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Abstract: A linear model for representing reflectances has and on the spectral distribution of the illuminant. In-depth
been developed from a group of 5574 samples of acrylic knowledge of these properties is unquestionably useful
paint on paper. Using acrylic paints makes easy the gen- in many technical and scientific applications in which the
eration of a large variety of samples by mixing, due to aim is to capture and process the optical information.
the high miscibility among these kinds of pigments: this Thus, for example, in the field of Artificial Vision,
point was the key to achieve a great spatial homogeneity problems such as the recognition and identification of
in our samples. Besides, these kinds of paints keep their color of the objects or the classification of the materials
chromatic properties stable over time. The first 7 vectors according to their nature (metals, organic materials, plas-
of the so-called overall linear basis were sufficient for a tics, etc.) are intimately linked to the knowledge of the
more than adequate mathematical representation of the interaction of light with the material generating the diffuse
spectral-reflectance curves. A study by hue groups of the and/or specular reflection. In the same sense, an immedi-
mathematical properties of these curves indicates that the ate application of the study of the spectral reflectance of
use of a hue basis of representation implies, on the aver- the diffuser object is the graphic simulation of that object
age, a reduction in 1 or 2 of the number of vectors needed by the computer.
in order to achieve results analogous to those of the over- The study of properties associated with light reaching
all basis. q 1998 John Wiley & Sons, Inc. Col Res Appl, 23, 39–45, us from the objects and the possible processing of this
1998 information have the aim of explaining the properties of

the materials and their appropriate use or simulation. In soKey words: linear model; reflectance; acrylic paints
doing, we can develop adequate systems of representing
reflectance. The search for ways of representing re-
flectance more effective than the canonical way1–8 hasINTRODUCTION
been a constant characteristic in developing computa-

The visual information that we receive from nontranspar- tional algorithms to recognize and identify color in the
ent objects surrounding us comes from diffuse or specular sphere of Artificial Vision. From the beginning, there
reflected light from the objects themselves and from the was a need to find bases that make use of the degree of
light reflected from the other objects situated in that set- underlying correlation in the spectral-reflectance func-
ting. The spectral distribution of these lights depends on tions recognized in nature. The canonical representation,
the reflectance properties of the surfaces of the objects despite being more natural, had little virtue aside from

the direct identification of the physical characteristics of
the functions being developed.

* Correspondence to: Dr. Antonio GarcıB a-BeltraB n, E-Mail: agarciab@ In the literature related to this matter, 1–7 various works
goliat.ugr.es, Phone: 34-58-246165, Fax: 34-58-248533. demonstrate the phenomenon observed on studying broad

Contract grant sponsor: Dirección General de Investigación
groups of spectral reflectances: despite moving us initiallyCientıB fica y Tecnológica (D.G.I.C.Y.T.) , Ministerio de Educación y
in an isomorphic Euclidean space to R n , the reflectanceCiencia; Contract grant number: PB91-0717.

q 1998 John Wiley & Sons, Inc. groups appear to be limited rather precisely to subspaces
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of R n that are notably smaller in dimension than the total
space. This physical fact motivates the search and genera-
tion of appropriate bases of reflectances.

Thus, in principle, it is vital to have a good choice of
the group of reflectance curves. That is, if we want to
generate a basis as operative as possible, then the initial
group of curves to be studied should be sufficiently broad
and varied to be as representative as possible of the great-
est range of curves of the objects that surround us. This
group can be formed by curves of natural samples (leaves,
soils, fruit, etc.) or artificial ( tiles, colored fabrics, acrylic
paints, etc.) , since, as long as no fluorescence or phospho-
rescence occurs, the spectral-reflectance curves of natural
samples are indistinguishable from those of artificial ob-
jects, sharing the same characteristics of smoothness, FIG. 1. Spectral reflectance curves of some samples gen-
width and specific shape.3,7 erated from two specific basic colors: yellow (solid line #1)

