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Abstract

In this article, we present an investigation of possible improvement of the colour constant reflectance features that
can be obtained from daylight illuminated scenes using pixel-level colour constancy algorithms (model-based
algorithm: S Ratnasingam, S Collins, J. Opt. Soc. Am. A 27, 286–294 (2010) and Projection-based algorithm: GD
Finlayson, MS Drew, IEEE ICCV, 2001, pp. 473–480). Based on the investigation we describe a method to improve
the performance of the colour constancy algorithms using the correlation between the correlated colour
temperature of measured daylight with the solar elevation and phase of the day (morning, midday and evening).
From this observation, the data from 1 year are used to create a solar elevation and phase of day-dependant
method of interpreting the information obtained the colour constancy algorithms. Test results show that using the
proposed method with 40-dB signal-to-noise ratio the performance of the projection-based algorithm and model-
based algorithm can be improved on average by 33.7 and 45.4%, respectively. More importantly, a larger
improvement (85.9 and 113.7%) was obtained during the middle period of each day which is defined as when the
solar elevation is larger than 20°.
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1. Introduction
Colour is a useful feature in several machine vision appli-
cations including object recognition and image indexing.
However, the apparent colour of an object varies depen-
ding on the viewing environment, particularly in scenes
illuminated by daylight. Colour-based recognition in na-
turally illuminated scenes is therefore a difficult problem
and existing techniques are not effective in real scenes
[1-6]. The problems with obtaining colour information
from naturally illuminated outdoor scenes arise from the
uncontrolled changes to both the intensity and the spec-
tral power distribution of daylight. The resulting variations
in the recorded colour of the same object under different
daylight conditions make it difficult to use colour as a
reliable source of information in machine vision applica-
tions [3-6].
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In contrast to camera-based systems, the human visual
system’s perception of the colour of an object is largely
independent of the illuminant. Several approaches to
replicating the colour constancy achieved by the human
visual system have been proposed [6]. However, many of
these algorithms assume that scene is illuminated uni-
formly and shadows mean that this assumption is not
always valid for outdoor scenes. The assumption that a
scene is uniformly illuminated is avoided by those colour
constancy algorithms that only use pixel-level informa-
tion. Marchant and Onyango [7], Finlayson and Hordley
[8] and Romero et al. [9] have all proposed methods for
obtaining a single illuminant invariant feature from pixel
data under daylight based on the assumptions that the
spectral responses of the sensors are infinitely narrow
and that the power spectral density of the illuminant can
be approximated by the power spectral density of a
blackbody illuminant. However, a single feature poten-
tially leads to confusion between some perceptually dif-
ferent colours [6]. This confusion can be avoided using
the method proposed by Finlayson and Drew [10] that
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obtains two illuminant independent features from the
responses of four sensors with different spectral res-
ponses. Based on the same assumptions of infinitely
narrow band sensors and the blackbody model of the
illuminant, Ratnasingam and Collins [11] proposed a sim-
ple method of obtaining two illuminant independent
features from the responses of four sensors. Since neither
of the assumptions upon which all these methods is
strictly applicable, Ratnasingam and Collins [11] also pro-
posed a method for determining the quality of the spectral
information that can be obtained from the features ob-
tained using these methods. One important conclusion
from their work was that pixel-level colour constancy
algorithms extract useful information from the responses
of sensors whose spectral response covers a wavelength
range of 80 nm or less [11]. Subsequently, Ratnasingam
et al. [12] investigated the possibility of optimising the
spectral responses of the image sensors to improve the
quality of the illuminant invariant features that can be
obtained from daylight illuminated scenes using pixel-
level colour constancy algorithms. The conclusion of this
study was that the widely available International Commis-
sion on Illumination (CIE) standard illuminants was not
representative enough to the actual daylight measure-
ments obtained under widely varying weather conditions
to be used to reliably optimise the spectral responses [12].
Studying the pattern of variation of the daylight spec-

