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Spain The estimation of chromatic diversity of natural images is commonly quantified

through the computation of the number of discernible colors and has received much
attention because of the different implications it has. However, the relationship
between that number and the number of colors that really attracts the attention from
an observer is still not clear and has been given little attention. New concepts about
salient discernible colors-the salient chromatic diversity of images- and remarkable
salient colors-connected colors in the same salient image area-are introduced as
opposed to the classical number of discernible object colors, which is usually eval-
uated for the global image without differentiating between probable attended and
non-attended image regions. We have used different well-known saliency models to
locate the salient regions in the scenes and have heuristically studied the extent to
which those models preserve the chromatic diversity of natural images. Based on a
bottom-up approach, a reduction of around 40%-55% in the number of discernible
colors were obtained, and not all saliency algorithms preserved a uniform sampling
of the original color gamut. Thus, our results suggests that particularly the graph-
based visual saliency model got good low dissimilarity values in comparison with
other approaches that put emphasis solely on color as the main low-level feature. Fur-
thermore, we have introduced a quantification scheme of the average number of
remarkable salient colors appearing in the images, and have proved how the
heuristic-based analysis of salient image areas can be used to create segmented
images automatically according to their salient chromatic diversity.
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1 | INTRODUCTION

So far, different studies have characterized the properties
of the natural images with the aim to understand our visual

Color in nature and natural image statistics have garnered lot
of attention during the last years supporting the idea that
human visual system evolved to be adapted to the natural
environment.'? That efficient coding hypothesis is one of
the links between the statistical and the visual properties of
the visible surroundings. This means that human visual sys-
tem is able to analyze in an optimal way most of the visual
features in the visual field such as the detection of edges in
images, the processing of colors and contrasts or the visual
motion estimation.

coding.> Among those properties the chromatic diversity has
been recently introduced to analyze the color gamut and
color volume expanded by natural and artificial images.* The
estimation of chromatic diversity is quantified through the
computation of the number of discernible colors in images
and has been used in different studies and applications (e.g.,
gamut computation in displays, color reproduction and ren-
dering in museums, etc.). The general principle to estimate
the number of discernible colors is to segment the color
space in just noticeable sub-volumes and to count the
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number of these volumes containing the color representation
of 1 pixel minimum. Being a classical problem with a long
history, it can be stated that there are around 2 million distin-
guishable colors under illuminant D65 (see Masaoka and
Berns® for a further review). Nevertheless the relationship
between the number of discernible colors and the number of
colors that really attracts the attention from an observer is
still not clear and demands further analysis.

Therefore it is of great interest, from both theoretically
and practical point of views, to look for appropriate answers
about what determines in the end where and why an observer
points his/her gaze to particular locations in a scene. What is
clear is that some areas in an image can attract the visual atten-
tion and the point of gaze of an observer scanning the visual
field. In doing so, it is said that those regions show good sali-
ency, that is, specific low-level visual features are attracting
the observers’ interest,® and thus the saliency map is a biologi-
cally plausible model for bottom-up overt attention proposed
by Koch and Ullman.” Their definition of saliency relied on
center-surround principles considering that points in the visual
scene are salient if they differ from their neighbors. There are
many features characterizing a visual scene, among which we
could cite edges, contrast, luminance and color as main visual
features defined at different scales. Classical stimulus-driven
and bottom-up visual models get relatively good results when
they used those features to localize the highly salient features
in a scene, both for natural and artificial images. Latterly,
including task-dependent constraints within the saliency algo-
rithms, operating at higher levels, improves quantitatively the
derived salient maps.® Those kinds of models use a prior
knowledge to get the visual attention, being a top-down
model. The main drawback is that a testing step is necessary
before getting and predicting the final salient object map,
which is not always possible. From the computational point of
view, we should add the hybrid models that combine the
advantages and simplicity of the bottom-up models with the
goal-task efficient constraint imposed by the top-down
models.”