and blue (solid line #2).It is useful to remember that, depending on the sphere
in which one works, either color or reflectance recovery,
the number of parameters and/or vectors of a linear model
vary,8 if our goal is the mathematical recovery of the
reflectance functions themselves (for example, when we sent as faithfully as possible the properties of the curves

of the objects found both in nature6,10 and in the objectsstudy the phenomenon of color constancy under different
illuminants) , the number of parameters needed will rarely and materials of daily use,8,11,12 in terms of smoothness

of shape. The necessity of this condition is clear: thefall below 6. If, on the other hand, we limit our aim to
color recovery (assuming that we always carry out the wider the set in representing shaping properties, the more

suitable in representing spectral reflectance functions,recovery under the same illuminant or with color synthe-
sis by computer, 9 for example) , the number of parameters even though they have not taken part in the original set.

In addition to a great spatial homogeneity, each samplewould be notably reduced (4 vectors, or at times 3, can
be sufficient, depending on the tolerance levels in the should maintain its chromatic properties stable over time.

Most of the works on this subject to date have usedrecovery). We should remember that the human visual
system lacks the capacity of analysis—the perception of the samples of Krinov3,6,10 or a selection of samples from

the Munsell Color Book.4,5,7 We chose to generate ourcolor occurs after the tristimulus integration of the spec-
tral stimulus, in the process losing all specific information own sample set using acrylic paint on paper, creating a

total of 5,574 different samples, each 4 1 4 cm in area,relative to spectral aspects of this stimulus. This is the
reason for a reduction of the number of parameters neces- with a homogeneous texture. Using acrylic paints made

it easy to generate a large variety of samples by mixingsary in the linear model: the recovery of the color is less
demanding than the recovery of the spectral curve. due to the high miscibility among this kind of pigments:

this point was the key to achieving a great spatial homoge-In light of topics reviewed above regarding the study of
reflectances, our objective is the generation of an adequate neity in our samples. The samples of the entire group

were classified into 5 hue categories: red, yellow, green,linear basis for the representation of reflectances. Bearing
in mind this point, we achieve our study on a large set blue, and purple, with 1080, 1062, 1208, 1064, and 1160

samples each, respectively. Those samples let us not onlyof spectral reflectance curves obtained from commercial
acrylic paint samples on paper and clustered by a hue study the characteristics of the functions in each separate

hue group, but also obtain the best linear basis for aclassification, in order to study their properties indepen-
dently. We chose these kinds of paints because they are specific spectral reflectance curve when we know its hue.

Let us imagine we are only interested in representingvery common in art and industry due to their chromatic
properties and availability, avoiding the use of sophisti- spectral reflectance functions of red samples; it would be

better to use a specific red-hue basis instead of an overallcated materials and techniques for generating the sample
collection. one, because the number of vectors necessary could be

reduced.
To generate these samples, we used 24 basic commer-

METHOD
cial acrylic colors for artists. Beginning from these 24
basic colors (each one defined from a determinated typeAs mentioned above, it is fundamental to have available

a gamut of spectral reflectance curves as broad and varied of pigment) we obtained our samples by mixing 2 or 3
of these colors within a different ratio. Figure 1 showsas possible in order to cover the greatest range of observed

variation in the functions of opaque objects that surround the spectral reflectance curve of some samples generated
from 2 specific basic colors, a yellow (solid curve 1) andus. We decided that our collection of samples should

satisfy a series of basic prerequisites: they should repre- a blue (solid curve 2) one. As we can observe, different
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curves have been generated, gradually covering different
hues from the original yellow to the original blue, passing
through a gamut of greens. However, the curve obtained
as the result of mixing specific basic colors is, from a
mathematical viewpoint, not just a linear combination of
the original reflectance curves, as we can see from Fig.
2. In this figure we can observe the result of expressing
the obtained curve (dotted line) by mixing the two origi-
nals (1) and (2), and by generating the linear combina-
tion of these two originals (dashed line). If it were exactly
the linear combination it would not be necessary to obtain
5,574 samples by mixing, since we could have achieved
the principal value decomposition over the reflectance
curves of the original 24 basic colors.

