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Images captured under bad weather conditions suffer from poor contrast and visibility. These effects are
noticeable for haze, mist, fog, or dust storms. We have proposed a recovering method for images captured
for several adverse weather conditions based on the RGB response ratio constancy under illuminant
changes. This algorithm improves the visibility, contrast, and color in degraded images with low
computational times. We obtain results similar to those from previously published deweathering meth-
ods but with no prior information about the image content or atmospheric parameters needed. © 2015
Optical Society of America
OCIS codes: (100.2000) Digital image processing; (100.2960) Image analysis; (100.2980) Image

enhancement.
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1. Introduction

Nowadays digital cameras are used in a plethora of
systems, such as surveillance systems, user aid sys-
tems, and customer devices, just to mention some ap-
plications. Digital images add many advantages in
the way we manage the information contained in
the scenes, allowing us to obtain object structure in-
formation or material recognition. In some circum-
stances the outdoor images could be affected by bad
weather conditions and the objects in the scene far
away from the observer could decrease their visibil-
ity. Under these situations, captured images could
have not enough quality to be useful, having poor
contrast or dimmed colors. Reduction of the objects’
contrast and the alteration of the objects’ color is a
consequence of the interaction between the light and
the particles present in the atmosphere. As is easily
noticeable, when the objects are far away from the
observer their chromaticity turns into the chromatic-
ity of the horizon, exhibiting the typical shift to blu-
ish or whitish in the objects’ hue [1]. This is an old
topic used in arts to obtain the depth sensation [2]

and is widely studied in atmospheric optics [3,4].
Under adverse conditions, intuitively we can suppose
that the light coming from the objects suffers more
interactions (dense atmospheric paths) with the
atmospheric particles, so less information coming
from the objects impinges directly on the observer.
For extreme situations, such as very thick fog, the
objects could hardly be visible or even become invis-
ible. As a consequence, weather recovering algo-
rithms (sometimes called deweathering algorithms
in the literature [5]) should be used as a previous
step in such systems to get reliable information
under weather affected images.

In the field of weather restoring images there are
two main approximations: one based on nonphysical
models and another one based on physical models.
Histogram equalization and its variations [6,7] are
the most widespread nonphysical models. Recently,
several works were based on retinex theory to im-
prove brightness [8,9], contrast, and sharpness of
weather degraded images. The main drawback of
these algorithms lies in the restoration of the original
objects’ color in the scene, particularly when the ob-
jects are situated at different planes. Improved re-
sults have been obtained employing physical-based
models [10]. The most successful methods rest on
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the dichromatic atmospheric scattering model [11].
This model postulates that the light impinging in
the observer coming from an object is composed of
two terms: one direct term coming from the object
but attenuated by the atmosphere, plus another term
that adds light in the cone of vision of the observer.
The first term, usually denoted as attenuation, is
more noticeable at short distances. As objects become
farther away from the observer, their color informa-
tion gets lost, and their chromaticity tends to the
chromaticity of the horizon. The second term, usually
denoted as the airlight term, is more important at
long distances and has no spectral information of
the objects.

In the image restoring field, the dichromatic
atmospheric scattering model is usually depicted
as [12,13]

Ic�x; λ� � Jc�x; λ�t�x; λ� � Ac�1 − t�x; λ��; (1)

where x denotes the 2D pixel coordinates in the im-
age, λ is the wavelength of the incident light, c stands
for the camera channel (c will be just one channel
for gray-scale images, or c � R, G, or B for full color
images), I is the captured image, J is the radiance
coming from the object, t is the transmittance factor,
and A is the horizon radiance. The transmittance of
the medium is expressed as

t�x; λ� � exp�−β�λ�d�; (2)

where β is the extinction coefficient, related to the
size and density of the particles present in the atmos-
phere [14], and d is the distance between the object
and the observer. To simplify the equation, it is a
common practice to consider the extinction coefficient
constant in the atmosphere [15]. Those two terms, at-
tenuation and airlight, modify both original colors
and contrast of objects present in the atmosphere
[16,17]. Deweathering images is anunderconstrained
problem. For gray-scale images there are three un-
knowns for each pixel: object radiance �J�, transmis-
sion of the medium �t�, and airlight color component
�A�. For color images there are also three equations at
each pixel, corresponding to the R, G, and B channels.

