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Abstract
Saliency detection has been an important topic during the last decade. The main goal

of saliency detection models is to detect the most relevant objects in a given scene.

Most of these models use RGB (Red, Green, Blue) images as an input because they

mainly focus on applications where features (eg, faces, textures, colors, or human sil-

houettes) are extracted from color images, and there are many labeled databases avail-

able for RGB-based saliency data. Nevertheless, the use of RGB inputs clearly limits

the amount of information fromwhere to extract the salient regions as spectral informa-

tion is lost during the color image recording. On the contrary, multispectral systems are

able to capture more than three bands in a single capture and can retrieve information

from the full spectrum at a pixel. The main aim of this study is to investigate the advan-

tages of using multispectral images instead of RGB images for saliency detection

within the framework of unsupervised models. We compare the performance of sev-

eral unsupervised saliency models with both RGB and multispectral images using a

specific dataset of multispectral images with ground-truth data extracted from

observers' fixation patterns. Our results show a general improvement when multispec-

tral information is taken into account. The saliency maps estimated by using the multi-

spectral features are closer to the ground-truth data, with the simplest Graph-based

visual saliency and Boolean Map-based models showing good relative gain compared

with other approaches.
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1 | INTRODUCTION

The human visual system is able to detect relevant or impor-
tant information from all the data that enters the eye. This
cognitive process, known as visual attention, is complex,
and its complete understanding and simulation have been
widely explored. In 1998, Itti et al1 proposed the first
completely functional saliency model, which tried to simu-
late where the human visual system would focus its attention
on a given RGB image. After Itti's revolutionary work, many
other models were created, which attempted to improve the

results. In order to extract salient information, most models
utilize some specific features, from the more basic intensity,
color, and orientation to the more advanced features such as
motion, optical flow, flicker, multiple superimposed orienta-
tions (crosses or corners), and texture contrast.2

All the previously cited features use trichromatic images
as an input. These are the more common types of images
(RGB color images), which try to simulate how the human
visual system responds to light and extracts color information.
The human eye, and therefore a camera, has three kinds of
channels or photoreceptors, sensitive to different parts of the
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visible light spectrum. Consequently, when capturing an
image, the incoming light recorded by the camera sensor
is encoded with three numbers (R-, G-, and B-digital values
or L-, M-, and S-cone responses), and thus, the spectral infor-
mation is lost. Nevertheless, such spectral information might
be useful for certain applications. In recent years, there has
been a growing interest in devices (more and more affordable)
able to capture all this extra information, not only with a better
spectral resolution in visible light but also being able to cap-
ture light in other areas of the spectrum, such as the ultravio-
let, infrared, and thermal. The increase in the availability of
these multispectral and hyperspectral cameras has facilitated
huge advances in fields such as robotics, remote sensing, sat-
ellite imaging, medicine, food control, and even object
detection.3-5

In this study, we analyze the advantages of using multi-
spectral images with the aim of salient object detection using
some of the more known saliency models and adapting them
to receive and take advantage of spectral information. The
topic of saliency detection and prediction is described in
general at an introductory level in the review/book by Li and
Gao.6 The idea is to compare the original models developed
for RGB images with their adapted multispectral versions by
using the most common evaluation metrics and investigate
whether there is an improvement or not. Although multi-
spectral images go beyond what the human vision can per-
ceive, multispectral saliency detection does not imply a
perfect simulation of bottom-up visual attention but rather a
broader detection of objects that stand out spectrally from
their neighbors, which can also be related to knowledge and
task-associated visual attention, the so-called top-down
visual attention. Specific visual attention models (VAMs)
have been developed for spectral images7-9 (Section 2), but
in these studies, the comparison between RGB and multi-
spectral images was not addressed specifically. Our study
aims to tackle this issue using the least favorable situation
for multispectral images, which is using models that have
been specifically developed with RGB images in mind. Two
specific fields of application that can benefit from the results
shown in this article could be: surveillance and security field
(to detect objects or events of interest in urban scenes using
modified camera surveillance devices to make them multi-
spectral), and a second one could be the active monitoring of
the state of preservation of the elements present in urban
scenes.

This article is organized as follows: Section 2 reviews
some of the more relevant related studies modeling visual
attention; Section 3 describes the methodology and the
framework of the research, Section 4 analyzes the results
obtained, and the conclusions are given in Section 5.