Many projects have been developed in recent years trying
to find algorithms and models to characterize where humans
look, that is, the saliency map, in a scene base on a reduced
number of visual features. Eye tracking systems are usually
employed to record observers’ gaze paths as they view a col-
lection of images. After discarding saccades fixation loca-
tions and the corresponding fixation map can be obtained.'®
In the review of the model by Itti et al.,'" the visual saliency
maps are topographical codifications of fixation position in
visual search over the entire scene based on different image
features such as luminance, orientation or color. The algo-
rithm is based on bottom-up scene-based properties by
selecting pre-attentively computed simple features (color,
intensity, and orientation) and combines all of them into a
conspicuity map for each channel. The combination of the

conspicuity maps into a saliency map produces the serial
selection of salient locations in the image.

In addition, as established by Tatler et a
ences between visual features in attended and non-attended
spatial locations in an image. To be specific, those differences
are determined by various contrasts, luminances, chromaticity,
energy, and orientation. Nevertheless those findings have been
cast doubt on by Braddely and Tatler'® who found that fixation
map is dominated by the high-frequency edges; by so doing
the authors argue that contrast does not contribute to saliency
and that the other features are “behaviorally irrelevant.” That
being said however, other authors based salient detection on
chromatic content of natural scenes. In the Tian et al.'* a color
saliency model is introduced based on a hue—saturation—inten-
sity representation of images, which is correlated to 5 features
(contrast of hue, contrast of saturation, contrast of intensity,
dominance of warm colors, and dominance of brightness and
saturation) before getting the final saliency map as a weighted
linear combination of those feature maps. The model performs
well in detecting color regions in natural scenes and their
results are very promising for color scene understanding.

If the reader is interested in full details about the per-
formance of the above cited saliency models and other com-
putational approaches, Bylinskiia et al.,'> Borji and Itti,'
and Judd at al.,!” have created excellent taxonomies of visual
attention literature and benchmark data sets comparing per-
formances to baseline models under different metrics.

1.2 there are differ-

2 | AIM OF THE WORK
There are several studies analyzing how color influences vis-

ual attention and the fixations locations in natural
scenes.'>'®1% In this study, we heuristically examine the
effects of visual saliency in the estimation of the number of
discernible colors in natural scenes and explore the relation-
ship and consistency between that number and the salient
colors. Different well-known bottom-up saliency models cre-
ated from a wide variety of different approaches have been
used to locate salient regions in the scenes where the number
of discernible colors will be computed.

A new concept about “salient discernible colors,” which
are defined as the discernible colors that are salient—the
salient chromatic diversity—is introduced as opposed to the
classical number of discernible object colors, which is eval-
uated for the global image without differentiating between
probable attended and non-attended image regions. It should
be made clear that this article does not deal with the issue
about the computation of the maximum number of mutually
distinguishable colors. The initial assumption is made that
salient regions will attract observer attention and could affect
the estimation of the total number of distinguishable colors

perceived in an image. A final segmentation and labeling
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FIGURE 1 Steps for computing and estimating the Number of Dis-
cernible Colors (NDC), the number of Salient Discernible Colors (NSDC),
and the Number of Remarkable Salient Colors (NRSC) in images

step is also proposed to analyze which colors will be natu-
rally attracting observers’ attention in natural images, and the
term remarkable salient colors is used to label and compute
those colors in each image.

3 | METHODS

The flowchart in Figure 1 summarizes all steps for comput-
ing and estimating the Number of Discernible Colors (NDC),
the number of Salient Discernible Colors (NSDC), and the
Number of Remarkable Salient Colors (NRSC) in images.

3.1 | Images

We have used a set of natural images that were collected from
2 different image data sets. First, we used 24 hyperspectral nat-
ural images-denoted as “Nascimento’s set” in this article-that
were rendered under a daylight illumination of 6489 K corre-
lated color temperature (quite close to the standard 6500 K
daylight). Size of images were 500 X 500 pixels, all images at
full resolution are available online at http://online.uminho.pt/
pessoas/smen/hsi_2002/hsi_2002.html;  additional details
about spectral image acquisition, assumptions and approxima-
tions to get the final spectral reflectance r(x,y;1) at a pixel (x,y)
in the image can be found in Nascimento et al.”® By selecting
this data set you can completely control the illumination under
which images are rendered and thus the color of scenes as
viewed by a hypothetically observer. The spectral reflectance
of each pixel was converted into spectral radiance in the usual
way as the product of each spectral reflectance r(x,y;A) and the
spectral power distribution of the illuminant e(A) (assuming
constant illumination over the scene), and next data were con-
verted to CIE XYZ tristimulus values by using the CIE 1931
color matching functions,21