Several approaches have been proposed to recover
images based on physical models. Most of these
methods consider a single scattering process, where
it is supposed that the light that reaches the observer
interacts only with one localized scattering center
(atmospheric particle). Single scattering is a simpli-
fication of the more realistic multiple scattering
problem.

Some proposed methods presented in the litera-
ture take advantage of the fact that the airlight term
is polarized at some degree [18]. These techniques
take two images of the same scene with different
polarization angles to approximately obtain the air-
light component. Narasimhan and Nayar [19] also
use two images of the scene, one of them in clear con-
ditions to derive several geometrical constraints for

assessing fog or haze color. The evident drawback of
these kinds of approximations is that it is not always
possible to capture two images of the same scene. To
overcome this drawback, the authors use annotated
image information to obtain the geometrical con-
straints in the scene [20]. Other authors developed
methods that need the estimation of some atmos-
pheric parameters to restore the images [10].

Recent approaches try to restore the scenes using
the information contained in the image itself, avoid-
ing the use of two images, the interaction of the user,
or the knowledge of some atmospheric parameters.
Some methods [12,13] have been developed based
on the dark channel prior [21]. This method employs
the statistics of the scene. Dark channel prior postu-
lates that on haze-free outdoor images at least one
color channel has low intensity at some pixels. He
et al. [21] used this technique to obtain an approxi-
mate transmission map of the scene, evaluating the
airlight and finally restoring the weather degraded
image. The problem with this approximation is that
the image gets tessellated. Ancuti et al. [13] im-
proved the method comparing the hue of the original
image with the hue of the inverse image to estimate
the airlight color and applying a layer-base dehazing
technique. Fattal [22] assessed the transmissionmap
assuming that the albedo of the objects and the
transmission are statistically uncorrelated. This
method shows problems in large areas with smooth
variation or in regions where the signal-to-noise ratio
is low [22].

All mentioned methods are applied under not very
dense fog, misty, or hazy scenes. For dense fog and
objects at a certain distance to the observer (some-
times a dozen meters), there is no information to be
recovered at all. In these situations, multiple scatter-
ing dominates the interactions between the atmos-
pheric particles and all the chromatic objects’
information is lost. Tao et al. [12] extend the method
of dark channel prior considering the influence of
multiple scattering in the atmosphere. This method
needs the evaluation of the atmospheric point spread
function [23] and includes convolution and deconvo-
lution steps, which increase the computational time.

The deweathering method that we have developed
in this work is based on color constancy. This prop-
erty of the human visual system (HSV) accounts for
the constant color appearance of objects under differ-
ent illuminants changes. Different authors [24–28]
have found a linear relationship with a high correla-
tion coefficient representing, for a broad set of objects,
the pairs of excitation values for each cone (L, M or S)
determined for each object under two different illumi-
nants. This linear relationship indicates that the ratio
of the excitations under illuminant changes for each
cone class remains roughly constant for all objects.
The same ratio constancy stands for artificial sensors,
as we have proved in a previous work [29].

The aim of this work is to develop a restoration
algorithm for weather degraded images that is based
on the response ratio constancy of the sensors of a
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RGB camera. This algorithm will improve the visibil-
ity, contrast, and color in the images with no prior in-
formation about the image content and with low
computational times. This paper is organized as fol-
lows. We begin by presenting our method to image
deweathering problem. Our approximation is based
on response ratio constancy between the channels of
a camera under different illuminants. Section 3 shows
the results that we have obtained with this method.
We have applied our deweathering algorithm to an
image database obtained under different weather
conditions, ranging frommist to dense fog. This image
database was obtained with a scientific and with
customer cameras. We have extended the image data-
base with artificial weather degraded images and
with images collected from the Internet, where no
information of capturing conditions were available.
Section 4 compares our results with the other five
state-of-the-art techniques. No unified quantitative
method is established to evaluate or compare the qual-
ity between restored images, so we make use of five
different metrics. Finally, we summarize our approach
and discuss its advantages and possible limitations.

