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Photometric-stereo techniques are based on the fact that image intensity depends upon the orientation of
the surface with regard to the source of the illumination and its spectral reflectance. They are of special
interest when dealing with rough surfaces because they usually present shadowed regions where sudden
illumination changes might be found. In the present work we introduce an extension of the four-source
photometric-stereo algorithm to color images that is able to recover the surface spectral reflectance of
objects captured with a red–green–blue (RGB) camera. This method allows image rendering, even for
rough-textured surfaces, under different directions of the impinging illumination. In addition, the intro-
duction of spectral recovery techniques applied to the albedo and spectral reflectance from rough surfaces
offers the possibility of image rendering for scenes captured under sources of illumination differing in
spectral distribution. Using albedo instead of RGB information helps to avoid any shadows or highlights
that might falsify results. One of the advantages of this spectral-based photometric-stereo method is that
it can recover not only the albedo values, but also the spectral reflectance spectrum of an object’s surface
on a pixel-by-pixel basis, as can be done with more complex hyperspectral imaging devices involving a
camera coupled to an extensive set of narrowband filters. © 2009 Optical Society of America

OCIS codes: 330.1730, 330.1690.

1. Introduction

The color of a surface depends upon its spectral re-
flectance properties and the spectral power distribu-
tion (SPD) of the light impinging upon it [1]. Since
spectral reflectance is independent of the illuminant
used, it serves to characterize an object completely.
Spectral imaging has been used extensively during
the past decade to obtain spectral functions for each
image pixel [1–7]. The main advantage of spectral
imaging in comparison with conventional spectrora-
diometric measurements is that it can provide spec-
tral information from which spectral radiance or
reflectance can be recovered at each image pixel.

Usually a spectral system consists of an RGB or
monochrome digital camera coupled to a number of
wideband or narrowband color filters, ranging from
just three to hundreds of components in an ultraspec-
tral system [2–4]. The starting point for spectral ima-
ging methods is the signals given by a CCD camera.
Even if we are imaging the surface of a single mate-
rial, the values at different points may be different
due to the shape and/or roughness of the surface and
the geometry of its illumination, even for high signal-
to-noise ratio capturing devices [8]. This will result in
the spectral estimation algorithms giving different
reflectance values for pixels belonging to the same
surface.

Photometric-stereo techniques have long been
used to recover 3D information about surfaces. These
techniques can be classified into what Woodham [9]
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refers to as “direct methods” and “indirect methods.”
Direct methods are those that try to measure dis-
tance ranges directly, while the indirect methods
attempt to determine distance by measuring para-
meters calculated from images of the illuminated ob-
jects. Shape from photometric-stereo techniques was
conceived by Woodham in the early 1980s and has
since been extensively studied both theoretically and
experimentally. All approaches published since then
can be classified according to the assumptions the
authors make about the surface they are dealing
with and the type of problem they want to solve.
Thus, we might assume that a rough surface behaves
in a Lambertian fashion [10,11], that we should use a
more general method when the surface behaves in a
more complex way [12–18], that the illumination vec-
tors may or may not be known a priori [19], that sin-
gle or multiple images can be used in the recovery
process [10,20,21], that illumination sources may
or may not be spectrally identical [14,22,23], or if
there are or are not cast shadows in the images
[24,25]. Another classification comes from the kind
of image used by the algorithm, either grayscale or
colored. Most photometric-stereo techniques only
take into account grayscale images, although some
reports can be found describing the extension of this
method to color images [14,26–32]. One of these tech-
niques is based on the fact that information con-
cerning the color image of a Lambertian surface illu-
minated by a single light source is irrelevant since
the photometric equations for individual color bands
are linearly dependent. An efficient way to exploit
this irrelevance is to use a conventional photometric-
stereo method relying upon a single color image of a
Lambertian surface under complex lighting condi-
tions, rather than three grayscale images [20,28].
The surface should be illuminated by several spec-
trally distinct light sources deriving from different
directions that are not coplanar. This method is
called “shape from color.”
The color photometric-stereo method proposed by