700

Ii(x,y)= Z G (M)r(x, y; A)e(L)Ar (1)
2.=400

where (x,y) denotes the 2D pixel coordinates in the image, A is
the wavelength of the incident light, k stands for the X, Y, and
Z tristimulus values and g () denotes the corresponding color
matching functions. The kth image components were con-
verted into the CIE L*a*b* color space for further colorimetric
analyses.

Next, we used 150 RGB images-denoted as “Torralba’s
set”-that were collected from http://saliency.mit.edu/datasets.
html.17. We selected only the landscapes images with nature
content and rejected seashore, artificial and portrait images;
size of images were 400 X 400 pixels. As opposed to the
other set of images, illuminant conditions cannot be fully
controlled now, and thus we assumed that all RGB images in
this data set were rendered under a similar daylight
illumination.

Two additional non-natural images were used just for
introduction an application of the proposed labeling technique
and for comparison purposes. One of the artificial images was
extracted also from the Nascimento et al.’s set?’ and the other
one corresponded to a painting representing nature (http://art-
saus.deviantart.com/art/Magic-Autumn-Colors-322305598).

3.2 | Analysis of the chromatic diversity of
scenes

The analysis of the chromatic diversity of scenes is directly
linked to the estimation of the number of discernible colors
in images. Therefore the number of discernible colors was
computed by segmenting the CIE L*a*b* representation of
each image in unitary cubes and by counting the number of
non-blank cubes. As proposed by Linhares et al.* it was
assumed that all the colors that were located within the same
square, that is, sharing a color difference less or equal to 1
CIE L*a*b* unit, will not be discernible.

3.3 | Computing salient regions in the scenes

All classical bottom-up saliency models and algorithms
16:22 share common steps, which can be
summarized as follows: selection of different pertinent visual
features (such as color, edges, contrast, etc.), computation of
a saliency map for every feature (by employing filtering
processing that emulates human visual system), and a final
integration step of all separate saliency maps into a single
output which signals those regions that would attracts
observer’s gaze and fixation.

During the past decade many saliency models have been
proposed, not always being inspired in the neural processing
of visual information. In this work we have selected the mod-
els from Itti et al.,” Harel et al.,23 Tian et al.,14 and Canosa.®
Although there are many models available in the related liter-
ature here we decided to choose the aforementioned models
because all are easily implemented, all include color as one

found in the literature
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of the main low-level features and have been tested in a wide
variety of approaches; the selection of the Harel et al.’s was
driven by Judd at al.'” findings that proved that this model
performed the best among others. In addition, we have also
analyzed other saliency-based models that employ specific
color visual features to quantize several representative classes
that can be used to differentiate regions in the image. The
procedures for saliency map generation are described as fol-
lows for each model (refers to the Appendix to get more
details about the rationale behind each model):

1. Itti et al.’s model: 3 conspicuity maps are obtained and
summed into the final input to the saliency map. Starting
from RGB color values of the input image, 3 channels
are used computing the L* intensity image, the red—green
and the b* blue—yellow components. Using steerable fil-
ters at each image location local orientations are com-
puted and the model compute center-surround differences
to determine contrast. After an across-scale combinations
and normalization 3 conspicuity maps are summed into a
final single salient map signaling potentially meaningful
parts of the scene.

2. Harel et al.’s model, or the so called graph-based visual
saliency (GBVS) model: the algorithm highlight salient
image locations where the image is informative based on
human fixations. At a first stage this model computes fea-
ture maps using biologically inspired filters, next it com-
putes an activation map based on spatial locations shown
to be unusual in its neighborhood and finally it normal-
izes it in a way which highlights conspicuity. A Matlab
implementation of this model can be found at http://
www.vision.caltech.edu/~harel/share/gbvs.php.