2. Method

A. Constant Ratios at Different Distances

First we have tested the linear response ratio con-
stancy for a RGB camera when objects are viewed
under two different illuminants. Next we have ex-
tended the same computations but consider that for
one of the illuminants, the objects are located at a
certain distance from the observer and are thus
affected by the attenuation and airlight components.
These computations were made using real atmos-
pheric parameters and assuming the dichromatic
atmospheric scattering model, Eq. (1).

Several authors [29,30] have shown that there is a
linear relationship when the response of a sensor
under a certain illuminant is depicted versus the re-
sponse of the same sensor under another illuminant.
These relationships occur for a variety of soft day-
light spectral power distributions (SPDs) and for ar-
tificial illuminants. Romero et al. [29] have proved
that these relationships are also preserved between
the response of artificial receptors (like the ones
present in RGB camera channels) under different il-
luminants. Depicting in the y axis the response of one
camera sensor (R, G, or B digital counts of the cap-
tured image) for the illuminant present in the scene,
and in the x axis the response of the same sensor
under a theoretical illuminant, such as an E illumi-
nat (i.e., an equienergetic illuminant), linear
relationships appear, with a high correlation coeffi-
cient, as we have previously mentioned. Figure 1
shows an example of the response for the R channel
(similar plots are obtained for G and B channels) of a
calibrated scientific camera (Retiga EXi Fast 1394)
for a series of samples of the Color Checker DC
[31] at zero distance on an overcast day,
Fig. 1(a). In the y axis is depicted the intensity of

the R channel of the captured image, and in the x axis
the response of the same channel for an equienergy
illuminant. The y-intercept is zero because the re-
sponse of the sensor for a theoretical black object is
independent of the illuminant. As the distance
between the object and the observer increases, the
y-intercept gets higher values as a consequence of the
airlight component, Fig. 1(b). Even for a black object
the airlight term causes a sensor response not equal
to zero. At an infinite distance, the response of all the
pixels tends to the limit value of the illuminant in the
scene. Table 1 shows high correlation coefficients for
20 samples of the Color Checker DC [31] under
an overcast day at several distances. Those relation-
ships were obtained for images simulated under
adverse assorted weather conditions, ranging from
dense fog, mist, haze, and even dust storms. Based on
the above result we propose a method based on the
compensation of this added light by translating those
(R, G, B) values to the ones corresponding to an ideal
image, that is, to an image not affected by the atmos-
phere. We will assume that this ideal image would be
the one illuminated with an equienergy illuminant.

B. Deweathering Algorithm

The atmospheric effects are highly dependent on the
distance between the object and the observer. The pro-
posed method has to apply the same compensation to
all the pixels situated roughly at the same plane. To
accomplish this previous step we have tested several
approximations for image segmentation. Figure 2
shows a typical weather degraded image and the re-
sults of three clustering techniques. As a first attempt

Table 1. Data Analysis Results from Fig. 1(b)

Distance (km) y-intercept Slope R2

0 0.000 0.669 0.999
1 0.057 0.663 0.999
3 0.162 0.563 0.999
5 0.256 0.501 0.999
10 0.447 0.374 1.000
15 0.589 0.279 0.999
20 0.695 0.208 0.999
50 0.949 0.036 0.991
∞ 0.998 0.002 0.956

Fig. 1. (a) Relational ratio constancy response for the R channel
at zero distance and (b) at several distances. As we observed in the
(b) plot, as we approach to infinite distance (i.e., horizon line)
excitation R0 capture by the camera will remain constant for all
objects.
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we have employed the k-means clustering technique
[32]. For urban scenes, with hundred of borders and
with high amount of planes this technique does not
accomplish good results. Figure 2(b) shows that sev-
eral objects appear mixed up in different clusters.
More consistent results were obtained with the seed
region growing clustering technique [33], Fig. 2(c). But
these results are not good enough to be useful in such
complex images. In this case only two clusters were
obtained. Altering the number of seeds can increase
the clusters; this alteration approximates the results
obtained with k-means. Finally, we have chosen the
mean shift segmentation technique [34]. This cluster-
ing technique makes a segmentation of the scene
based on three parameters: one related to the maxi-
mum number of pixels allowed in the cluster, another
one related to the space resolution of the clustering,
and the last one related to the resolution of the color.
Figure 2(d) shows the result with this technique. The
objects situated approximately at different planes be-
long to different clusters. This clustering technique is
able to obtain several clusters with an acceptable
accuracy.