2 | VISUAL ATTENTION
MODELING

During the last decade, it has been of great interest to deter-
mine where and why an observer aims their gaze at particu-
lar locations in a scene. When some areas in an image attract
the visual attention and the point of gaze of an observer, it is
said that these regions show high saliency, (ie, specific low-
level visual features are attracting the observers' interest),
and thus, the saliency map is a biologically plausible model
for bottom-up attention as proposed by Koch and Ullman
(1985).10 Their definition of saliency relied on center-
surround principles considering that points in the visual
scene are salient if they differ from their neighbors. There
are many features characterizing a visual scene, among
which we could cite edges, contrast, luminance, and color as
the main visual features defined at different scales. Classical
bottom-up visual models obtain relatively good results when
they use these features to localize the highly salient features
in a scene, both for natural and artificial images. More
recently, including task-dependent constraints within the
saliency algorithms has been found to improve the derived
salient maps.11 These kinds of models, which operate at
higher visual levels (ie, top-down models), use prior knowl-
edge to gain visual attention. Eye-tracking systems are usu-
ally used to record observers' gaze paths as they view a
collection of images. After discarding saccade fixation loca-
tions, the corresponding fixation map can be obtained.

As explained in the previous section, the most influential
attempt to create a complete saliency model was made by Itti
et al,1 inspired by the theoretical work of Treisman et al12 in
the feature integration theory, where three basic features that
influence the visual attention were proposed: intensity, color,
and orientation. The Itti model proposes how to extract these
three features from a digital color image based on bottom-up
scene-based properties by selecting preattentively computed
simple features and combining all of them into a conspicuity
map for each channel. Doing this to different sizes of the
same image through a Gaussian blur pyramid, the center-
surround difference at each feature simulates the neuronal
receptive fields found in the human visual system. Finally,
after obtaining the relative saliency contribution of each fea-
ture, a linear combination resulting in the final saliency map
is produced. Moreover, as established by Tatler et al,13 there
are differences between visual features in attended and non-
attended spatial locations in an image. To be more specific,
these differences are determined by various contrasts, lumi-
nances, chromaticity, energy, and orientation. Nevertheless,
doubt on these findings has been cast by Baddeley and
Tatler,14 who found that a fixation map is dominated by
high-frequency edges; the authors argue that contrast does
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not contribute to saliency and that the other features are
“behaviorally irrelevant.”

Later on, many models appeared, improving different
assets of this initial approach: the use of a log-spectrum in the
input image,15 using the information theory to extract salient
information,16 using high-level features,17 and supervised learn-
ing trained by large eye-tracking datasets.18 Recently, themajority
of leading benchmark models has been based on convolutional
networks and deep learning techniques.19

In this section, we first describe the RGB-based models
used in our study and then some models developed specifi-
cally for multispectral images.

2.1 | RGB-based saliency prediction

Of all the existing models, we have selected five and adapted
them to receive multispectral images as input. This selection
was carried out taking into account their impact, their accu-
racy, and the feasibility of adapting them to multispectral
images.

1. ITTI: Itti's model1 has been selected due to its influence
on salience detection research and the many times it has
been used in previous studies. As we have explained,
Itti uses center-surround differentiation over three main
features: intensity, color, and orientation.

2. Graph-based visual saliency (GBVS): Harel et al20 pro-
posed the graph-based visual saliency, a modification
of Itti's model; whilst using the same feature extraction,
it proposes new activation, normalization, and combination
steps based on graph computation. Activation and normali-
zation are achieved by implementing a Markovian app-
roach: a fully connected graph with a weight assigned to
each edge connecting one node of the feature map to all the
other nodes except itself. Therefore, by adding these two
graph-based approaches to the steps of activation and
normalization and using the feature extraction already pro-
posed by Itti and a linear concatenation of normalized acti-
vation maps, they were able to improve significantly both
the performance and the accuracy of the other existing
saliency methods.

3. RARE: Published in 2012 by Riche et al,21 it proposes
finding salient information by looking at the rarity of the
different features. Rarity is calculated by using co-
occurrence matrices of a given pixel or region, giving high
values to a pixel that has values that are less frequent. It
uses principal component analysis (PCA) over the RGB
images in order to find higher discriminations; it also uses
Gabor filters to analyze different orientations.