3. Tian et al.’s model: the model is designed for detecting
natural objects by combining different color contrast-
based features. By considering a perceptual object spa-
tially distinguished from the surround through its homog-
enous color and high contrast, the authors propose 5
features to describe the saliency of color. Three of the
features were contrast-based features (contrast of hue,
contrast of saturation, and contrast of intensity) and the
other 2 features we connected to the dominance of warm
colors and the dominance of brightness and saturation.
The framework of the model does not include either a
multi-scale or an orientation filter bank and thus concen-
trates only on a local color saliency.

4. Canosa’s model: the model introduces a biologically
plausible model of selective attention that selects regions
of high visual salience in an image and modulates that
saliency to locate potential objects in the scene; those
potential objects are selected according to their usefulness
in the context of an explicit or implicit task. The model is
based on the approach taken by Itti and Koch,® and

Parkhurst et al.** in that it uses spatial filters at various
resolution levels to detect low-level features of potentially
high visual salience. The model uses a proto-object loca-
tor to simulate figure/ground segmentation of perceptual
organization. At a final stage, the algorithm creates the
conspicuity map by combining a color map, an intensity
map, an orientation map and the object map.

In addition to those saliency models, we have tested 4 alter-
native ways of getting the final saliency map by using only
color features to compute the most attractive regions:

1. Simple hue—saturation—intensity feature-based model that
computes the saliency map based on an equal weight of
the hue, saturation and intensity components of each
image.

2. A simplified Tian’s et al. model that computes only the
contrast-based features related to the contrast of hue, con-
trast of saturation and contrast of intensity.

3. Colorfulness feature-based model: colorfulness is defined
as the visual sensation according to which the perceived
color of an area appears to be more or less chromatic (see
Fairchild® on page 87). Within this approach the color
salient map is obtained using that standard colorfulness
descriptor as the main visual feature.

4. Alternative colorfulness feature-based model that uses the
formula proposed by Liibbe*® to compute the colorful-
ness attribute.

Figure 2 summarizes all steps starting with the original Input
image decomposed into the L*, a*, and b* chromatic compo-
nents. After applying each saliency model, a 75-percentile was
used to threshold the output of each saliency map I,,,p(x,y) and
the NSDC was counted within that segmented image; a final
output, as a labeled image in terms of its salient colors, was pro-
duced. Segmentation could be done by selecting variable per-
centiles as thresholds. If we include large areas around the
maximum of the salient regions certain non-salient parts will
be also highlighted (the surround and background for instance).
On the contrary, restricting too much the threshold could lead
to a reduced number of pixels signaling salient regions. The
75-percentile value was a compromise and an intermediate
scale that consistently highlight the most relevant salient
regions. In doing so, a clear segmentation of meaningful whole
objects is obtained without having to use additional steps.

3.4 | Estimating the remarkable salient
regions and colors in the images

At the final stage of our analysis (rightmost column in the
Figure 1, and Figure 2 on the bottom part of the flowchart)
we estimated the remarkable salient colors appearing in the
image by first locating the connected components in each
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FIGURE 2 Taxonomy and construction of the saliency map and computations of the chromatic diversity of images in terms of the Discernible Colors,

Salient Discernible Colors, and Remarkable Salient Colors; every number in rounded brackets is linked to the saliency model explained in Section 3.3

salient map Ip,p(x,y). Connected component labeling is the
process of identifying the connected components in an image
and assigning each one a unique label. Thus from the sali-
ency map image a binary image Igwmap(.y) Was constructed
and the connected components were found in that binary
image. A labeled image [j,pejeq(,y) Was then created using a
default connectivity of 8 for 2 dimensions, and the remark-
able salient colors were assumed to be the center of mass for
each labeled region in [ pejeq(x,y) image.

4 | RESULTS
4.1 | Computing the number of salient
discernible colors

We have computed first the number of discernible colors
(NDC) following the classical approach, that is, considering
the absence of salient features in the scene. This means that
the global image is the unique salient source of visual infor-
mation and thus none saliency model will be introduced in
the computation of the NDC. The total NDC obtained for
Nascimento’s and Torralba’s natural images were 20,573
and 22,345, respectively.