It is worthwhile to note that for images where the
whole scene is situated approximately at a constant
distance (such as aerial scenes) this previous cluster-
ing step is not necessary, so the computational time
of our algorithm is reduced. For images with objects
situated at far planes, once the image is segmented
out in approximately equal distance planes, we can
apply our intensity channel (R, G, B) correction
method to different cluster regions.

The algorithm modifies the R, G, and B intensity
values translating the captured RGB values (y axis)
to lower ones corresponding to the intensity of a
haze-free scene (x axis). In our case, this haze-free
intensity value corresponds to pixel value as illumi-
nated by an E illuminant. Those values are bounded
between the minimum intensity level (0) and the
maximum intensity level (255 for 8-bit images or 1
for normalized images) in the image.

Mathematically the values of the (Jc) at pixel x
are defined by the following relationship for each
cluster Q:

Jc;Q�x� � �Ic;Qobs�x� − Ic;Qmin�
�

Ic;Qmax

Ic;Qmax − Ic;Qmin

�
; ∀ x ∈ Q; (3)

where the superscript c stands for the channel to be
processed (R, G, or B), Ic;Qobs is the intensity pixel value
of the captured image, Ic;Qmin is the minimum intensity
value of the Qth processed cluster, and Ic;Qmax is the
maximum intensity value in that cluster. These
maximum and minimum values would be the only
two inputs of our algorithm. These two parameters
have to be modeled depending on the haze intensity
in the degraded image. The best parameters for each
image have to be chosen by the user, based on the
trial error method or in its experience. To overcome
the input parameters, we employ a simple statistics
to obtain them. As a first approach, a statistics based
on the method box and whiskers [35] is used. With
this method we are able to eliminate the outliers
in the image. These outliers could be due to bad pixel
response, specular reflections, or dark pixels present
in the image, being not representative of the rest of
scene intensity values, and modifying the final result.

Graphically the algorithm can be depicted as it is
shown in Fig. 3. To simplify we have supposed just
one cluster in Fig. 3, so we can omit the index Q. Our
method translates the values of the pixels situated in
the y axis (affected by adverse weather conditions) to
the theoretical ones (not affected by adverse weather
conditions) situated in the x axis, through the
straight line. This straight line is defined by the two
parameters of the algorithm, Icmin and Icmax.

This algorithm is applied channel wise, so it could
be implemented as much for color as for gray-scale
images. The main advantage of this method is that
it could be applied without the knowledge of extra
parameters.

Fig. 2. Example of image segmentation with several methods:
(a) original image, (b) k-means segmentation, (c) seed region
growing, and (d) mean shift segmentation.

Fig. 3. Representation of the decompressing proposed model for
the channels of a weather degraded image, I. The y-axis represents
the intensity of the channels (R, G, or B) corresponding to the
weather affected image, and the x axis represents the haze-free
intensity value corresponds to pixel value as illuminated by an
E illuminant. In the plot are depicted the parameters expressed
by Eq. (3), supposing Q � 1, just one cluster.
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C. Image Dataset

We test our algorithm over a set of images captured
in a variety of weather conditions with a scientific
calibrated camera and with customer cameras. The
atmospheric conditions range from mist, haze, light
fog and dense fog, to dust storms in extreme cases.
These images were captured in rural scenes and in
urban environments. For urban environments the
scenes were composed of a wide color gamut, mainly
formed by buildings situated at several distance
ranges from a couple of meters to several kilometers.
Rural scenes are composed of different terrain mate-
rials, forest, cultivated and noncultivated areas, and
in some of them snow-capped hills.

We also extend the image set to Internet-collected
images, without any kind of information provided.

