spa-
tial resolution, and portability. Given the spectral si-
milarity of skylight SPDs with any kind of natural
illuminant, the multispectral information provided
by our multispectral system could be used for many
scientific purposes related to the climatology or at-
mospheric physics.
We tested different configurations of our multi-

spectral system. First, we made use of a complete ca-
libration of the CCD camera and the LCTF to develop
a direct radiometric sampling in the visible range of
the spectrum. Second, we compared the Linear Pseu-
doinverse and the Imai–Berns methods when these
were used as spectral estimation methods in our
multispectral system with 33 channels, and they im-
proved the results obtained with the direct radio-
metric sampling method. Finally, we implemented
the five optimum sensors found in a previous compu-
tational study [10] for the Imai–Berns method and
showed that they can be implemented by using just
seven transmittance modes of the LCTF and adjust-
ing their exposure times. We demonstrated that
using a small number of optimum sensors provides
almost the same spectral results as using all the
available channels of the system, with a significant
saving in time. Thus we can recommend developing
an optimization procedure prior to building a multi-
spectral system.

To conclude, we have demonstrated that the
spectroradiometric model proposed theoretically to
describe our system does describe its behavior

Table 4. Mean � Standard Deviation Values of Various Metricsa

GFC CIELAB ΔE�
ab IRE (%) CSCM

0:998� 0:001 0:87� 0:21 7:05� 5:85 8:97� 6:00

aOver the test set of 125 spectral measurements taken in Gran-
ada in 2007whenusing the five optimumsensors of the Imai–Berns
method with five PCA vectors.

Fig. 9. (Color online) (a) 10th percentile (CSCM ¼ 3:12), (b) 50th
percentile (CSCM ¼ 7:48), and (c) 90th percentile (CSCM ¼ 16:76)
over the test set of 125 spectral measurements taken in Granada
in 2007 when using the Imai–Berns method with five optimum
sensors and five PCA vectors.
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accurately since the training process using simulated
sensors’ responses provides spectral reconstructions
of high qualitywhenadifferent test set of 125 spectral
curves is recovered.

This research was supported by the Spanish
Ministry of Education and Science and the European
Fund for Regional Development (FEDER) through
grant FIS2007-60736. The authors thank A. L. Tate
for revising the text.
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