In this work we are introducing the concept of “salient
discernible colors” to emphasize the influence of color and

visual attention clearly in selecting interest areas within an
image. Because different visual features can influence and
dominate through different image pixels, it is plausible to
look for salient colors appearing with different salient
weights depending on the scene area scanned by a hypotheti-
cal observer. Thus if an observer fixates on specific objects
and areas of the image we will assume that only the pixels
belonging to those areas will be potential candidates to com-
pute the NDC in the image. By computing the Number of
Salient Discernible Colors (NSDC) only discernible colors
linked to salient areas of an image will be considered in the
estimation of the chromatic diversity. As we will see later on
the computation of the salient regions and NSDC will allow
also an estimation of the salient colors present in the scene
and a segmentation of it according to this criterion.

Figure 3 compares the NDC and the NSDC based on
both the different saliency algorithms and the data sets
used. Tian et al. model (model 3) and the model using a
simple HSI descriptor (model 5) obtained clearly a reduced
number of salient discernible colors. The reduction, which
is around 82%, is much greater than the obtained with other
models, which is around of 40%-55%. In addition, no sig-
nificant differences were found for the two image data sets
with the exception being the NSDC obtained for models 6
and 8.
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are also shown for comparison

Figure 4 shows an example of the obtained results for
each model and 1 natural image. As expected, not all sali-
ency models produce the same salient regions. Results sug-
gests that GBVS, the simplified Tian et al., Canosa and the
standard colorfulness models locate the flower clearly as one
of the salient regions on the image. On the contrary, it is
noticeably that the other models select vegetation and the
surrounding areas of the flower as the most salient regions,
either in the raw map (left column) or in the thresholded sali-
ency map (central column).

Concerning the chromatic distribution of colors (or color
gamut), right column in Figure 4 shows the colors in the (a*,
b*) plane of the whole image (blue markers) and the limited
distributions of colors constrained by the salient regions in

Simplified Tian et al. HSI Canosa
P . .

the image (green markers). In this example, algorithms not
capable of selecting the flower as a significant and a salient
region show a very restrictive gamut of colors. The distribu-
tion of colors derived from Itti et al., GBVS and Canosa
models seem to sample uniformly the color gamut from the
original image. However Tian et al. and HSI algorithms
restricted the chromatic diversity deriving reduced color dis-
tributions in comparison with the original image. This tend-
ency was already found in the Figure 3, where those
algorithms got a small NSDC suggesting a major contradis-
tinction between the chromatic diversity and the NSDC in
natural scenes.

Figure 5 shows the average gamuts obtained for all
salient colors predicted for each saliency model in compari-
son with the original average gamut. It should be first
pointed out that chromatic gamut for the Nascimento’s set is
much more reduced along the negative dimension b* than
the one obtained for the Torralba’s set. We have to empha-
size that the selected RGB images in the latter case could
lead to an unfair comparison between both data sets, with
images in the Torralba’s set containing more blue sky colors
than the Nascimento’s set. Results also suggest that Tian
et al. (data 3) and HSI models (data 5) removed most of the
“reddish” color content (large and positive a* values) and
some extent of the “yellowish” colors (large and positive b*
values), irrespective of the image data sets used. Although
Tian et al. model was introduced for characterizing the visual
saliency in natural scenes, putting emphasis in the color
properties images, is the worst model preserving the chro-
matic diversity in the images. To quantify that dissimilarity
we computed the Hausdorff distance?” between the original
gamut and the corresponding salient gamut. Table 1 summa-
rizes the Hausdorff distances for each of the saliency models
used and suggests that the salient gamut obtained from the
Canosa algorithm is quite close to the original image gamut
for the Nascimento’s set (with a Haussdorff distance of

Tian et al. GBVS Itti et al.

depy Lousieg

Original Tmage

depy nwen

FIGURE 4 Example of the obtained results for (upper row) salient maps, (central row) thresholded salient maps, and (lower row) color gamut

expanded in (a*, b*) plane
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FIGURE 5 Average color gamuts estimated for all salient colors as predicted for each saliency model (data 1-8) in comparison with the original

gamut

33.5); on the contrary large values for this distance are
obtained for the Modified Tian and HSI models, as expected
from the visual inspection of the Figure 4. This could be
indicative of some-kind of driven-task (i.e., salient discerni-
ble color gamut in our study) conditioning the selection of

the best saliency model.