3. Results

Before testing our method with real weather de-
graded images, we checked it over a hyperspectral
database [36] with a simulated fog, Fig. 4(a). These
simulations were carried out using the dichromatic
atmospheric scattering model with real extinction
coefficients at several distances. For these images
our method get very good results as can be observed
in Fig. 4(b). In this case there is no need for image
segmentation as the objects are considered to be lo-
cated at the same plane. We did not take into account
any kind of point-wise degradation or noise estima-
tion in the simulations, as we only tested the color
restoration performance of our method.

Figure 5(a) shows an image captured with a com-
mercial RGB camera on a misty day. The scene corre-
sponds to a rural image with some artificial objects in
it. Prior to image restoration, we used the mean shift
segmentation algorithm [34] to approximately find
out the different distant planes contained in the scene,
Fig. 5(b). As it is shown in Fig. 5(c), when the cluster-
ing algorithm is employed some artifacts appear in
the recovered image. These artifacts correspond to
discontinuities between different clusters.

Figure 6 corresponds to a hazy day with objects
situated at several planes. This image was captured
with a scientific camera. The recovered image was
obtained using the aforementioned box and whiskers
statistical method. In the restored image the
background becomes distinguishable, showing some

buildings and a forest, while the objects in near planes
appear more contrasted.

Figure 7 shows some examples of the results for
this algorithm under very dense fog conditions. This
is a quite extreme case where the objects in the origi-
nal image are hardly visible. For images captured
under these conditions this method is able to restore
only some portions of them as the density of the fog

Fig. 4. (a) Dichromatic atmospheric fog simulated image at a dis-
tance of 10 km and (b) recovered image with the proposed method.

Fig. 5. (a) Rural scene captured on a misty day, (b) result of the
mean shift segmentation application, and (c) recovered image with
the proposed method.

Fig. 6. (a) Urban scene captured on a foggy day and (b) restored
image applying the proposed method in automatic mode.

Fig. 7. (a), (c) Urban scenes captured under severe fog. (b), (d)
Restored images applying the proposed method.
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could change across the same plane. The method is
able to recover some colors of the buildings that are
completely lost in the foggy images. In such a dense
fog images we can suppose that the objects are situ-
ated not so far from the observer (no information
reaches the observer from distant objects). Under
this assumption, the clustering algorithm is useless
and we can apply our method directly.

We also apply our restoration algorithm to images
captured under dust storms. These conditions corre-
spond to more tricky situations. The particle sizes are
bigger than in fog conditions and the shape of these
dust particles aremore heterogeneous. For that reason,
the interactions between the light and the particles
are physically more complex than in fog conditions.

Figures 8(a) and 8(c) were captured with a customer
reflex camera under a dust storm in the city of
Granada, Spain. These images are composed of a huge
amount of objects, enormous number of borders, and a
wide color gamut. Despite the complexity of the im-
ages, our approximation is able to increase the con-
trast of the objects maintaining good color fidelity. We
were able to restore Fig. 8(b) without the aim of a clus-
tering method, even with the high distance between
foreground and background objects in the scene.

When the objects on the scene are situated far
away from the observer, it can be also considered that

they are at the same plane. Under these situations it
is not necessary to segment out the image and we can
apply our algorithm directly. Figure 9 corresponds
to a rural scene captured under a hazy day with a
customer camera. The terrain structure of the moun-
tains becomes distinguishable, as does a path situ-
ated in the foreground centred hill not visible in the
original image.

Aerial images accomplish with the low depth con-
dition. Figure 10 shows an example of this kind
of restoration. This image was obtained from the
Internet without extra information of atmospheric
conditions [37]. The restored counterpart was ob-
tained applying our method without any segmenta-
tion algorithm. In the restored image forest zones are
clearly identified over the cultivated areas.

All the operations in this restoration technique
over the pixels in the image are linear, obtaining
computational times below 1 s for images of 1038 ×
1390 pixels. This algorithm was implemented in
MATLAB 64-bit on a personal computer equipped
with Intel Core 2 Quad Q9550 processor and 4 GB
of RAM memory.

