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Abstract: Previous authors (J Opt Soc Am A 2000; 17:
1952–1961; J Opt Soc Am A 2001; 18: 253–264) have
proposed a pixel-by-pixel image descriptor that is invariant
to certain changes in illumination. We have studied the
possibility of applying such an invariant descriptor to scen-
ery illuminated by natural light, by choosing sensors that
allow the invariant to behave satisfactorily under daylight.
We obtained different triads of monochromatic sensors by
using an exhaustive-search method and compared the re-
sults with those obtained with other triads proposed by
different authors. We extended our study to Gaussian sen-
sors centered in the wavelengths considered for the mono-
chromatic sensors and to commercial CCD camera sensors.
Satisfactory results are achieved for Gaussian sensors with
maximum sensitivities at different locations. © 2006 Wiley

Periodicals, Inc. Col Res Appl, 31, 391–398, 2006; Published online in

Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.

20243
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INTRODUCTION

From a strictly colorimetric point of view, the color of an
object in a scene depends both upon the spectral composi-
tion of the light that illuminates the object and the object’s
spectral reflectance. As far as the perceived color of the
object is concerned, we must also take into consideration the
distribution of color in its surrounding environment and the

adaptation conditions of the observer. If the light source that
illuminates the scene changes, the measured color of the
object also changes, but the color perceived by the observer
may remain unchanged if the right conditions prevail to
stimulate the capacity of the visual system to maintain the
appearance of an object’s color whatever the light it re-
ceives. This phenomenon is known as color constancy and
it is the coveted goal of researchers in the field of artificial
vision to find a way to imbue object-recognition systems
with the capacity of the human visual system to transform
the image of a scene in such a way that it remains the same
whatever the changes in illuminant.

Marchant and Onyango1 and Finlayson and Hordley2

defined an invariant in each pixel of an image, the calcula-
tion of which only requires the R, G, and B values of the
pixel itself. According to their method, the color image can
be translated into a grey-scale image, in each pixel of which
the level of grey represents the value of the invariant pa-
rameter, which remains the same whatever the illumination
of the scene. With this definition of the invariant parameter,
color constancy can be fully achieved if the illuminant is
Planckian and the three sensors that capture the image have
Dirac’s �-type sensitivities.2 These two conditions are the
ideal ones. The application of the invariant will depend
upon the extent to which the real illuminants that resemble
Planckian ones and the sensors of the camera, of more-or-
less wide spectral sensitivity, can provide results that are not
far removed from those that the ideal monochromatic sen-
sors give.

Finlayson and Hordley2 argue that the chromaticity co-
ordinates of most illuminants, whether they be daylight or
artificial (halogen or fluorescent), are close to the locus of
the blackbody in the CIE 1931 chromaticity diagram. Nev-
ertheless, because of metamerism, an illuminant may have
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quite a different relative spectral composition from that of
the Planckian one at the same color temperature. These
differences in spectral composition may determine the ap-
plicability of the invariant, particularly when the sensors
used are either narrow-band or monochromatic.

Marchant and Onyango3,4 widened their proposed invari-
ant to include daylight. Their method is based on the pos-
sibility of expressing the logarithm of the spectral power
distribution (SPD) of daylight in terms of a linear model
with only one degree of freedom. To do this they made a
principal component analysis (PCA) of the logarithms of
nine daylight SPDs with color temperatures of between
4000 and 20 000 K at intervals of 2000 K, arrived at by the
CIE method.5 These authors represent daylight by resorting
to the mean vector and first eigenvector of the linear basis.
To represent daylight the CIE recommends using the mean
vector plus two eigenvectors.6 Other authors,7–9 however, be-
lieve that a larger dimension is required when dealing with
bases constructed from experimental measurements of daylight
obtained under a wide range of atmospheric conditions.

As far as monochromatic sensors are concerned, Finlay-
son and Hordley2 analyzed the behavior of three such sen-
sors with their sensitivities located at the wavelengths 450,
540, and 610 nm. In another work, Finlayson10 found that
narrow-band sensors centered on these wavelengths af-
forded a clearer understanding of metamerism, chromatic
adaptation, and color processing. Marchant and Onyango1

based their choice of wavelengths (440.8, 530.5, and 605.2
nm) upon a calculation of the central wavelengths of a
commercial CCD camera. In a later work4 they studied
triads of sensors centered on wavelengths, of which one was
variable and the other two fixed at the ends of the visible
spectrum. Their study4 was focused upon the viability of
their mathematical representation of daylight for the use of
the invariant, but they did not specify which set of sensors
would provide the best results in recognizing objects under
these illumination conditions.