Christensen and Shapiro [30] uses the notion of
the shading function, which maps surface normals
to the color space under a given illumination. This
method is implemented by means of lookup tables re-
presenting the inverse shading functions for a given
imaging configuration, which were constructed using
a calibrating sphere. The disadvantage of this meth-
od is that the surface should either be uniformly co-
lored or its color should form distinct separable
clusters in the color space, which severely restricts
the choice of acceptable surfaces.
Barsky and Petrou [14] proposed a method based

on the four-source photometric-stereo approach. The
pixel information obtained with a camera with A
channels can be represented by an A-dimensional
vector called body color. For a Lambertian surface
patch, the three color pixels corresponding to three
different directions of illumination are collinear in
the RGB space and differ only by a scalar factor,
the shading of the patch under a particular illumina-

tion. Since any errors introduced may disturb col-
linearity they use principal components analysis
(PCA) to find their principal direction, which is re-
lated to the chromaticity of the body’s color.

Thus photometric stereo is based on the fact that
image intensity depends upon the orientation of the
surface with regard to the source of the illumination
and its spectral reflectance. If several images are ta-
ken from the same point of view but with different
lighting directions, any variation in pixel intensity
in these images will be due to changes in the relative
positions of the light and the surface. Photometric-
stereo techniques recover three-dimensional (3D) in-
formation from the surface, given usually in terms of
a three-component normal vector. This means that at
least three images will be needed to create a system
that allows us to obtain these three normal compo-
nents. Multiple images of the same scene under
different illumination conditions create an overcon-
strained system, which is resolved for the surface
shape by minimizing the total cost. Therefore, these
constraints are used to calculate the normal vectors,
which represent the surface orientation of any point
on the surface, and the albedo (defined as the fraction
of the incident light reflected by a surface, which in
this case is filtered by the camera spectral sensitivity
and can be affected by light intensity), which de-
scribes the reflection properties of the surface.

Photometric-stereo techniques are of special inter-
est when dealing with rough surfaces because, on
this kind of surface, there are shadowed regions
where sudden illumination changes might be found.
Previous studies [33] have shown that reflectance va-
lues can be mapped onto the surface of objects to ren-
der realistic images under different lighting and
viewing conditions. But these authors do not analyze
how the spectral reflectance of an object’s surface in-
fluences the sensor responses when the photometric
approach is used. Their approach works well for im-
age rendering under different incident illumination,
but they do not examine the more realistic case
where illumination can change not only in intensity
but also in its spectral profile.

Precise 3D data and spectral data are presently ac-
quired independently with laser scan equipment and
hyperspectral systems; however, this equipment is
expensive and the combination of their data to obtain
a unified 3D and spectral representation is difficult.
Developing a simple system that allows simulta-
neous acquisition of these quantities in the same
sample is certainly of great practical interest.
Although the technique of photometric stereo has
been around for many years and in many versions,
the original contribution of the present work is its ex-
tension to derive spectral reflectances.

The photometric-stereo technique presented is an
extension of the four-source photometric-stereo to
color images. This technique provides albedo and a
normal vector in each pixel of an image of a real, co-
lored, rough surface. Because of the shape of a sur-
face or its roughness, its appearance can change
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when the direction of illumination varies. Since the
albedo values are not influenced by shadows and
highlights, they will give a realistic description of
the appearance of the surface.
Spectral recovery methods use RGB values as a

starting point. If one pixel of a surface is affected
by a shadow or a highlight, the corresponding RGB
value will not be the one relative to the imaged ma-
terial, and the reflectance recovered from it will be a
fake. That is why, in this work, we propose to recover
reflectances from albedo values instead of RGB va-
lues. The algorithm used here to recover spectral
reflectance is the so-called linear pseudoinverse
method, and it is used together with a supervised
method to find the best set of training samples for
the spectral recovery process.
Some experiments are presented, too: first we used

the albedo together with normal information recov-
ered with the photometric-stereo technique to simu-
late images under different illumination conditions.
These simulations were then used to check the accu-
racy of our proposed photometric-stereo algorithm.
Subsequently, reflectance information obtained from
the albedo was used to change not only the geometry
of illumination but also the SPD of the illumination
source.

2. Method

This section is structured as follows: in Subsec-
tion 2.A we describe the basics of gray photometric
stereo; in Subsection 2.B the photometric-stereo ap-
proach is extended to color images; in Subsection 2.C
we introduce the method used to recover spectral re-
flectances from color images; and finally the acquisi-
tion procedure and datasets are described in
Subsection 2.D.