4. Discussion and Conclusions

We have presented a dehazing method based on cam-
era sensor response ratio constancy. This method ob-
tains good results over atmospheric degraded images
in a wide range of adverse conditions. We have tested
our method on images captured with a calibrated
scientific camera, customer cameras, and even with
Internet images. The results vary depending on the

Fig. 8. (a), (c) Images captured under a dust storm in Granada
(Spain). (b) Restored image employing ourmethodwithout the seg-
mentation step, and (d) restored image employing our algorithm
with a previous segmentation step.

Fig. 9. (a) Far away scene captured with a commercial camera
and (b) automatic restored image with the proposed method.

Fig. 10. (a) Aerial foggy image and (b) automatic restored image
with the proposed method.
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adverse conditions present in the scenes. For light
fog, mist and hazy conditions, our result gets good
color restoration.

This technique can be applied to both color and
gray-scale images. But there is no standard metric
to evaluate and/or compare the quality between re-
stored images. Since weather effects are volumetric,
classical image noise or degradation evaluation tech-
niques, where the effect is added and then removed,
are not suitable for evaluating weather degraded
images [38]. Thus we make use of five different met-
rics present in the literature to test the performance
of our algorithm and to compare it with the methods
proposed by other authors. These metrics do not use
any kind of subjective evaluation and can be de-
scribed as follows:

• Laplacian (Lap) and Gray Mean Gradient
(GMG) [39,40] will be used to compute the textures
of the images, especially the edge information of the
image. Higher values of both metrics will suggest fin-
est textures in the image.
• Descriptor e [38] measures the number of visible

edges in the restored image regarding the original
one. Higher values means more visible edges in
the restored image.
• Descriptor r̄ [38] computes the geometric mean

of the ratios of the visible edges, that is, expresses the
quality of the contrast restoration by the proposed
method. Higher values mean better contrast resto-
ration.
• Descriptor σ [38] computes the number of pixels

that are saturated (i.e., black or white) after applying
the deweathering algorithm but were not before.
This metric is quite useful since the recovering algo-
rithms are prone to saturate pixels (pixels get com-
pletely black for dark objects and completely white
for light objects).

The Lap, GMG, e, and r̄ metrics evaluate the im-
provement over the visible edges or textures in the
restored image. As opposed to the aforementioned
metrics, higher values in Descriptor σ means worst
restored image.

We have to point out that the purpose of ourmethod
is not to obtain a pleasant image for the observer, but
to achieve an image with a low haze component and
more contrasted objects. If we were able to completely
remove the effect of the atmosphere over an image,
the depth sensation could disappear, resulting in an
artificial restored image. He et al. [21] keeps some
haze component to maintain the aerial perspective
and get a more realistic image. We have compared our
approach with six other authors’ work [12,13,15,21,
22,41]. Thus we have used the images available from
the web pages of the authors or the ones available in
published papers to test our approximation to the
weather recovering issue. The quality of these images
are not so good as most of the authors employ low-
resolution images (usually between 600 × 480 to 800 ×
600 pixels) to test their algorithms.

Tables 2–5 summarize the results of the applica-
tion of the aforementioned metrics for different im-
ages and algorithms.

Table 2 shows that our method is close to the
Ancuti’s [13] algorithm for the recovering of Fig. 11.
The Ancuti’s method gets the best performance for
Lap, GMG, e, and r̄metrics, i.e., those metrics related
to the restored edges. Nevertheless, this method ob-
tains clearly more saturated pixels (σ � 2.23%) than
our technique (σ � 0.23%), as it can be observed in
the railways of the figure. On the other hand, He
[21] obtains the best result for Descriptor σ.

Figure 12 shows the result of five different recov-
ering methods for an urban scene on a hazy day. In
this case our method restores the image without
introducing distorting effects around the horizon
region; we achieve good performance in the rest of
the areas of the scene. Table 3 show that Tan’s
method gets the higher figures for the Lap, GMG,

Table 2. Image Quality Assessment Result for Images in Fig. 11 (the
Number in Bold Denotes the Best Value of Each Row)

Metric
Input
Image

Ancuti’s
Result

He’s
Result

Our
Result

Lap 19.59 58.91 39.70 48.52
GMG 4.30 11.98 8.30 10.41
Descriptor e — 1.60 1.35 1.11
Descriptor σ — 2.23% 0.03% 0.23%
Descriptor r̄ — 2.97 1.97 2.61

Fig. 11. (a) Original image, (b) results by Ancuti [13], (c) He [21],
and (d) proposed method.