By using wide-band sensors corresponding to those of
commercial CCD cameras and applying their invariant,
Marchant and Onyango1 satisfactorily classified vegetation
against soil in images taken under daylight. Finlayson and
Hordley2 studied the inherent difficulties in obtaining in-
variant images when using real sensors, despite which they
got good results in an object-recognition experiment. Vari-
ous other authors11–13 have used diverse techniques to im-
prove on these results using real sensors, among which is
that of applying spectral sharpening to the spectral sensitiv-
ity of the sensors. This technique11 permits the transforma-
tion of the sensitivities to others which capture most of the
information taken by the original ones, but being narrower,
are closer to the requirements of the exact definition of the
invariant.

In this work we have studied two aspects of the definition
of the invariant proposed by Marchant and Onyango1 and
Finlayson and Hordley.2 The first of these was the possibil-
ity of applying the invariant to images of scenes taken in
daylight with different color temperatures. To this end we
used a basis obtained from wide sets of experimental mea-

surements taken over all four seasons and at all times of the
day.9 We have repeated the calculations made by Marchant
and Onyango1,4 but using a set of 2600 daylight experimen-
tal measurements to obtain that of the linear model by PCA,
instead of the nine daylight SPD determined by the CIE
method.

The second problem to address was the choice of opti-
mum sensors to be used in the definition of the invariant.
With images taken under natural light we studied the opti-
mum location of the three wavelengths in the visible spec-
trum corresponding to the monochromatic sensors in the
pixel-by-pixel definition of the invariant. As a previous step
to real sensors, we studied the possibility of using sensors
with a Gaussian profile centered on the predetermined
wavelengths. These sensors may have great spectral simi-
larity to those used in commercial digital cameras.14 After
this we used the sensors of a commercial CCD camera and
compared the results with those obtained with Gaussian
sensors and those deriving from the application of spectral-
sharpening techniques.2,11 By analyzing images of natural
scenes and calculating the histograms generated by every
illuminant of the scene, we tested the capacity of each set of
sensors to capture images that were invariant to changes in
illumination. We checked whether these could be superim-
posed upon each other or were shifted, thus impeding rec-
ognition of the objects in question.

DEFINITION OF THE INVARIANT

Taking three sensors with Dirac’s �-type spectral sensitivity
in the wavelengths �1, �2, and �n the invariant is defined4 as

F12 � y�1/y�2

A12 (1)

where

y�1 � C�1/C�1 ; y�2 � C�2/C�n
(2)

C� � g�(�)E(�) being the response of the sensor corre-
sponding to the spectral radiance generated by the reflec-
tance object �(�) illuminated by the SPD E(�). The term g
contains all the gain-factor components and those related to
the geometry of the illumination.

If we are dealing with Planckian-type illuminants1:

A12 �
1/�1 � 1/�n

1/�2 � 1/�n
(3)

The g term cancels in the calculation of y�1y�2, and then
eliminating the dependence of the invariant with the illumi-
nation geometry. Moreover, as the coordinates y�1y�2 are
defined as ratios of the signals for two different sensors, the
problem of having a high dynamic range in natural scenes
due to shadows is removed. By applying the invariant to
natural scenes we can obtain monochrome images where the
shadows have been eliminated.3

If, however, we are dealing with daylight, Marchant and
Onyango3,4 state that this can be represented as

E��,T� � h��� exp�u��� f�T�� (4)
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In this case A12 is defined as

A12 �
u��1� � u��n�

u��2� � u��n�
(5)

In Eq. (4) T is the correlated color temperature. For
daylight to be expressed in this way it is sufficient that ln
E(�) can be developed on a linear basis in the form of

ln E��� � ln h��� � u��� f�T� (6)

That is to say, we can find via PCA a basis for the linear
representation of a wide set of daylight data with different
correlated color temperatures, in which ln h(�) is the mean
vector and u(�) the first eigenvector. The coefficient by
which this eigenvector is multiplied depends upon color
temperature alone and contains information about the dif-
ferent types of daylight illuminants.

The validity of the invariant defined in this way will
depend therefore on whether Eq. (4) fulfills the spectral
representation of daylight adequately and whether the hy-
pothesis of narrow-band sensors can be applied. Whatever
the case, if the sensors are real or broad band, the validity of
the invariant for any set of objects can still be studied by
drawing a graph2 of logarithm y�2 versus logarithm y�1,
taking the values of C� to be the responses of the sensors
with maximum sensitivity in the corresponding wavelength.
If the invariant is valid for a set of sensors, this represen-
tation will produce dots that fall along a straight line for
each object when it is illuminated with different illuminants,
and the slope of this line, 1/A12, should be the same for all
the objects.