Each sample’s spectral reflectance was measured with
FIG. 3. Vectors #1 (solid line) , #2 (dotted line) , and #3a HunterLab UltraScanTM spectrophotometer, controlled (dashed line) of the overall basis.

by a PC-computer using specific SpecWare V2.0TM soft-
ware. Diffuse spectral reflectance was measured for every
color sample. Samples were diffuse illuminated with sim-
ulated CIE D65 spectral distribution filtered to eliminate

from each hue group, we arranged the latter in descendinginfrared specimen heating. The geometry of observation
order of their eigenvalue—this criterion enabled us towas 87 from specimen normal. The measuring range was
determine the eigenvectors that would have a greater con-from 400–700 nm with a 5-nm wavelength interval. From
tribution in the construction of the basis. This independenteach reflectance r(l) , we obtained the symmetric R(r)
study of each hue group enabled us to analyze separatelyafter calculating the dyadic product of this reflectance in
the intrinsic characteristics comprising each group.itself:

We followed the same process to obtain the overall
Rij(r) Å r(li )r(lj) with: 1 ° i , j ° 61. (1) basis from the sum of the correlation matrices of the 5

hue groups (Figs. 3 and 4 show the first 6 vectors of thisThus, the matrix R(r) saved the information associated
basis)*.with reflectance r(l) . Adding all the matrices R(r) con-

Having recorded the collection of reflectances, we pro-structed for all the samples of the same hue group, we
ceeded to adjust the hue bases and the overall basis, repro-obtained the Correlation Matrix, RT(r) , of this group.
ducing these according to the expression:After formulating this correlation matrix, we submitted it

to a principal value decomposition process, obtaining its
rA Å ∑

p

i 1

[r(l)r£i (l)]£i (l) , (2)eigenvalues and eigenvectors.
Once we had obtained the eigenvalues and eigenvectors

where r(l)r£i (l) is the usual scalar product between the
reflectance and the i th vector of the basis, and p is the
number of vectors with which we want to recover the
function.

To be able to compare the goodness of the recovery,
we define a goodness-fitting coefficient (GFC) according
to the following expression:

GFC å 1 0 2

∑
61

jÅ1

Ér(lj) 0 rA(lj)É

∑
61

jÅ1

Ér(lj) / rA(lj)É

with:

lj Å (395 / j5) nm, (3)

where rA(l) is the curve recovered by a given model
and number of vectors, and r(l) is the original spectral
reflectance.

As reflected by the definition of the coefficient, the
FIG. 2. Example of lack of linearity after mixing. The dotted
line is the spectral reflectance curve obtained by mixing the
two curves (solid lines #1 and #2) corresponding to two

* Anyone interested in our data set or bases can mail the correspond-original basic colors. The dashed line is the corresponding
linear combination of these two originals. ing author and will be provided the data on diskette or via e-mail.

41Volume 23, Number 1, February 1998

1902

/ 8A17$$1902 01-07-98 13:25:33 crra W-Color Res



FIG. 6. Example of reconstruction (dashed line) of an origi-FIG. 4. Vectors #4 (solid line) , #5 (dotted line) , and #6
nal spectral reflectance function (solid line) obtaining a(dashed line) of the overall basis.
GFC Å 0.9963.

closer the recovered curve resembles the original, the
it reaches 0.950, and excellent when it reaches or exceedscloser the value of this coefficient approaches unity. The
0.990. Figures 5 and 6 present two examples of thedefinition of this coefficient is meant to give a direct
graphic meaning of the different values in the GFCaverage of the relative difference between the original
(0.9377 and 0.9963 for Figs. 5 and 6, respectively) .and the recovery for each wavelength. One of the advan-

tages of the simplicity in its definition is that it is easily
identifiable with the relative error introduced upon taking

RESULTS
the recovered curve instead of the original as the spectral-

To carry out a detailed study of the goodness of thereflectance function. On the other hand, as much as it
method of reflectance recovery, we will make this analysismight seem trivial, this definition contributes to the sym-
independently for each one of the hue groups in whichmetric character desirable in this type of coefficient: it
we have classified our samples.provides the same value when comparing the recovery

and original as when comparing the original with the
recovery.