4. BMS: Boolean map saliency was proposed by Zhang
and Sclaroff in 2013.22 The idea is to binarize the differ-
ent channels of the image by using random thresholding

and extract the salient information by analyzing their
topological structure. This model is quite simple, and
using low-cost processing, it reaches high scores when
compared to other models.

5. Learning discriminative subspaces (LDS): Continuing
with the same idea as RARE, learning discriminative
subspaces on random contrasts,23 this model tries to pro-
ject the images into more discriminative subspaces that
allow targets to pop out. It calculates the principal com-
ponents using a big set of image patches, and by maxi-
mizing the contrast between target and background, it
learns what subspaces are more suited to show this
differentiation.

2.2 | Spectral-based saliency prediction

Although the previously cited models are able to predict
salient information with a high accuracy (while lower than
supervised models), they extrapolate all the information
from an RGB image. The idea of using multispectral or hyp-
ersepctral images in order to predict salient information is
not new, and there have been several attempts to create spec-
tral image-based saliency models. Most of them adapted
Itti's model to receive different features such as:

1. Using space transformation methods such as PCA8 or
Nonnegative Matrix Factorization9 in order to reduce the
dimensionality of the multispectral images and obtain a
higher contrast of the more distinguishable objects.

2. Computing spectral differentiation metrics between the
different pixels to more easily computed spectral differ-
ences between the center and surround.9,24

3. Taking advantage of the higher spectral resolution to
select more accurately the blue-yellow and red-green
vectors extracted from the corresponding group of spec-
tral bands.9

All the above studies were presented as complete saliency
models instead of an adaptation of previous models, so it was
difficult to distinguish whether the performance of these
models is related specifically to the usage of multispectral or
hyperspectral information. In our case, we use models specifi-
cally developed for RGB images and adapt them to receive
multispectral information as input. Our aim is to investigate if
there is an improvement in the models' performance when they
use a more complete source of information to obtain the
saliency prediction.

We are aware that the selected models are not among the
best performing since the advent of convolutional neural net-
works (CNN-based saliency prediction approaches25,26).
However, supervised models would require a high amount
of labeled spectral images to produce acceptable results
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because they would, per force, have to be retrained if spec-
tral images are to be used as input. Currently, there are no
labeled spectral image databases of more than four channels
for saliency detection. We think it is worth investigating
whether using spectral information can provide a significant
improvement in unsupervised saliency prediction before
tackling the huge task of capturing and labeling a sufficient
amount of spectral data to test using supervised approaches
for saliency prediction. Besides, finding efficient ways to
adapt existing models to receive different input data also has
an intrinsic interest.

3 | METHODS

3.1 | Image dataset and ground-truth data

We have used a set of nine multispectral images of urban
scenes and their corresponding RGB versions, three of them
containing people, to test RGB vs Multispectral image saliency
prediction performance. The results of this study are applicable
to saliency detection in any framework, although the scenes
captured in this work have only urban content (buildings, vehi-
cles, urban furniture, people, plants). The images were recorded
using the PixelTeq (Halma, UK) SpectroCam VIS camera,27

which is composed of a monochrome silicon sensor with a spa-
tial resolution of 2456 × 2058 pixels, sensitive to wavelengths
of between 370 and 1100 nm (Figure 1 left). We are aware that
more advanced sensors such as InGaAs-based ones are sensi-
tive to spectral regions beyond this range (ie, up to 1700 or
2500 nm). These could certainly yield results for exploring dif-
ferent spectral regions that could provide interesting informa-
tion for the saliency detection task. However, this would highly
increase the cost of the imaging systems. In this regard, silicon-
based sensors offer an affordable and easy-to-find solution that
also demonstrates good performance for saliency detection. A
filter wheel with eight slots, which is placed between the lens

and the sensor, is rotated to sequentially capture the images
corresponding to each band. The exposure time for each chan-
nel was determined independently to ensure that the scene was
correctly exposed for the corresponding band.

We selected a range of filters with specific transmittances to
cover the visible and near-infrared (NIR) regions of the spec-
trum. In Figure 1 (right), the spectral responsivities of the chan-
nels are shown. Channels 1 to 5 have their responsivities within
the visible range (roughly from 400 to 750 nm), channels 7 and
8 are sensitive in the NIR range (from 750 to 1000 nm), and
channel 6 is both sensitive in the visible and NIR ranges. Of
course, a higher number of channels with spectrally narrower
sensitivities could help improve the saliency detection task by
offering a larger amount of data. However, this would also
increase the cost and complexity of the imaging system and the
image data processing. For specific applications, an optimized
filter selection could be carried out.28 However, in this study,
the available filters were meant for the general spectral imaging
task, thus covering the whole visible and NIR range with certain
overlap.