CALCULATION OF A12

In a previous work9 we have measured our own set of
experimental daylight spectra consisting of 2600 SDPs be-
tween 380 and 780 nm at 5 nm intervals. These measure-
ments were carried out over a period of 2 years in diverse
meteorological conditions and at different times of day. By
applying a PCA to this set of measurements, we obtained a
linear representational basis for daylight which we felt
allowed us to make a close enough spectral reconstruction
of them for a dimension 5, that is, via the use of five vectors
from the basis. This number is reduced to three when we try
to satisfy purely colorimetric criteria.

In this work we have taken our experimental data set once
more to apply a PCA to the logarithm of the values of E(�)
corresponding to daylight SPDs. In this way we were able to
obtain a basis of eigenvectors which represented real day-
light measurements. Marchant and Onyango3,4 carried out a
PCA on only nine SPDs, arrived at by the CIE method, at
wavelength intervals of 10 nm. The nine SPDs had color
temperatures of between 4000 and 20 000 K at intervals of
2000 K. It is easy to check in the CIE1931 chromaticity
diagram that this choice does not result in uniformly spaced
SPDs because to do this they should have taken color–
temperature intervals measured in mireds. The reciprocal
color–temperature scale, the unit of which is the mired, has

been found to be more linear with regard to visual percep-
tion.15,16 Furthermore, other authors7,9 have measured day-
light SPDs with color temperatures of more than 20 000 K
when the sun was near to or even below the horizon (twi-
light).

Initially we chose as our narrow-band sensors those used
by Finlayson and Hordley,2 corresponding to wavelengths
of �1 � 450 nm, �2 � 610 nm, and �n � 540 nm. Using
these sensors we calculated the values of 1/A12 by two
different methods and compared them with the values with
the graphs of the logarithm y�2 versus that logarithm y�1. The
first method was a repeat of Marchant and Onyango’s4

calculation, which involves carrying out a PCA on the
logarithms of the values of the daylight SPDs arrived at by
the CIE approach. The second method was similar to the
first, but using our 2600 experimental daylight data9 to
obtain the basis. We tested the validity of the methods by
comparing the calculated values of 1/A12 with that deriving
from the graphic representations. To define this value we
took as our objects 24 samples from the ColorChecker and
64 daylight SPDs corresponding to measurements taken on
days with diverse atmospheric conditions and at different
times of day: 22 daylight (direct sunlight � skylight) at
intervals of 10 mireds, 21 skylight, and 21 twilight at the
same intervals. An example of the representations carried
out is shown in Fig. 1. We constructed a straight line for
each object, the correlation coefficients of which are around
0.887, despite which their slopes are practically the same for
all the objects at �0.634.

The values of 1/A12 obtained by the two methods are
�0.483 and �0.776, respectively. These values are clearly
different from the value obtained graphically, although the
use of our own of eigenvectors (second method) leads to a
slightly closer result to the graphical value. The discrepan-
cies between calculated and graphical values are mainly due
to the use of only one eigenvector in the linear model of
representation of daylight SPD. We can conclude that the

FIG. 1. Representation of logarithm y�2 versus logarithm y�1

for the monochromatic sensors situated at 450, 610, and
540 nm.
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calculation of the invariant, based on a linear model with
only one degree of freedom, is not useful when daylight is
involved.

SEARCH FOR OPTIMUM SENSORS

We applied an exhaustive-search method so as to find the
optimum set of three narrow-band sensors to represent the
results for the 24 objects of the ColorChecker and 64
daylight SPDs. To this end we developed a program that
would locate the three monochromatic sensors in all their
possible spectral positions within the visible range (400–
700 nm) and evaluate the quality of the invariant obtained
for the whole set of 24 objects and 64 illuminants. The best
results, when a minimum of 50 nm of difference between
wavelength was imposed, were given by the sensors �1 �
550 nm, �2 � 610 nm, and �n � 400 nm. The results
obtained for different objects in the graph of logarithm y�2

versus logarithm y�1 are shown in Fig. 2. For the three
monochromatic sensors in question the slopes are the same
for all the objects (1.295) and all the correlation coefficients
work out at 0.989. Thus we can be confident that the
behavior of the experimental invariant is excellent for these
sensors.