Red Hue GroupIn practical terms, this simplicity in its definition en-
ables us easily to translate specific values of the coeffi- The 1080 sample components of this hue group present,
cient to quality in the fit. Thus, on the average, from a in general, the typical stepped profile that characterizes
merely functional perspective, we consider a recovery these types of spectral reflectance curves: low contribu-
good when it reaches a GFC of 0.925, very good when tion of the short wavelengths, high contribution of the

long wavelengths. The results obtained in the recovery
of the reflectances in this group are given in Tables I
and II.

The first presents the average GFC values reached with
the two bases (hue and overall) and different numbers of
vectors. Analyzing these values, we find that by using the
first 4 vectors of the hue basis, then, on the average, the
recoveries have a good level (GFC Å 0.9437) and, when
we use one more vector, the level rises to very good
(GFC Å 0.9620); to reach these results with the overall
basis, we would need, on the average, 6 (GFC Å 0.9553)
and 7 vectors (GFC Å 0.9615), respectively.

The average information shown in Table I must be
complemented in such a way that we can study how the
goodness of the recovery is distributed in each and all of
the samples constituting the hue group. This is the intent
in Table II, which represents the percentage of the recov-
eries that exceed a series of critical values of GFC usingFIG. 5. Example of reconstruction (dashed line) of an origi-
the different bases and different numbers of vectors.nal spectral reflectance function (solid line) obtaining a

GFC Å 0.9327. From this table, we can see that, on using the first 5
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TABLE I. Averaged GFC values obtained in every hue group with each hue basis (HB) and with the overall basis
(OB) for different numbers of vectors.

Reds Yellows Greens Blues Purples

Vct OB HB OB HB OB HB OB HB OB HB

3 0.8660 0.9191 0.9055 0.9138 0.8228 0.8529 0.8778 0.9008 0.8698 0.9034
4 0.9021 0.9437 0.9318 0.9407 0.8803 0.9155 0.9044 0.9421 0.8920 0.9452
5 0.9360 0.9620 0.9513 0.9635 0.9181 0.9510 0.9387 0.9548 0.9517 0.9536
6 0.9553 0.9785 0.9717 0.9783 0.9446 0.9674 0.9559 0.9678 0.9581 0.9656
7 0.9615 0.9831 0.9732 0.9860 0.9529 0.9745 0.9633 0.9753 0.9653 0.9717
8 0.9695 0.9862 0.9802 0.9888 0.9654 0.9782 0.9691 0.9818 0.9646 0.9810
9 0.9786 0.9892 0.9842 0.9909 0.9730 0.9850 0.9714 0.9865 0.9780 0.9862

10 0.9856 0.9925 0.9885 0.9942 0.9796 0.9893 0.9771 0.9910 0.9840 0.9894

vectors of the hue basis, the immense majority (91.48%) basis, we obtain an average GFC of 0.9635; using the
first 5 of the overall basis, we obtain an average GFCof the recoveries exceed a GFC value of 0.925, and that

all the recoveries with the first 7 vectors exceed a GFC value of 0.9513.
With respect to percentages, Table II indicates thatof 0.950. If we study the results obtained with the overall

basis, we find that by using the first 5 vectors, 71.76% when the first 5 vectors of the hue basis are used, 93.31%
of the recoveries exceed a GFC of 0.925, and with 2of the recoveries present a GFC that exceeds the value

0.925, and that with 7 vectors, 75.56% of the recoveries vectors more, all the recoveries surpass this value and
practically all (99.62%) have a value greater than 0.950.exceed a GFC of 0.950.
With regard to the overall basis, with its first 7 vectors,
99.25% of the samples exceed the value 0.925 and

Yellow Hue Group
92.94% of these attain a GFC of more than 0.950.