A. Gray Photometric Stereo for Lambertian Surfaces

Two assumptions are usually made in the
photometric-stereo approach [13]. The surface is
not perfectly smooth and is composed of microfacets,
which have normal vectors that are distributed about
the normal vector of the approximating smooth sur-
face, and the surface is lit from a single source. The
coordinate system is chosen so that the image plane
coincides with the xy plane and the z axis coincides
with the viewing direction (Fig. 1). Thus the surface
can be described by a two-dimensional (2D) height
function z ¼ Sðx; yÞ. The gradient component can
be defined for every point of the surface as

pðx; yÞ ¼ ∂Sðx; yÞ
∂x

; qðx; yÞ ¼ ∂Sðx; yÞ
∂y

; ð1Þ

and the normal unit vector, N, as

N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ q2 þ 1

p ðp; q;−1ÞT ; ð2Þ

where T denotes the transpose matrix.

Let us consider a Lambertian surface patch with
albedo ρ and normal N, lit from one source with di-
rection L (unitary vector), as shown in Fig. 1. If we
assume the intensity light to be unitary, the intensity
of each pixel of the sample captured by the camera
can be expressed as [9]:

I ¼ ρðL · NÞ; ð3Þ

where I is the intensity in one pixel, ρ is its albedo
value, L is the 1 × 3 direction of the illumination vec-
tor, and N is the 1 × 3 normal vector.

Our goal is to recover the normal vector of a surface
at each point that is a three-component vector and
thus, having three intensities in each pixel, we can
create a system that allows us to obtain those com-
ponents. Hence, if we light the surface with three
light sources with directions L1, L2, and L3 the inten-
sities of the pixels thus obtained can be expressed as

Ik ¼ ρðLk · NÞ; ð4Þ

where k ¼ 1, 2, 3 represent the illuminant directions
and (·) the scalar product of two vectors. The pixel
intensities can be stacked to obtain the 3 × 1 pixel in-
tensity vector I ¼ ðI1; I2; I3ÞT and the light vectors
can also be stacked row-wise to form the 3 × 3 illumi-
nation matrix ½L� ¼ ðL1;L2;L3ÞT . Equation (4) can
then be rewritten in matrix form:

I ¼ ρ½L�N ð5Þ

If the three light directions, Lk, do not lie on the
same plane, matrix [L] is nonsingular and can be in-
verted to give

½L�−1I ¼ ρN: ð6Þ

Fig. 1. Definition of the important vectors and reflectance angles:
R, viewer vector; L, illuminant vector; N, normal vector; i, angle of
incidence; e, angle of emittance; g, phase angle.
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Since N has unit length, both the normal (as the
direction of the obtained vector) and albedo (as its
length) can be recovered.
Controlling the lighting conditions is very impor-

tant for the accuracy of this algorithm. It is necessary
to avoid ambient light and to have invariant incident
light intensity for the different directions of illumina-
tion. That way we can be sure that the differences
between the intensity values of the same pixel in dif-
ferent images is due only to the change in the orien-
tation of the light source. It can be achieved by
keeping constant the distance between the light
source and the imaged object. In the present work,
the different orientations of illumination have been
achieved by fixing the position of the source andmak-
ing the sample and the camera go around together. It
allows us to keep the same distance between the
sample and the illumination source, setting the sam-
ple in the rotational center of the system.
Photometric-stereo techniques are based on the

constraint of perfect diffuse surfaces, known as Lam-
bertian surfaces, which reflect light equally in all
directions. Real surfaces can show non-Lambertian
behavior when they are illuminated in certain di-
rections, causing highlights and leading the photo-
metric-stereo algorithm to fail. Another source of er-
ror can be the presence of cast shadows, a situation
that occurs when a point of the surface cannot be
seen by the light source because another point of the
same source blocks the path of the light. Surfaces
with such behavior have been avoided here. In this
work we have used the so-called four-source photo-
metric-stereo technique [14], where four lighting
sources are used instead of three. With four vectors,
it is possible to make four different combinations of
three vectors. This allows us to use only the combi-
nation in which the pixel intensities show Lamber-
tian behavior. Hence, from each pixel we can get
four albedos and normal vectors (one from each one
of the four possible combinations). If there is a high-
light in any of the images, its albedo value will be
higher than the rest. So, calculating the standard de-
viation for the set of four albedo values, we can dis-
cover whether we have a non-Lambertian (highlight)
behavior for any of the illumination directions. If the
standard deviation is higher than a threshold, the
value of which comes from previous experimental re-
sults [8], the combination that gives the higher albe-
do value is disregarded and the three albedo values
and the normal vector will be averaged to get just one
albedo and one normal in each pixel. If the standard
deviation is beneath the threshold, the average will
be made with all four albedo and normal vector va-
lues because it means that we do not have any high-
light in any of the four images of that pixel. Once we
have recovered the albedo and the normal vector we
can use this information to render a scene under dif-
ferent directions of illumination simply by changing
the illumination vector L in Eq. (4).