Each image has a resolution of 2456 × 2058 pixels x
8 different channels corresponding to the transmittance of
each filter to the scene. In order to generate the RGB images
from our multispectral data, we only selected three filters
that were reasonably close to the standard peak wavelengths
of R, G, and B channels in a conventional RGB camera and
used them as the three channels of the RGB image. These
filters were those corresponding to channels 5 (680 nm),
3 (555 nm), and 1 (450 nm). At this point, one might think
that the comparison is not fair as the RGB images only cover
the visible range, and the multispectral system used in this
article also covers the NIR range up to 1000 nm. However,
this advantage is a part of the potential assets of multispec-
tral systems, not only offering a higher number of spectral
channels within the same spectral range but also extending
its spectral range. Specifically, the sensor used in this study

FIGURE 1 Left: PixelTeq SpectroCam VIS camera. Right: spectral responsivity of the eight channels used by the Spectrocam VIS camera,
computed as the product of the spectral transmittance of each filter by the spectral responsivity of the monochrome sensor
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is a silicon-based sensor similar to the ones used in common
RGB imaging systems. Therefore, we could extend the
potential of any silicon sensor by removing the IR cut-off fil-
ter and adding the same color filters with the filter wheel.
There is no need to use a more complex and costly InGaAs-
based sensor for it.29

We used the RGB images to generate the ground-truth data
for testing our hypothesis. Six observers, four women and two
men with a mean age of 24 years, were asked to look freely at
the RGB version of the images while their eye movements
were being recorded with an Eye-tracker device (Tobii II, from
Tobii Company, Danderyd, Sweden).30 The images were pres-
ented for 6 seconds. The objects with the highest number of fix-
ations in each image (accumulating more than 70% of the
fixation time) were marked as ground-truth salient objects and
manually segmented from the images to generate the ground-
truth data (Figure 2).

3.2 | Features analyzed

In this subsection, we describe the features extracted from
the spectral images and later fed as input for the adapted ver-
sion of the VAMs. We have used a range of features that
can be divided into three main groups:

1. CIELAB: In general, color information is used in most of
the saliency models that use color or RGB images as input.
The raw RGB color information can be used directly by the
model, or the RGB can be transformed into a different color
space that better emulates human perception. The CIELAB
color space31 is quite widely used for this purpose. The
information conveyed by the three channels of the
CIELAB feature (L*, a*, and b*) is then fed to the adapted
models as a three-dimensional image. Therefore, the model
processes each channel independently, and the
corresponding activation maps are concatenated.

2. PCA: In spectral images, the information contained in each
pixel is usually high dimensional. Our hypothesis is that
this extra amount of information can be useful in the

prediction of saliency. Nevertheless, many spectra are
smooth functions, and this means that there will be some
amount of correlation between adjacent spectral bands.
One way to exploit this correlation and try to keep the most
relevant and distinctive features of the spectra is to use a
dimensionality reduction technique such as PCA, which
finds the best set of orthogonal components to represent the
data while capturing the highest amount of their inner vari-
ance. PCA is also used as a feature in previously developed
VAM for spectral images.24 The principal component basis
vectors are usually ranked by variance accounted for
(VAF), and the number of principal component vectors
used to represent the data is selected using a threshold crite-
rion for accumulated VAF, usually ranking from 95% to
99%. For our data, we have determined that, using three
principal components, we are able to account for at
least 95% of the variance, so we have decided to use the
projections of our image data onto the first three principal
components as an additional feature for the saliency
models. The three projected images are fed independently
to the models, and the activation maps are computed and
then concatenated. We have computed the PCA decompo-
sition individually for each single image to preserve its dis-
tinctive characteristics as much as possible as the images
were of a size that produced a sufficiently high number of
pixels to allow for this approach.