TABLE 1
saliency model tested

Nascimento’s Torralba’s

Model set set

Itti model 41.7 57.8
GBVS 54.3 62.3
Tian 44.8 59.5
Canosa 33.5 60.7
HIS 60.0 60.6
Modified Tian 72.0 66.7
Standard colorfulness 55.2 67.8
Alternative colorfulness 42.5 68.3

Hausdorff distances for the 2 image data sets and

4.2 | Estimating the number of remarkable
salient colors

The Number of Remarkable Salient Colors was estimated by
counting the number of centroids in the labeled image
Lapelea(®,y). Table 2 shows the average NRSC found for the
set of images and across each model described in Section
2.3. Results show how the Itti et al. and GBVS models get a
reduced NRSC (number of salient colors around 17-25) with
a relatively low standard deviation. On the contrary, the Tian
et al. model gets large NRSC with large standard deviation
which indicates its strong dependence with the color content
of images. The alternative colorfulness feature model clearly
fails to obtain a low standard deviation and Tian et al. and
Canosa models also get a relatively large standard deviation
in comparison with the number NRSC found. By comparing
the colorfulness feature definitions in Equations A6 and A7
the presence of L* at the denominator could explain the
more stable values for the standard colorfulness definition in
comparison with the alternative formula in Equation A7. Fig-
ure 6 shows examples of the spatial locations of each of the
salient colors found for each algorithm.

To visualize the remarkable salient colors in each image
we used those salient image regions to perform a salient-
color-based segmentation using a simple k-means clustering.

TABLE 2 Number of remarkable salient colors (NRSC) for the 2 image data sets and saliency model tested

Modified Standard Modified
Itti GBVS Tian Canosa HSI Tian colorfulness colorfulness
Nascimento NRSC 25 23 253 30 174 236 142 58
SD* 3 5 125 22 79 112 111 105
Torralba NRSC 20 17 168 17 134 125 80 31
SD* 4 7 168 12 98 77 76 33

“Standard deviation.
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FIGURE 6 Examples of the spatial locations (yellow markers) of each remarkable salient color found for each algorithm; images in the last column

are from Torralba’s data set

Every salient color, as defined through its (a*,b*) chromatic
components, was used as a seed for the k-means algorithm,
that is, the number of clusters to be partitioned and to quan-
tify how close to regions are to each other. The purpose of
this step is to introduce a simple segmentation approach that
uses the salient colors to visualize the salient chromatic
diversity of color images better. For every salient color the
clustering algorithm returns an image labeled by a cluster
index as shown in the Figure 7.

4.3 | Applications with artificial scenes

The salient colors computation introduced in this work,
which is based on the chromatic salient and discernible chro-
matic content in images, may be applicable in non-natural
scenes such as paintings and/or images including man-made
objects. Those kind of objects and scenes were avoided in
the previous analysis because scan patterns during those
scene viewing can be biased by other oriented tasks (i.e., free
viewing vs. ratings of affect and compositional complexity).
When an observer looks at a painting, his/her task is usually
driven either by the mere observation of the aesthetic of the
artistic work or by a close observation of the details of its
pictorial style. In both cases there will be a clear saliency
map guided by the interest of the painting, characters appear-
ing in it, landscape if any, and so on, and of course the color
palette used by the author. It is precisely this latter kind of
information that can be highlighted more clearly when we

apply our approach because our approach could estimate
which colors from the painter’s palette will be more remark-
able for the observer looking at the painting.