The 1062 samples making up this hue group also pres-
ent the typical stepped profile similar to the red hue group:
low contribution of the short wavelengths, high contribu-

Green Hue Group
tion of the medium and long ones. Given the qualitative
similarity between these two groups, the results in the The spectral reflectance curves of the 1208 samples

comprising this hue group in general present a bell profilerecoveries are also similar.
As Table I shows, using the first 5 vectors of the hue typical of these types of functions: low contribution of

TABLE II. Percentage of reconstructed curves that overcome a certain GFC value using different numbers of
vectors of the overall (OB) and the hue basis (HB).

Number of Vectors

3 4 5 6 7 8 9 10

GFC ú 0,925 Reds OB 12.87 34.07 71.76 91.96 94.81 98.61 100.00 100.00
HB 60.00 77.13 91.48 100.00 100.00 100.00 100.00 100.00

Yellows OB 43.41 64.03 85.50 97.47 99.25 100.00 100.00 100.00
HB 54.43 74.11 93.31 99.34 100.00 100.00 100.00 100.00

Greens OB 23.12 38.19 54.93 77.30 82.60 93.54 96.85 100.00
HB 24.11 51.70 84.09 96.69 99.42 99.59 100.00 100.00

Blues OB 43.74 53.34 76.39 85.04 89.28 91.53 92.85 95.95
HB 45.72 70.37 75.07 83.54 85.98 88.52 99.62 100.00

Purples OB 30.60 40.10 86.04 91.38 95.78 96.90 98.88 100.00
HB 50.43 80.78 88.02 94.57 96.55 99.74 99.83 99.91

GFC ú 0,950 Reds OB 0.83 13.43 39.26 66.39 75.56 87.78 98.15 99.91
HB 23.15 47.59 78.52 96.70 100.00 100.00 100.00 100.00

Yellows OB 17.98 39.74 60.08 92.56 92.94 98.17 98.87 99.91
HB 23.35 48.96 63.28 96.61 99.62 99.81 99.81 100.00

Greens OB 12.59 22.20 38.61 58.99 66.45 79.95 92.29 98.84
HB 9.86 30.49 65.20 88.98 97.10 97.60 99.50 100.00

Blues OB 15.80 35.56 62.84 71.87 76.29 82.97 87.80 89.56
HB 30.10 51.08 62.37 72.44 78.46 84.67 87.30 100.00

Purples OB 11.29 30.26 61.72 74.40 85.34 88.62 96.72 99.66
HB 26.47 50.35 63.45 82.24 90.00 97.76 99.14 99.74
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short and long wavelengths, high contribution of the me- 88.02% and 86.04% of the recoveries exceed a GFC value
of 0.925; with 7 vectors, these percentages rise to 96.55%dium.

With the first 5 vectors of the hue basis (Table I) , we and 95.78% for the hue and the overall basis, respectively.
obtain an average GFC value of 0.9510, though we need
the first 7 of the overall basis in order to reach a similar

DISCUSSION
value (0.9529). As we will see below, when we compare
these results with their equivalents in the red and yellow When preparing a large gamut of samples to generate a

linear basis for representing spectral reflectance functions,hue groups, we conclude that, on the average, we need 1
or 2 vectors more from each linear model in the green it is exceptionally advantageous to use acrylic paints be-

cause of their versatility for mixing, the temporal stabilityhue group in order to match the results obtained with
these models in the other two groups. of their chromatic properties, and the complete equality

found between the shape of the spectral reflectance func-The study of the percentages in the recoveries (Table
II) indicates that, with 5 vectors of these bases, the per- tions of this kind of paints and natural samples.