B. Color Photometric-Stereo Algorithm

Here we propose a generalization for color images
based on the above method. Our proposal consists of
applying the gray four-source photometric algorithm
to each color channel (RGB sensor values) in a sepa-
rate way, deriving three albedo values and three nor-
mal vectors for each pixel. Because all three channels
contain information about the same surface, the dif-
ference between them is only the color information
and so the three albedo components can be used as
RGB components. The normal vectors can be aver-
aged to end up with only one normal vector in each
pixel.

The summary of the four-source color photometric-
stereo algorithm is the following:

1. Starting with four intensity values per pixel
we construct the four possible intensity vectors of
size 3 × 1 and combine these four values into groups
of three:

Ixj ¼ ρxj ½L�jNx
j ; ð7Þ

where j ¼ 1, 2, 3, 4 and x ¼ 1;…;n, n being the total
number of pixels.

2. We apply Eq. (6) to each of the four intensity
vectors to recover four albedos and normal vectors:

½L�−1j Ixj ¼ ρxjNx
j ; ð8Þ

3. We calculate the standard deviation σðρjÞ of
the four albedo values and set a threshold, t, and:

a. if σðρjÞ ≤ t, average the four albedo values and
the components of the normal vector to get just one
albedo and normal vector in this pixel;

b. if σðρjÞ > t, look for the maximum albedo value
and discard the combination of intensities that has
provided it. We then average the other three albedos
and components of the normal vector to get just one
albedo and normal vector in this pixel.

4. It only remains to repeat all the above steps for
each color channel (R, G, and B) and use the albedo
value recovered for the first channel as “R albedo”
and so on. The final normal vector in each pixel will
be the average of the normal vectors recovered for all
three channels:

Nx ¼ 1
3

X
i

Nx
i ; ð9Þ

where i is the number of channels, i ¼ 1, 2, 3.

C. Spectral Reflectance Estimation via Linear
Pseudoinverse Method

The goal of spectral imaging is to recover spectral ra-
diance or reflectance for each pixel of any scene in
question. In the so-called linear pseudoinverse meth-
od [4], given a set of training spectra, S, (which can
be the spectral radiance of reflectance) and the
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corresponding set of experimental camera responses,
q, a recovery transformation matrix, D, is defined by:

D ¼ Sqþ ð10Þ

where qþ is the pseudoinverse of q and, if q has full
rank, then qþ ¼ ðqTqÞqT . An estimation set of spec-
tra, S1, may then be obtained from the corresponding
set of camera responses, q1, by applying the transfor-
mation, D, i.e.,

S1 ¼ Dq1 ð11Þ

Thus, once we have recovered reflectance we can now
deal with more parameters because it is possible to
model the albedo in each pixel as

ρ ¼
X

EðλÞSðλÞQðλÞ; ð12Þ

where EðλÞ is the spectrum of the illuminant, SðλÞ is
the reflectance of the pixel, and QðλÞ represents the
camera’s sensitivity for each channel. Once we have
the reflectance of each pixel of the sample, we need
only the SPD of one illuminant and the camera’s sen-
sitivity in each channel to simulate the sample, not
only under any direction of illumination but also un-
der any illuminant, too.
This approach can be sensitive to the size and

composition of the training set of reflectances
[34,35]. To choose an appropriate training set, a su-
pervised training sample selection is applied pixel-
wise for a given image. As a training set we used
all 1269 samples from the Munsell Color Chart [36]
to take advantage of its classification of colors in
terms of hue groups. In the 3D space determined
by the R, G, B channels the distribution of the coor-
dinates of the samples of each hue group more or less
forms a plane (Fig. 2).
Hence, a reduction in the dimensions of the distri-

bution of each hue group to a plane would provide us
with an easy way of representing them in the RGB

space. PCA is the most usual approach for reducing
multidimensional datasets to a lower number of
dimensions. We have applied PCA to all the sets of
samples contained in each Munsell page in the RGB
space in order to reduce their 3D distribution to a
plane. The choice of the supervised training sample
involves calculating the Euclidean distance in the
RGB space between each pixel of the image and these
planes. The closest plane to each pixel tells us the
hue group that wemust use to recover the reflectance
of this particular pixel.