Figures 8 and 9 show examples for an artificial scene and
a painting, respectively, when the GBVS model is used prior
to detect the salient colors appearing in the images. Results
suggest how despite the relative complexity of spatio-

FIGURE 7 Segmentation and visualization examples of the remark-
able salient colors using the GBVS model. Labels (A)-(D) correspond to
the images shown in rows 14 in Figure 6
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FIGURE 8
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(A) Artificial scene, (B) distribution of colors for the global image (blue markers) and salient image regions (green markers) in (a*,b%)

plane, (C) superimposed saliency map, (D) location of the remarkable salient colors across the image, and (E) labeled image according to the relevant clus-

ters of colors

chromatic content of the scenes the proposed algorithm is
able to perform a good image segmentation based on their
content, that is, based on their salient colors. In the scene
containing toys (Figure 8) salient information is concentrated
around the central part of the image, which is an expected
result from all visual saliency models, not necessarily around
all toys. Nonetheless the 13 salient colors found by the algo-
rithm can segment quite well the color image (Figure 8E).
Nevertheless, that segmentation qualitatively contains some
errors due to highlights and shadows in the original scene
and our proposal was applied without any additional prepro-
cessing of the image (shadow removal, lighting invariants,
etc.).

Figure 9 shows an example of the results obtained when
a relatively colorful painting containing nature is used. Color
gamut of this painting (Figure 9C) is greater than the one
expanded by the toy scene (Figure 8C) and now saliency
map almost cover the whole scene selecting a total of 8
salient colors. Our labeling algorithm produces the false
color image shown in Figure 9E whose segmentation is
closer to the original color image than the other example.

Our estimation of salient colors in a scene is qualitatively
similar but completely different to other approaches that cre-
ate a non-photorealistic rendering (NPR) of a photograph.

Examples of the NPR technique have been proposed by
DeCarlo and Santella®® who automatically rendered photo-
graphs by “stylizing and abstracting photographs that
responds in explicit terms to the design goal of clarifying the
meaningful visual structure in an image.” Using an eye track-
ing system the authors rendered more details of images at the
observers’ gaze locations and coarse details in the non-
fixated image regions. Those authors look for an abstraction
preserving the meaningful of the scene content while we use
our model to predict image regions where salient colors
appear.

5 | DISCUSSION

We have performed an empirical comparison of 8§ state-of-
the-art saliency algorithms in computing the chromatic
diversity in natural scenes constrained by a saliency-driven
task. Despite research on the number of discernible col-
0rs,4’5 so far not much attention has been paid to the
influence of visual saliency in the computation of those
discernible colors. Instead of processing the massive sen-
sory input, which determines the chromatic diversity of

natural scenes, attention guilds us to some “salient”
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FIGURE 9
markers) in (a*,b*) plane, (C) superimposed saliency map, (D) location of the remarkable colors across the image, and (E) labeled image according to the

relevant clusters of colors

regions to perform a series of rapid computationally less
demanding, localized visual analyses. Attention could be
involved in triggering behavior related to recognition and
planning and thus reducing the number of salient colors
contributing to the total number of discernible colors
appearing in an image. Our results suggest that the GBVS
saliency model performs best preserving the chromatic
diversity content of natural scenes (i.e., low dissimilarity
values between the original color gamut and the obtained
color gamut after selecting the salient regions). Besides,
the influence of local image properties in eye fixations
when an observer scans a natural scene is known with
around 60% of the variance in observers’ detection per-
formance supporting those properties.”’ The starting
hypothesis of this work has been precisely that the whole,
or part, of that percentage could be in the end diminishing
the effective chromatic diversity of natural scenes. Most
pattern recognition theories suggest that the visual system
must use a specific mechanism to carry out such analysis
and estimation, that is, once the basic components of an
image are visually processed on the basis of that informa-
tion the object or visual pattern is identified.>

While the mere application of a model of visual saliency
has allowed us to calculate the number of salient discernible
colors, it is true that this computation is only determined by

(A) Original painting containing nature, (B) distribution of colors for the global image (blue markers) and salient image regions (green

the local image properties, namely color, contrast and orien-
tation, or equivalently a bottom-up visual processing. On the
contrary the estimation of the salient colors appearing in a
scene would be the result of a task-driven top-down process.
Massaro et al.*! have shown that gaze is preferably affected
by bottom-up processes such as color and complexity when
natural scenes are observed. Using an eye tracker system
they computed the number of clusters involved in aesthetic
judgements of paintings and found around 13 clusters when
paintings representing nature were observed. In this respect
this number is lower than the number of salient colors we
have found in our study. It should be take into account that
we used natural images and not nature paintings; neverthe-
less that number of cluster agrees with the salient chromatic
diversity illustrated by the two artificial scenes employed in
our study.