Table 3. Image Quality Assessment Result for Images in Fig. 12 (the
Number in Bold Denotes the Best Value of Each Row)

Metric
Input
Image

Tarel’s
Result

He’s
Result

Fattal’s
Result

Tan’s
Result

Our
Result

Lap 58.02 99.55 80.95 72.12 135.47 103.72
GMG 10.89 18.50 15.05 13.46 24.34 19.17
Descriptor e — 0.07 0.04 0.05 0.07 0.01
Descriptor σ — 0.00% 0.00% 0.37% 1.16% 0.04%
Descriptor r̄ — 1.81 1.40 1.29 2.18 1.77
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and r̄ metrics, but obtains the worst result for
Descriptor σ.

Figure 13 shows that our method is able also to
restore misty scenes as the other methods do. The
apparently good result from Fattal’s method, with
high values for Lap, GMG, and r̄metrics, show on the
contrary that this algorithm will produce dark pixels
in some regions of the images (σ � 9.34% clearly over
the 0% obtained using both the He and our algo-
rithm). The pixels corresponding to the summit
of the mountains get dimmed in Fattal’s restored
image, where the other two obtain good results.

Finally, we have compared our result with one of
the latest proposed techniques. Table 4 includes new
results from Tao’s model [12]. Our method obtains
higher figures for Lap, GMG, and clearly improve De-
scriptor e (e � 60.29 and e � 35.40 for our method
and Tao’s proposal, respectively). Over aerial images,
our method obtains good color and contrast restora-
tion, as Fig. 14 shows.

A general behavior showing up in the aforemen-
tioned results is that in most of the cases, higher
figures for the Lap, GMG, e, and r̄ metrics involve
more saturated pixels in the restored images. None-
theless our method obtains good results, keeping low
values for the saturated pixels. Anyway, all of these
techniques improve the original degraded images on
some level. In spite of the fact that the proposed tech-
nique does not always obtain the best performance,
the restored images are close to the best technique
for all tested images, and for some images and met-
rics the best results. The main advantages of the pro-
posed method rely on its simplicity and good color
recovery performance.

In general, the technique proposed in this work
gets better results for near objects than the other
authors’ work, obtaining more contrasted object and
with more realistic colors over tested images. On the
contrary, at high distances the results depend on the
kind of images and the weather conditions.

A human observer could find a mismatch between
the figures obtained in Tables 2–5 and the quality of

Fig. 12. (a) Original image, (b) results by Tarel [41], (c) He [21],
(d) Fattal [22], (e) Tan [15], (f) proposed method.

Fig. 13. (a) Original image, (b) results by Fattal [22], (c) He [21],
and (d) proposed method.

Table 4. Image Quality Assessment Result for Images in Fig. 14 (the
Number in Bold Denotes the Best Value of Each Row)

Metric Input Image Tao’s Result Our Result

Lap 6.95 15.24 17.36
GMG 1.61 4.33 5.02
Descriptor e — 35.40 60.29
Descriptor σ — 0.00% 0.00%
Descriptor r̄ — 4.42 3.62
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the images. The employed metrics evaluate the im-
provement of the images from an objective point of
view, not considering any kind of subjective evalu-
ation. As we previously mentioned, up to now no sub-
jectivemetric is available to evaluate the performance
of weather recovering algorithms. A new metric
capable of evaluating not only the edges, the texture,
and the saturated pixels on the restored image, but
what a human observer could judge as a pleasant
image needs to be further studied and developed.

This work was supported by the Junta de Andalu-
cía, Spain, under research grant P07.TIC.02642, and
the Ministry of Economy and Competitiveness of
Spain, under research grant DPI2011-23202.We also
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