The summary of the linear pseudoinverse algo-
rithm is:

1. First we calculate the transformation matrix,
D, associated to each of the ten Munsell Color Chart
hue groups.

2. On the basis of the albedo values recovered
with the four-source photometric-stereo method in
each pixel of the image we calculate the distance be-
tween its components in the RGB space and the ten
planes. The closest plane to the albedo coordinates of
each pixel will tell us the transformation matrix
to use.

3. Once we know the closest plane we use the cor-
responding transformation matrix to recover reflec-
tance using Eq. (11).

D. Acquisition and Dataset

Images were captured with a Retiga 1300 CCD cam-
era (12 bit intensity range per channel) from QIma-
ging, Canada, with a LINOS MeVis-C lens with a
fixed 5.6 aperture and focal length of 25mm. The
camera was incorporated into a setup like the one
shown in Fig. 3, in which the relative position be-
tween the camera and the sample is fixed. This setup
allows the camera–sample couple to rotate together
around the z axis. In this way, by fixing one lamp, it is
possible to capture the sample under different illumi-
nation directions simply by rotating the sample and
the camera.

Three different commercial lamps were used as il-
lumination sources throughout the experiments, two
fluorescent and the third incandescent. Their spec-
tral power distributions are shown in Fig. 4.

Our sample set contained 24 samples of frontage
cover with two different kinds of texture; an example
is shown in Fig. 5. The first ones were smoother, ter-
rainlike, without big differences over the sample,
while the second ones were more abrupt, a mixture
of terrain and little stones. Samples were captured
under eight different illumination directions: 0°, 90°,
180°, and 270°, which is the training set; and 45°,
135°, 225°, and 315°, which is the test set. All the
samples were captured under the eight directions
of illumination and under the three illumination
sources at an image size of 100 × 100 pixels. The
Munsell samples used as a training set in the
pseudoinverse method were captured with the same
CCD camera under one of the fluorescent lamps.

Fig. 2. Example of the distribution of one Munsell hue group’s
sample in the RGB space in digital counts as captured by our
Retiga camera.
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3. Results and Discussion

To quantify the quality of the results we used the fol-
lowing metrics: the RGB error, the CIELab color dif-
ference,ΔE�ab, and the angular error (AE). The RGB
error values [37] were calculated pixel by pixel via
the differences between the values of the R, G, and
B coordinates of the compared images using the ex-
pression

RGBerrorx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
3
ðΔR2

x þΔG2
x þΔB2

xÞ
r

; ð13Þ

where ΔRx, ΔGx, and ΔBx are the differences at any
pixel x. CIELab color differences were obtained em-
ploying as reference the tristimulus values calcu-
lated from RGB values of a white patch captured
under the same illuminant as the samples. The an-
gular error measurement was defined as

AEx ¼ cos−1ðρo · ρeÞ; ð14Þ

where ρo and ρe are the RGB color components of the
original and the algorithm’s estimation of the images
at pixel x, respectively.

A. Albedo Recovery and Surface Rendering

We used half of the images captured with one fluor-
escent lamp to recover both the albedo and normal
vectors using the color photometric algorithm, and
went on to employ this information to simulate the
samples under the eight illumination directions to
check the performance of our algorithm. Thus, only
the images captured with one of the fluorescent
lamps was used here and, from the set of eight differ-
ent illumination directions, four were used in the
four-source photometric-stereo process (the training
set of samples) to recover the albedo and normal vec-
tors. To check the accuracy of this recovery a simula-
tion set was made using Eq. (3). To simulate the test
images we changed the illumination vector, L, to get
the eight illumination directions mentioned above.
Hence the 24 samples were simulated under the
eight illumination directions, making a total number
of 192 simulated samples.