The computation of the salient colors has been made
under the assumption that salient regions in the image deter-
mine such computation. This does not mean that human vis-
ual system would estimate those salient colors following a
similar procedure, but it is as if we had imposed a specific
task to a simulated observer in order to extract salient color
targets (or the relevant color “gists” of the images). Results
from Castelhano and Henderson®? suggest that color has a
direct connection to the conceptual representation of scenes
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by contributing to the activation of scene gist. If salient col-
ors can be considered a scene gist and/or a new color naming
paradigm is a matter of further studies.

6 | CONCLUSIONS

We make 3 main contributions in this work. First, a new
concept about “salient discernible color” has been intro-
duced to study the chromatic diversity that is really salient
in an image. Second, the state-of-the-art of 8 saliency mod-
els has been analyzed considering how they process the
chromatic diversity in images. Although some very good
reviews of visual saliency models can be found in the litera-
ture, none of them, up to our knowledge, have included the
preservation of the chromatic diversity as one of the metrics
to be tested. We have quantified the amount of salient chro-
matic information, which effectively reduced the number of
discernible colors in natural images. And third, we have
proposed a novel segmentation and labeling color image
annotation that is based on the salient colors appearing in
images.
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APPENDIX

The saliency map is a biologically plausible model for
bottom-up overt attention. In the review of the model by
Itti et al.® the visual saliency maps are topographical codi-
fications of fixation position in visual search over the
entire scene based on different image features such as
luminance, orientation or color. Models 1, 2, and 4 in

Section 3.2 are based on the flowchart illustrated in the
Figure 10.

The Model 3 is based on the computation of different
contrast-based features'*; its 5 M; saliency maps can be com-
puted as:

e For contrast-based features:

|Fi(x,y) = Fi(x,y)]
ixy)= I—ex B F "
Mi57) ep{ Fitxon)- mm} .

where i stands for the hue, saturation, and intensity channels
of the image.

e For dominance-based features:

I(x,y)S(x,y)cos (0)d if \/75 <cos(0) <1

My(x,y)=
0 otherwise

(A2)

Ms(x,y)=1(x,y)S(x,y)d (A3)

where I(x, y) and S(x, y) denote the intensity and the sat-
uration image channels, respectively, 0 is the hue for
pixel (x, y) and normalized to [0, 2], and & is a constant
value.

In the Model 5, the saliency map computation is based on
an equal weight of the hue, saturation, and intensity compo-
nents of each image defined as:

M(x, )=\ H e 32480y 10y (Ad)
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FIGURE 10 Scheme of the original model of saliency-based visual
attention, adapted from Itti and Koch®
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where H(x,y), S(x,y), and I(x,y) are the hue, saturation, and
intensity values at pixel (x,y) of the image.

The simplified Model 6 uses only the contrast-based fea-
tures related to the contrast of hue, contrast of saturation, and
contrast of intensity as defined by Tian et al.'*:

M(x,3)= /My (x,3)> +Ms (6,3 + My (x5 (AS)

where My(x,y), Ms(x,y), and M;(x,y) are the saliency maps for
the contrast-based features for hue, saturation, and intensity,
respectively, as defined by Equation Al.

The Model 7 computes the colorfulness as follows:

WILEY-

e ()P ()
L¥(x,y)
Finally, the Model 8 uses the following formula to com-

pute an alternative colorfulness attribute to compute the
salient regions:

(A6)

M(x,y)

Ve ey +b ()

M3 std [a* (x, y)2 +b*(x, y)z}

(AT)

where std stands for the standard deviation of the quantity
within the brackets.