3. Spectral angle mapper (SAM)-spectral information
divergence (SID): When comparing spectral data to ana-
lyze differences between them, it is good practice to not
only compare them channel by channel but to also con-
sider the spectrum as a whole. In the case of spectral
images, as each pixel has N spectral components, the
image can be considered an array of signals, and each
pixel can be compared with the mean signal in the
image, which could be a way to identify which are the
most distinctive regions. There are different metrics used
to discriminate spectral signals numerically, for instance,
root mean square error computes the square root of the
mean of the channel-wise differences to the square, or

FIGURE 2 Original scene (left), fixation map (center), and segmented ground-truth image (right) for one of the scenes
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Goodness-of-Fit Coefficient (GFC) is the cosine of the
angle between two spectral signals (considering them as
vectors on a Hilbert space32). In our case, we use the so-
called SAM-SID distance,33 which is a combination of
both the SAM and the SID. SAM is defined as the angle
between two spectral signatures s and s0 (and so the
cos−1 of the GFC value) as expressed in the following
formula:

SAM s,s0ð Þ= cos−1 < s,s0 >
k s k � k s0 k
� �

ð1Þ

Meanwhile, SID is the discrepancy between the uncer-
tainty of two spectral signatures, s and s0, which is computed
using their respective probability density distributions
p and q:

D s k s0ð Þ=
X
j=1

L

pj log
pj
qj

 !
ð2Þ

D s0 k sð Þ=
X
j=1

L

qj log
qj
pj

 !
ð3Þ

SID s,s0ð Þ=D s k s0ð Þ+D s0 k sð Þ ð4Þ

Then, the combination of both SAM and SID is performed
as the sinus of the angle by the information divergence:

DSAM−SID c,sð Þ= sin SAM c,sð Þ½ �×SID c,sð Þ ð5Þ

The advantage of this metric is that it combines sensitivity
to differences in spectral amplitude distribution (SID) with sen-
sitivity to differences in spectral shape (SAM). By finding the
product of these two measures, the spectral discriminability of
the SID-SAM mixed metric is increased because it makes two
similar spectral signatures evenmore similar and two dissimilar
spectral signatures more distinct.31 Therefore, a one-channel
feature is introduced as input to the saliency models, showing
the SAM-SID difference between each pixel and the mean
spectra of the scene. This feature is activated by the model, and
saliency is predicted.

Both PCA and SAM-SID are features that can only be
extracted from multispectral images; nevertheless, the color
information is already used as a feature in most saliency
models. In Figure 3, we show one scene (original scene), its
segmentation ground truth, and the corresponding feature
images (PCA, SAM-SID and CIELAB). The salient objects
tend to have high intensity in some of the feature images,
which can be useful for improving the performance of
the VAM.

3.3 | Model adaptations

In this section, we explain the adaptations carried out on the
existing visual saliency models to enable them to receive spec-
tral features as inputs. As the different models have a
completely different architecture, we have designed different
ways of adapting them to accept the spectral features as inputs.

Figure 4 summarizes the work flow of the experiment
performed for each of the models selected, with the aim of
establishing if the use of spectral features as input produces
an increase in the performance of the models. We first used
RGB images as input for the model and obtained the
corresponding saliency map. Then, we used the adapted ver-
sion of the model with the spectral feature images as input
and obtained the spectral-based saliency map. Finally, we
used the ground truth and the set of metrics described in
Section 3.4 to compare the performance of the model in the
two situations (RGB or spectral features as input).

Itti and GBVS use intensity, color, and orientation as the
main features, and then, the activation maps are computed. For
these two models, we have substituted intensity and color for
the CIELAB features, and we have used the L* image to com-
pute the orientation maps. Then, we added both PCAs (sequen-
tially for each PCA component) and SAM-SID as extra
features, leaving the models with a total of four feature global
classes to be activated and combined.We havemerged the acti-
vationmaps with equal weights for all the features. Both RARE
and LDS use PCAs to find a space that increases the differences
between the objects. In this case, we substitute the three-
dimensional input image with a seven-dimensional one, com-
posed of the three CIELAB channels, the first three principal
components, and the SAM-SID image. We then run the model
with the corresponding space transformations, and the final
saliency map is obtained. The BMS model applies random
thresholding to the different channels of the input image. In this
case, instead of applying the threshold to three different chan-
nels (RGB), we have used the random thresholding for the
seven different maps (CIELAB + PCA + SAM-SID).