These simulated images were compared to the real
ones using all three metrics mentioned above pixel
by pixel over the images. First, we analyzed sepa-
rately the results obtained for the images used to re-
cover the albedo and normal vectors (training sample
set at 0°, 90°, 180°, and 270°) (see Table 1). The ef-
fects of the direction of incident light and the metric
were tested by a repeated-measures analysis of the
variance of two factors: the direction used to capture
the images (0°, 90°, 180°, and 270°) and the metric
used to evaluate the recovery quality (RGBerror,
ΔE�ab, and AE). The results from the training set
of samples suggest very good color recovery for the
rendering algorithm. The average RGB error is 78,
which means only a 1.9% total error, and decreases
to 57 (1.39% total error) when the median is taken
into account. These values correspond to AE values
of 0.74 and 0.53, respectively. When analyzing RGB
error values we must remember that our image cap-
turing device is a 12 bit CCD camera that allows
RGB values ranging from 0 to 4095. The colorimetric

Fig. 3. Experimental setup. Camera and sample can go around
together, maintaining the relative position between them. By fix-
ing the position of a source and making the camera–sample set
move, it is possible to obtain any desired direction of illumination.

Fig. 4. Normalized SPDs of the illumination sources.

Fig. 5. Example of the two different kinds of textures of the sam-
ples used in this work. The first image represents an example of
the smooth, terrainlike samples, and the second one is an example
of the more abrupt texture.
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results are satisfactory, too, with a mean ΔE�ab of
2.9 and a median of only 2.3. The values are under
5ΔE�ab units, which is acceptable enough. Although
1ΔE�ab is considered to be a just-noticeable color
difference, the accepted ΔE�ab values in the litera-
ture depend upon the applications and the field of in-
terest. Thus the mean ΔE�ab color-difference
tolerances in printing applications and television
are usually around 5 to 6, and even above these lim-
its for industry [37]. Statistical results show that the
performance depends upon the direction selected and
shows significant differences for all the metrics
(p ≪ 0:05). In order to complete this analysis, we
tested our algorithm using samples that were not in-
cluded in the training set. So, images with directions
of illumination of 45°, 135°, 225°, and 315° were si-
mulated using the recovered normal vectors and al-
bedo from the training set, and captured, too, to
check results. In this case we found significant differ-
ences for the geometry of illumination and the metric
used (p ≪ 0:05), but color recovery was also very
good, with a mean RGBerror of 82 (2.1% total error)
and mean ΔE�ab of 3.2. Table 1 resumes all of these
results and also includes the 90 percentile values.
The visual significance of the RGB color error for a

rough surface not included in the training and set at
45° incident illumination is illustrated in Fig. 6, in
which the histogram of the RGBerror differences ob-
tained over the whole image (10,000 pixels) is shown
first. In the second row of the figure, the first image is
the original one and the second one is a color-scale
image showing the distribution of the RGB differ-
ences in the image. We also present an example of
the median results, obtaining very good color image
rendering. Furthermore, it can be seen how some of
the image pixels belonging to shadows in the image
lead to considerable color errors. This reflects one of
the limitations of the method, which does not take
any shadows cast into account.

B. Spectral Reflectance Recovery and Lack of
Homogeneity

We selected materials with heterogeneous surface
textures. This becomes a problem when we want to

recover spectral information with a device such as
a spectroradiometer because this kind of instrument
uses a spot with a fixed area and averages the incom-
ing radiation from this area. If we have a textured
sample, where reflectance varies from one point to
another, it is possible to find areas with different re-
flectance values within the spot. This is the reason
why pixel-by-pixel recovery is very important with
this kind of sample.

With the aim of verifying this fact, we have in-
cluded one experiment where measures from a spec-
troradiometer and from our algorithm are compared.
It is not possible to exactly relate the area measured
by the spectroradiometer with the pixels chosen in an
image to recover reflectance, but our goal here is
to show that, if reflectance inside the spot of a
spectroradiometer varies, the reflectance given for
this area cannot be appropriate for all pixels inside
of it.