Previously, we found even better results with the sensors
�1 � 645 nm, �2 � 675 nm, and �n � 595 nm, when a
minimum of 30 nm of difference between wavelength peaks
was imposed in the exhaustive search. This set of sensors,
despite not covering the short-wavelength region in the
visible spectrum, still afforded excellent results for blue
objects from the ColorChecker due to the wide spectral
reflectances of these samples. This result is not unexpected,
since in agreement with the definition of the invariant, the
best results are expected for sensors which are very close to
each other. Anyway, we found essential to cover appropri-
ately the visible spectrum with the three sensors centered in

the short, medium, and long-wavelength regions respec-
tively. For this reason, we have not considered this nonre-
alistic set of sensors in the rest of our analysis.

The results obtained graphically using five triads of
monochromatic sensors are set out in Table I. The data
include the triad which afforded the best results with a
minimum separation of 50 nm between sensors (second
row), the triad used by Finlayson and Hordley2 (third row),
and a triad quite close to that used by Marchant and On-
yango1 (fourth row). We also applied the exhaustive-search
method to obtain the best triad of sensors which optimize at
the same time entropy, range, and correlation coefficients of
the data shown as in Figs. 1 and 2. In this case the best triad
found is (545, 605, and 435 nm) and the results shown in the
fifth row. As these wavelength are very close to that pro-
posed by Finlayson and Funt17 and employed by Finlayson
and Hordley2 we have also tested these last sensors but in a
different way, that is being �n � 450 nm. Then the results
of the Finlayson and Hordley modified triad appear in the
sixth row of Table I. The typical deviations of the different
slope values have not been included because they were
negligible. It can be seen that the triads of sensors found
with the exhaustive search give improved results compared
to those obtained with the rest of the sensors in that the
average correlation coefficient is better, showing values that
fit satisfactorily to a linear regression. Nevertheless, results
for the rest of triads of sensors, with the exception of
nonmodified Finlayson and Hordley sensors, can be also
considered quite good and invited us to further tests of their
behavior when natural color images are analyzed.

This study serves to present the good results generated for
daylight by the invariant defined in Eq. (1). As can be seen,
given a natural scene for which we know the values of the
response to this type of sensor pixel by pixel, we can
reliably find a descriptor that is invariant to changes in

TABLE I. Values of the average slope and correlation
coefficient and A12 obtained by the graphical method
for monochromatic sensors with maximum spectral
sensitivities at �1, �2, and �n.

Wavelength (nm)
�1, �2, �n Average slope

Average correlation
coefficient A12

550
610 1.295 0.989 0.772
400

450
610 �0.634 0.887 �1.578
540

605
530 0.562 0.977 1.778
440

545
605 1.474 0.984 0.678
435

540
610 1.634 0.980 0.612
450

FIG. 2. Representation of logarithm y�2 versus logarithm y�1

for the monochromatic sensors situated at 550, 610, and
400 nm.
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daylight illumination. That is to say, we can translate it to a
scene in the grey scale, in which shadows disappear and the
objects can be chosen according to the value of F12. Object-
recognition experiments based on this premise have been
made by other authors1,2 with satisfactory results when all
that is required is, for example, to eliminate shadows so as
to be able to distinguish between vegetation and soil1 or to
recognize artificial objects under different types of illumi-
nants.2 In our case we are interested in applying these
results to natural scenery so as to classify different types of
vegetation. Before doing this, however, it would be inter-
esting to see whether our study might be widened to include
the use of wide-band sensors close to real ones, or to the real
sensors of a commercial CCD camera, which we do in the
following section.

WIDE-BAND-SENSITIVITY SENSORS

When the logarithm y�2 is represented graphically versus
logarithm y�1 for a set of sensors centered on the wave-
lengths that afforded the best results in the section above,
but giving them Gaussian spectral sensitivity with a band
width half that of the 30-nm peak, the results do not differ
from those shown in Fig. 2. The adjusted straight lines show
an excellent correlation coefficient for all the objects. These
results confirm the satisfactory behavior of this type of
sensor when applied to daylight, and thus we believe, to
images taken of natural scenery.

We also used sensors belonging to a commercial CCD
camera (JVC TK-1270E CCD) (Fig. 3, solid lines). The
behavior of these sensors did not turn out so well as those in
the former simulations (Fig. 4). The correlation coefficients
were somewhat worse, although always higher than 0.960,
and the differences between slopes showed a maximum of
12.62°, which are about the same as the values found by
Finlayson and Hordley2 in representations of this kind.