3.4 | Validation

Once a model detects the main salient regions in an image, it
is necessary to validate its performance over ground-truth
data. There are several metrics commonly used in this field
and standardized so different models can be compared,
although consistent results cannot always be obtained.34

Depending on the application and the kind of data used for
validation, some metrics can be more appropriate than
others. We decided to use the following three metrics for our
experiment:

1. Area under curve (AUC): this is computed from the receiv-
ing operator characteristic curve. For different values of
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threshold in the saliency map produced by the model, true
positives and false positives are computed by using the
ground-truth data. Two main implementations of the AUC
metrics are used: AUC-Borji35 and AUC-Judd.18 Another
version of this metric was created in order to compensate
the well-known center bias, the shuffled AUC,24 which
was the one we used to validate our data. The main draw-
back of the AUC metric is that low-valued false positives
are not penalized.36 This means that, if the saliency map is
predicting objects as salient that are not truly salient
according to the ground truth, it could still reach high
values of AUC. In other words, diffuse saliency maps in
which many areas are highlighted with not very extreme
values of saliency are not considered poor quality.

2. Normalized scan-path saliency (NSS): This is computed
as the averaged normalized saliency at the ground-truth
location. Chance level is assigned a zero value, and a
positive value would mean any value above the chance
results. This method solves the issue of not penalizing
low-valued false positives by assigning the highest score
to a map that would detect all the pixels in the ground-
truth salient regions as salient and would have zero
values in all the other pixels in the image.37

3. Information gain (IG): This is a metric designed to compare
two saliency maps taking into account the similarity of the
probabilistic distribution with the ground-truth data.38

Therefore, this metric is well suited for direct comparison
between two different saliency methods, computing the
gain or loss in information with respect to the ground-truth
data for the twomaps that are compared.

Although there are many more different metrics for
saliency benchmarking, most of them can be highly corre-
lated with one of the three metrics that we have chosen;
these three metrics are good representatives of different strat-
egies in the definition of the quality of saliency prediction.

4 | RESULTS

As we explained in the previous section, for each of the nine
multispectral images, we calculated their saliency maps
predicted by the five different models when using both the
original features and the spectral ones. An example of these
saliency maps can be seen in Figure 4.

For each of the saliency maps, the scores of the three dif-
ferent metrics described in Section 3.4 were calculated.

FIGURE 3 RGB scene and
corresponding feature images fed as
input to the visual attention model
tested

FIGURE 4 Illustration of the work flow of our experiment. The procedure is repeated for each of the models tested

MARTÍNEZ ET AL. 881



Table 1 shows the average and SD over the nine images for
each of the models using both original and spectral features
and each of the metrics and also the relative difference
between both inputs' scores. In the case of AUC and NSS,
the difference between the original and the spectral features
is shown, meaning a positive, better score of the spectral fea-
tures. The relative gain for the use of spectral features with
respect to RGB features is also shown in the table. In the
case of IG, as it already compares the two maps, only the
average over the images is shown; a positive result shows
better accuracy of the spectral features over the original
RGB-based features.

Analyzing the results in Table 1, we can observe some dif-
ferences between the different models and also between the dif-
ferent metrics. We can see how both ITTI and GBVS models
have one of the highest scores in AUC, whilst the NSS score
found is below the average across the models. One of the rea-
sons of this noticeable difference between AUC and NSS in the
ITTI and GBVS models might be the large amount of high
(or salient) values in the maps; having many false positives is
penalized by NSS but not by AUC. Now looking at the RARE
results, this is the model scoring the highest in AUC and second
highest in NSS. We can appreciate in Figure 5 how the
resulting maps tend to contain high values in the salient object
regions and generally low values for nonsalient regions. The
BMS and LDSmodels are among the worst performing overall,
having relatively low AUC and NSS scores both for RGB and
multispectral images.

Now, we analyze the models' performance when we use
the spectral features as input, which is the main aim of
our experiment. Except for the RARE model in the IG met-
ric, we have found that there is an improvement in the
models' performance when used with spectral features. This
improvement is much more apparent for the NSS and IG

metrics than for the AUC metric. For the Itti and GBVS
models, there is a clear improvement in NSS values, which
reach a level comparable to other models for the spectral fea-
tures, while the performance is much poorer if we use the
RGB image as input. For the RARE model, we can see the
least improvement in AUC, the second smallest in NSS, and
even a decrease in the accuracy in IG.