Figure 7 shows an example of spectral recovery as
compared to spectroradiometric measurements on
small surface areas. The image shows one of the sam-
ples where the reflectance of one pixel within the
three white circles has been chosen. These pixels be-
long to three different kinds of stone, so their re-
flectances are different, too. The first graph shows
reflectances recovered with our algorithm from albe-
do information and the second one shows reflec-
tances measured with a PR650 spectroradiometer.
The area measured with the PR650 was centered
on the pixel whose reflectances where recovered with
our algorithm. As we said, it is not possible to mea-
sure exactly the same pixel because of the size of the

Table 1. Pixel-by-Pixel Statistics Obtained When Original and
Rendered Images From the Albedo and Normal Recovery Step are

Compared

Mean Standard Deviation 90 Percentile

Training set of samples
RGBerror 78 70 165
ΔE�ab 2.9 2.3 5.8
AE 0.74 0.74 1.51

Test set of samples
RGBerror 87 89 177
ΔE�ab 3.2 2.8 6.1
AE 0.76 0.75 1.53

Averaged results
RGBerror 82 80 171
ΔE�ab 3.1 2.6 6.0
AE 0.75 0.75 1.52

Fig. 6. (Color online) Example of simulated sample not included
in the training set. First line, histogram of RGB differences. Sec-
ond line, original sample and color-scale image showing the distri-
bution of RGB differences in the images.
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spectroradiometer’s spot, which shows the limita-
tions of this kind of device when pixel-by-pixel infor-
mation is required.
Measured reflectances have a more homogeneous

shape due to the average of the incoming radiance
from the area inside the spot of the instrument, but
in our recovered reflectances a change in shape cor-
responding to the different materials included in the
spectroradiometer’s spot can be seen.

C. Albedo Recovery and Image Rendering under
Spectrally Different Lights

The results described above suggest that a spectral-
based photometric-stereo algorithm is sufficient to
recover the albedo satisfactorily and then to render
color. This has also been found in previous results for
different light intensities [33], but what would
happen if the source of illumination changed in its
spectral content? In this section we show the pre-
liminary results deriving from our method for dif-
ferent spectral lights and incidence geometry. We
have started from the estimated albedo, as shown
in Subsection 2.C, and recovered the spectral reflec-
tances at a pixel using Eqs. (9) and (3) to simulate the
samples under the three spectrally different light
sources and the eight illumination directions. We
used the sensitivities of the Retiga camera shown
in Fig. 8. Thus the 24 samples were simulated under
three lamps and eight illumination directions, which
adds up to a total of 576 test images.

Figures 9–11 contain the same elements as Fig. 6
and show examples of the quality of image recovery
when the spectral profile of the illumination under
which the photometric stereo runs (i.e., albedo esti-
mation) is different from that under which the image
is rendered (i.e., spectral reflectance estimation from
linear pseudoinverse). As might be expected, the
RGB errors are now larger than those found pre-
viously, with averaged values of around 435 (i.e.,
10% total error). Table 2 contains separate summa-
ries of the results of the training and the test sets of
samples. The first three rows set out the results for
each of the lamps separately and the last row shows
the average values for all of them. For the training
set of samples we found average RGBerror values
of 435 (10.6% total error). For the test set of samples
the color errors were almost the same, with an aver-
age RGBerror of 436. When only the direction of

Fig. 7. (Color online) Comparison of reflectance recovered with our algorithm andmeasured with a spectroradiometer. (a) Original image
with the measured areas marked. (b) Reflectances recovered with our algorithm. (c) Reflectances measured with a PR650 spectroradi-
ometer.

Fig. 8. Spectral sensitivities of the RGB digital camera.

Fig. 9. (Color online) Example of simulation made with the albe-
do calculated using the reflectance obtained by the pseudoinverse
method and the SPD of the Digilite lamp, showing the same infor-
mation as Fig. 6.
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illumination was changed, we obtained a clear differ-
ence between results from test and training sets.
But, when changing the SPD of the illuminant also,
those differences between training and test sets re-
sults are lower, finding even a case where results
are slightly better for the test set (mean values of
RGBerror and AE for Trilite).
Besides, the ΔE�ab values now exceed what might

be considered as being of acceptable color-
imetric quality, showing mean ΔE�ab values of 14.8
(�9:9 standard deviation). Although those values are
not satisfactory according to usual tolerances, we
should consider that there is no appropriate metric
to use with samples like ours, i.e., textured samples,
so we do not know for sure that the obtained color
differences really describe the observed differences.