The values obtained, for the different sets of Gaussian

sensors and CCD sensors, for A12 and the mean correlation
coefficients from the graphic representations are set out in
Table II. These results for the Gaussian sensors are very
similar to those obtained for monochromatic sensors with
maximum sensitivity in the same wavelength (Table I), the
values of the correlation coefficients being practically the
same as those produced by monochromatic sensors. They
are slightly worse in that the definition of the invariant
changes slightly according to the object in question, i.e., the
value of the slope of the adjusted straight line for each
object shows a noticeable typical deviation. The results for

FIG. 3. Spectral sensitivities of the JVC TK-1270 E CCD
camera sensors (solid lines) and sharpened sensors (dashed
lines).

FIG. 4. Representation of logarithm y�2 versus logarithm y�1

for the sensors of the commercial CCD camera shown in
Fig. 3.

TABLE II. Values of average slope and correlation co-
efficient and A12 obtained by the graphical method for
30-nm bandwidth Gaussian sensors with maximum
spectral sensitivities at �1, �2, and �n and CCD camera
sensors.

Wavelength (nm)
�1, �2, �n Average slopea

Average correlation
coefficient A12

550 1.320(0.017) 0.989 0.758
610
400

450 �0.617(0.037) 0.892 �1.617
610
540

605 0.563(0.017) 0.978 1.776
530
440

545 1.443(0.026) 0.987 0.693
605
435

540 1.619(0.037) 0.982 0.618
610
450

CCD 0.467(0.059) 0.964 2.135

a Values in parentheses indicate � values.
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the CCD sensors are clearly worse than those obtained for
the rest of triads with the exception of that based on Fin-
layson and Hordley.2

Thus in the following section we investigate the influence
that these small variations might have on object recognition
by studying the histograms of images in the grey-scale

obtained by assigning the value of F12 to each pixel of a
color image.

APPLICATION TO NATURAL IMAGES

To test the behavior of the invariant and sensors in object-
recognition tasks we chose one of the multispectral images
provided by Nascimento et al.,18 which they catalogue as a
natural scene. In Fig. 5 we show this image translated into
the grey-scale by applying the invariant. The idea is to see
whether this method will allow us to distinguish between
flowers and other types of vegetation such as leaves, which
could also be applied to recognizing ripe fruit against a
green background. In Figs. 6(a)–6(e) we show the histo-
grams deriving from the grey-scale images produced by five
sets of nonmonochromatic sensors studied above (cf. Table
II). All the histograms show bimodal distributions, which
correspond to two main kinds of vegetation in the image:
flowers and leaves. Nevertheless, the sensors behave in
different ways when these distributions are obtained during
different phases of daylight. Thus we obtained the histo-
grams for six daylight SPDs9 with color temperatures of
3757, 4425, 5555, 9091, 12 449, and 32 753 K, equally
spaced in the mired scale, corresponding to daylight phases
in clear and cloudy weather and during twilight. As can be
seen for the set of Gaussian sensors with 30-nm bandwidth
and maxima in the wavelengths of 550, 610, and 400 nm
[Fig. 6(a)], the histograms are approximately juxtaposed

FIG. 5. Image of a natural scene (Nascimento et al.18) in
shades of grey after applying the invariant parameter.

FIG. 6. Histograms of the image in Fig. 5 obtained for six daylight SPDs: (a) Gaussian sensors with maximum spectral
sensitivities at �1 � 550, �2 � 610, and �n � 400 nm; (b) Gaussian sensors with maximum spectral sensitivities at �1 � 605,
�2 � 530, and �n � 440 nm; (c) Gaussian sensors with maximum spectral sensitivities at �1 � 545, �2 � 605, and �n � 435
nm; (d) Gaussian sensors with maximum spectral sensitivities at �1 � 540, �2 � 610, and �n � 450 nm; (e) Sensors of the
commercial CCD camera (cf. Fig. 3).
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and so the task of recognition is possible whatever the
illuminant. The results are not as good for other sensors, but
leading us to deduce that it would be possible to recognize
flowers against a background of leaves for some triads of
sensors because the two peaks in the histograms are clearly
separated. To evaluate this, we compared the maximum
difference among histograms in the invariant value for each
peak and the minimum distance between peaks, which is the
difference, in terms of the value of the invariant, between
the first peak most at right and the second peak most at left.
As an example, in Fig. 6(a) these differences are 0.171
(maximum difference among histograms peaks) and 0.801
(minimum distance between different peaks) respectively. If
we assume that the first difference must be less than the
second in at least three times to obtain clearly grouped
histograms, we can conclude that the Gaussian sensors with
maximum sensitivity in (550, 610, and 400 nm), (545, 605,
and 435 nm), and (540, 610, and 450 nm) could be used to
the recognition task proposed. This conclusion is strength-
ened when daylight SPD corresponding to central hours of
the day are studied apart from twilight (higher correlated
color temperature). Figure 7 shows an example of segmen-
tation for the natural image analyzed and the (550, 610, and
400 nm) Gaussian sensors, where flowers are distinguished
from leaves.