We obtained the linear basis for every hue group thatcentage of recoveries that go above a GFC value of 0.925
is 84.09% and 54.93% for the hue and overall basis, re- we clustered for our 5574 samples through principal com-

ponent analysis. In the same way, we also obtained thespectively. When we use 7 vectors, the percentages rise
to 99.42% and 82.60%, respectively; if we choose to study overall basis for the complete set. We can state that gener-

ating a linear basis for each hue group enables us tothe relative number of recoveries that exceed a GFC of
0.950, the values fall to 97.10% and 66.45%, respectively. improve the results in the recovery by 1 or 2 vectors less

than with an overall basis for all the groups. For example,These values are notably lower than those obtained in the
two previous hue groups. This reflects the greater diffi- using 5 vectors of each hue basis, the average GFC of

the recoveries in each group exceeds 0.950; to obtain theculty in using a linear model to recover curves with typical
bell profiles than to recover profile curves of a stepped same result in all the groups with the overall basis, we

need to use its first 7 vectors. (The overall basis workstype.
very well in the yellow hue group, but shows clear limita-
tions in comparison with the green hue group.)

Blue Hue Group
The use of 7 vectors of the overall basis assures that,

in the worst of the cases (green hue group), more thanThe profile of the 1064 spectral reflectance curves that
make up this group present, in general, the following 65.5% of the recoveries will go beyond a GFC value of

0.950, exceeding 92% of the recoveries that this valuefeatures: high contribution of the short wavelengths, rela-
tively important contribution of the medium wavelengths, presents in the most favorable of cases (yellow hue

group). Therefore, we can affirm that, with 7 vectors ofand null contribution of the long wavelengths.
Tables I and II also show the results obtained in the the overall basis, we are assured a more than good recov-

ery of any of our samples.recovery of reflectances in this group. With the first 5
vectors of the hue basis, we obtain, on the average, a In this aspect, our results appear to agree qualitatively

with those obtained by Parkkinen et al.5 with MunsellGFC of 0.9548; to obtain similar results, we require one
vector more of the overall basis (GFC Å 0.9559). samples, who stated that they needed an average of 6–8

vectors of their basis for an adequate recovery of theWith respect to the percentages in the recoveries, we
find the greatest equality of results: with 7 vectors, the spectral reflectance curves of the samples studied. Never-

theless, we should take into account that the study of thepercentage of the samples that exceed a GFC of 0.9250
was 85.98% and 89.28%, if we use, respectively, the hue goodness of their fit focused primarily on the reproduction

of the chromaticity coordinates of the original obtainedor overall basis; however, if we examine the percentages
that rise higher than a GFC of 0.950 with the same number from the recovered reflectance curve. With reference to

comparison between functions, they introduced the con-of vectors, we obtain 78.46% and 76.29%, respectively.
cept of error bands—the difference between the original
curve and the reconstructed for all the wavelengths of the

Purple Hue Group
spectrum.

In this sense, our study, with the definition of our good-This group is composed of 1160 samples, the re-
flectance curves of which present the classical profile of ness-fitting coefficient, is substantially more rigorous,

since treating only the differences in absolute values be-this type of function: high contribution of short and long
wavelengths and low contribution of the medium wave- tween the original curve and the recovered one may not

take into account the real difference between these twolengths.
Tables I and II show that 5 vectors of these bases (hue curves. Let us imagine two curves corresponding to the

spectral reflectance functions of very luminous samplesand overall) reach average GFC values of 0.9536 and
0.9517, respectively, these values rising to 0.9717 and (high spectral-reflectance values) , original and recovered,

which differ in absolute value by 5 units over the entire0.9653 with the first 7 vectors.
The table of percentages reveals that, from 5 vectors, spectrum. Now, we take another two curves that also

differ in absolute value by 5 units over the entire spec-the two bases obtain similar percentages: with 5 vectors,
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