Could it be that the CIELab is not the appropriate
metric for these comparisons? The final answer to
this question would be suitable after future analysis
and results.

The AE values corroborate these results with
mean values of around 3.46, which lead to an accept-
able image rendering, independently of the spectral
content of the light. The cosine values associated to
the AE are clearly above 0.9981, which is usually con-
sidered as being a colorimetrically accurate color es-
timations when Eq. (13) is interpreted in terms of a
goodness-of-fit coefficient [3]. Finally, the results for
both the test and training sets are shown in Table 3.

Results in this section shows that this method can
be used to render images, changing both the orienta-

Fig. 10. (Color online) Example of simulation made with the al-
bedo calculated using the reflectance obtained by the pseudoin-
verse method and the SPD of the incandescent lamp, showing
the same information as Fig. 6.

Fig. 11. (Color online) Example of simulation made with the al-
bedo calculated using the reflectance obtained by the pseudoin-
verse method and the SPD of the Trilite lamp, showing the
same information as Fig. 6.

Table 2. Pixel-by-Pixel Statistics Obtained When Original and Rendered Images From the Spectral Recovery Step are Compared

Training Set Test Set

Mean Standard deviation 90 percentile Mean Standard deviation 90 percentile

Digilite RGBerror 323 293 719 328 296 719
ΔE � ab 11.0 9.0 22.7 11.2 9.2 23.8
AE 2.10 1.37 3.96 2.33 1.81 4.22

Incand RGBerror 414 277 780 419 282 791
ΔE�ab 15.7 9.1 28.0 15.9 9.4 28.6
AE 4.01 2.79 7.73 4.15 3.06 8.42

Trilite RGBerror 567 324 994 561 322 979
ΔE�ab 17.8 10.2 31.1 22.0 16.0 41.1
AE 4.26 2.87 8.48 4.16 2.62 7.76

Average RGBerror 435 315 855 436 315 852
ΔE�ab 19.4 15.1 37.3 14.9 9.9 38.0
AE 3.46 2.63 6.79 3.55 2.69 7.20
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tion and the spectral composition of the illumination
source, but with low colorimetric accuracy.

4. Conclusions

The image reconstruction method described here is a
photometric-based algorithm that directly relates
the camera sensor outputs to albedo values. Using
an RGB digital camera, the algorithm recovers the
surface spectral reflectance of objects to allow image
rendering even for rough, colored surfaces under dif-
ferent lighting conditions. Although photometric-
stereo methods have been applied successfully for
the 3D shape of objects, few results are available con-
cerning what might happen when the lighting condi-
tions vary not only in intensity but also in their
spectral content. This is the case, for example, in
art galleries and museums, where paintings and
other objects must be shown under fluorescent or in-
candescent light. Thus we have extended the four-
source photometric-stereo approach to color images
to first recover albedo and normal vectors in each
pixel of a color image. This information allows us
to simulate the captured samples under different
illumination directions. Subsequently a linear pseu-
doinverse method has been used to recover spectral
reflectances in single pixels from the albedo values.
The linear pseudoinverse method can be combined
with a supervised algorithm to choose the most ap-
propriate set of training samples. By adding this
spectral reflectance information to the surface shape
recovered beforehand, it is possible to simulate a
sample under any illumination direction and differ-
ent spectral source.
Spectral reflectance obtained by the linear pseu-

doinverse method allows us to recover spectral reflec-
tances pixel by pixel from RGB scenes but, by using
albedo instead of RGB information, it is possible to
avoid any shadows or highlights that might falsify
results. This information can be used to make com-
putational simulations of real samples under differ-
ent conditions. Using albedo and normal vector data
it is possible to simulate a sample under different di-
rections of illumination and, by adding the spectral
reflectance information, the source of illumination
can be changed as well. Therefore, starting with four

images captured under different illumination direc-
tions and a determined source of illumination we can
simulate a sample under any direction and source of
illumination just by knowing its SPD. In the former
case we found good results with all the metrics. The
latter case was not so accurate and we will intro-
duce several improvements in the algorithm for
future works.

This work was supported by the Spanish Ministry
of Education and Science and the European Fund for
Regional Development (FEDER) through grant
number FIS2007-60736. The authors thank their col-
league A. L. Tate for revising their English text.
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