The results for the sensors in the CCD camera are not so
good [Fig. 6(e)]. To improve on these results we decided to
resort to one of the techniques proposed to achieve better
applicability of these systems to the task of object recogni-
tion.11–13 Thus we carried out a spectral sharpening on the
CCD camera sensors using the L2-L2 technique suggested
by Drew and Finlayson,19 this being one of the techniques
which afford the best results. Although this method may
produce negative values in the sensitivities transformed
from the original sensors, these values do not generate

negative R, G, B values when calculated for the objects and
illuminants in question. The spectral sensitivities of the
sensors transformed by spectral sharpening are shown in
Fig. 3 (dashed lines).

The histograms derived from the sharpened sensors are
shown in Fig. 8. The results show an improvement on those
obtained before with the CCD camera sensors [Fig. 6(e)],
although they are still not comparable to those obtained with
the best sets of Gaussian sensors [Figs. 6(a), 6(c), and 6(d)].
There is a clear improvement in the results obtained with the
CCD sensors, but we cannot conclude that these sensors
allow any recognition of objects invariant to changes in
daylight comparable to that which can be achieved with
some of the other sets of sensors analyzed.

CONCLUSIONS

As we have mentioned, the definition of a pixel-by-pixel
invariant of an image refers to its application to the recog-
nition of objects invariant to changes in illumination when-
ever certain conditions that affect both the characteristics of
the illuminants and the type of sensors used in the system
hold good. We have carried out this optimization on the
base of real daylight measurements taken at extremely di-
verse elevations of the sun from dawn to dusk, including
twilight hours (high color temperatures). The calculations of
the invariant, made via the determination of the parameter
A12, can be replaced by the graphical determination accord-
ing to the graphs shown in Figs. 1 and 2, which are obtained
by calculating the responses of the sensors to the light
reflected by different objects illuminated by different illu-
minants. This method has allowed us, by using an exhaus-
tive-search technique, to obtain the position of the wave-
lengths corresponding to triads of monochromatic sensors,
which give better results in obtaining the invariant. Thus we
found that the triad of sensors with maximum spectral

FIG. 8. Histograms of the image in Fig. 5 obtained for six
daylight SPDs and the sharpened sensors of the commercial
CCD (cf. Fig. 3).

FIG. 7. Example of segmentation for the natural image
analyzed (Fig. 5) and the (550, 610, and 400 nm) Gaussian
sensors.
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sensitivities at (550, 610, and 400 nm) afforded excellent
results. In addition, results for the triads (545, 605, and 435
nm), and (540, 610, and 450 nm) were also excellent, the
first triad obtained by optimizing the entropy, range, and
correlation coefficient simultaneously and the second by
reordering Finlayson and Funt17 proposed sensors.

When we take into consideration sensors with spectral
sensitivity of a certain bandwidth, the Gaussian sensors with
a 30-nm bandwidth and wavelengths at the maximum in the
triad of values mentioned above also allow a satisfactory
application of the invariant, much better than that afforded
by the sensors of a commercial CCD camera. We have put
this to the test in two ways: first, by calculating the invariant
graphically (cf. Table II), and second, by applying the
invariant to a natural scene. As far as this scene is con-
cerned, by applying the invariant we can obtain a grey-scale
image for each illuminant, which should remain the same
when the illuminant changes. When the best Gaussian sen-
sors are analyzed, the histograms of the values of the
invariant approximately superimpose one upon the other,
but this does not apply to some of the other sets of sensors
analyzed. When we attempted to improve the possibilities
of applying a CCD camera to the task of object recognition
by using the spectral-sharpening technique to narrow the
sensitivities of the camera’s sensors and so bring them
closer to the ideal conditions for the application of the
invariant, we could not achieve better results than those
obtained with the Gaussian sensors with maximum sensi-
tivities in the triad of wavelength mentioned above. It may
be feasible, according to present-day technology in cameras
and LCTF filters, to implement experimentally this type of
sensor.
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