The RARE model looks for rarity instead of center-
surround difference for computing the saliency map, so its
strategy is markedly different from the first two models
analyzed. The model is already performing quite well (com-
pared with the others) when using the RGB image as input,
and the adaptations we have introduced might not be able
to add enough value to the spectral features. Regarding
BMS and LDS, the accuracy of both increases when spec-
tral information is used: around 0.6 in NSS and 0.5 in IG,
with BMS reaching the highest IG score. This considerable
improvement in performance might be due to a more suc-
cessful adaptation strategy when introducing the spectral
features. The average relative gain for all five models is
9.2% for AUC and 61.2% for NSS. Finding the precise fac-
tors that result in the observed improvement when using
multispectral scenes as input for the VAMs tested is not a
straightforward task. One factor is related to the new fea-
tures introduced (PCA and SAM-SID), which in some
instances clearly highlight the salient objects, as can be seen
in Figure 3 and also in Figure 6. The remaining factors are
linked to the specific way each model uses the input fea-
tures to extract the saliency maps, and a detailed discussion
would be excessively long considering the number and
diversity of the models presented here and the fact that, for
some of them, it is not easy to analyze each step sequen-
tially and its relationship with the final saliency map deliv-
ered by the model.

TABLE 1 Average and SDs over the nine images for (rows) each model using both original and spectral features and (columns) each of the
metrics

AUC
Relative AUC
variation (%) NSS

Relative NSS
variation (%) IG

GBVS RGB 0.792 (0.114) 9.7 1.176 (0.440) 93.2 0.526 (0.547)

Hype 0.868 (0.064) 2.272 (1.348)

ITTI RGB 0.843 (0.080) 6.7 1.359 (0.535) 62.4 0.480 (0.441)

Hype 0.904 (0.064) 2.356 (1.147)

BMS RGB 0.631 (0.125) 20.6 1.093 (0.809) 70.4 0.551 (1.143)

Hype 0.761 (0.128) 1.861 (1.237)

LDS RGB 0.569 (0.144) 7.0 0.763 (0.604) 70.6 0.465 (0.230)

Hype 0.609 (0.087) 1.302 (0.714)

RARE RGB 0.895 (0.087) 2.1 2.121 (1.081) 9.4 −0.053 (0.333)

Hype 0.914 (0.049) 2.320 (1.007)

Abbreviations: AUC, area under curve; BMS, Boolean map saliency; GBVS, graph-based visual saliency; IG, information gain; ITTI, XXX; LDS, learning
discriminative subspace; NSS, normalized scan-path saliency; RARE, rare; RGB, Red, Green, Blue.
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5 | CONCLUSIONS AND
FUTURE WORK

We have used AUC, NSS, and IG metrics to assess the perfor-
mance of five well-known VAMs with multispectral and con-
ventional RGB color images. Our results suggest that the
saliency maps produced by using the multispectral features are

closer to the ground-truth data. The higher gain for NSS is quite
significant as this metric has advantages over AUC. In fact,
NSS will be adopted as the gold standard quite soon in the
VAM as the most popular benchmark.39

Saliency prediction performance has improved dramatically
during the last 3 years after the outbreaks of the deep learning
algorithms. Our promising results demonstrate the fact that a

FIGURE 5 An example of the saliency maps for each model using both original and spectral features of different images; ground truth (GT) is
also shown for comparison

FIGURE 6 An example of one of the images (original RGB), with its segmentation ground truth and its feature images corresponding to
principal components 2 and 3 (principal component analysis 2 and 3), and spectral angle mapper-spectral information divergence
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CNN-based model, adequately trained using our specific spec-
tral features, will improve the detection of the salient regions. A
potential CNN-based spectral saliency detection method will
carry out a prediction of the salient regions, analyzing in parallel
all the spectral bands of an input image. This higher amount of
information compared to RGB images will allow the Con-
volutional Neural Networks (CNNs) to find more complex fea-
tures to detect saliency. Typically, we would need over 1000
images to obtain a decent accuracy in image classification on the
cross-validation set (or even more if a transfer learning on an
already trained model is not used). However, in the absence of
such a number of multispectral images adapted for a saliency
task, it would be difficult to hazard even a guess regarding the
final spectral performance. After the results found in this study, a
newmultispectral image database is being built, together with its
ground-truth data. It is a matter for further studies to implement a
CNN-based spectral saliencymodel, adequately trained with this
labeled multispectral image dataset.
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