tra would be very useful because daylight dominates in
the day time and some important machine vision appli-
cations, including remote sensing, controlling unmanned
vehicles and simultaneous localisation and mapping, are
based upon processing outdoor scenes. The variation in
spectral power distribution of the daylight due to the
variation in solar elevation, time of year and geographic
location leads to difficulties in reliably recognising ob-
jects or scenes. In this article, we investigate the advan-
tages of using solar elevation and phase of the day as
auxiliary information to enhance the performance of a
colour constancy algorithm. This auxiliary information
can be calculated if the time of day, date and the geo-
graphic location of the camera are known. However, it is
difficult to model such a relation with the artificial
illuminants. But, one could use the knowledge of
whether the scene is indoor or outdoor to account for
the illuminant in these scenarios. Based on this evidence
an approach for improving the performance of colour
constancy algorithms that can be obtained from daylight
illuminated scenes is proposed based upon the observed
variation of the correlated colour temperature (CCT) of
measured daylight with solar elevation and date. Here, it
is worth noting that in our investigation for possible
improvement of colour constancy algorithms we only use
the approximate geographic location (example country or
region) and phase of the day (i.e. morning, midday and
afternoon) as auxiliary information to the colour con-
stancy algorithms. The performance improvement ob-
tained using the proposed approach has been illustrated
using two existing colour constancy algorithms proposed
by Finlayson and Drew [10] and that proposed by
Ratnasingam and Collins [11]. Here, we should note that
the algorithms chosen to investigate the performance
enhancement of colour constancy using solar elevation
and date, do not rely on the content of the rest of the
scene in extracting the illuminant invariant features. This
choice was made because outdoor scene might consist of
regions illuminated by direct sunlight or skylight or under
shadow and the power spectrum of the incident light in
these regions will not be the same [13]. This means in the
outdoor scenes where the intensity and the relative power
spectrum vary spatially, the performance of any algorithm
that processes the entire scene to obtain an estimate for
the illuminant, significantly degrades in any real-world
scenes therefore not appropriate for machine vision appli-
cations. For this reason, we have chosen two algorithms
that extract illuminant invariant features at pixel level
rather than processing the whole scene.
The remainder of this article is organised as follows:

In Section 2, a brief description of the algorithm of
obtaining useful features related to the reflectance of
a surface proposed by Finlayson and Drew [10] and
Ratnasingam and Collins [11] is presented. In Section 3,
a description of the proposed method for improving the
degree of illuminant invariance obtained from the fea-
tures determined using the two different methods is
given. Simulation results to assess the effectiveness of
the proposed method are then presented in Section 4.
Finally, Section 5 contains the conclusions of this study.

2. Descriptions of the algorithms and assessment
method
When the incident light Ex(λ) reflects on an object’s
surface at point x with reflectance spectrum Sx(λ) the
image sensor response Rx,E can be given by

Rx;E ¼ i x�:j
x
�I

x
Z

ω

S x λð ÞE x λð ÞF λð Þdλ ð1Þ

where F(λ) is the spectral sensitivity of the image sensor
and Ix is the intensity of the incident light at scene point
x. The unit vectors i x� and j x� denote the directions of
the illuminant and the surface normal, respectively. The
dot product between these two unit vectors i x�:j

x
� repre-

sents the scene geometry. Equation (1) can be simplified
by assuming that the image sensor samples the scene at
a single wavelength, i.e. the sensitivity of the image
sensor can be approximated by Dirac delta function.
Applying the sifting property of the Dirac delta function
simplifies Equation (1) as follows:
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Rx;E ¼ i x�:j
x
�I

xS x λið ÞE x λið Þ ð2Þ

To make the product of terms on the right-hand side
of Equation (2) into simple summation, we take natural
logarithm to both sides of Equation [10,11].

log Rx;E
� � ¼ log GxI xf g þ log E x λið Þf g þ log S x λið Þf g; ð3Þ

where Gx(=ix.jx) is the geometry factor. On the right-
hand side of the above equation, the first term (GxIx)
depends on the geometry of the scene and illuminant
intensity. The second term (Ex(λi)) depends only on the
relative power spectrum of the illuminant and the third
term (Sx(λi)) depends only on the reflectance of the
object’s surface. From this one can understand that for
obtaining scene independent perceptual descriptors we
need to remove the first two components. Moreover, the
first term can be removed by taking the difference
between two image sensor responses that have different
spectral sensitivities. Once the scene geometry compo-
nent and intensity components have been removed the
only scene dependent term is the power spectrum of the
illuminant. This could be removed by assuming a para-
metric model for the illuminant power spectrum. Based
on this, Finlayson and Drew [10] proposed an algorithm
for colour constancy based on the assumptions that the
spectral power distribution of the illuminant can be
modelled by Wien’s radiation law. To remove the changes
in the power spectral density of the illuminant from
the log-difference features, Finlayson and Drew used
eigen vector decomposition and projected the three log-
difference features in the direction of largest eigen vector.
This resulted in a two-dimensional space where a reflec-
tance can be located approximately invariant to illumi-
nant. To find the relevant eigen vectors, Finlayson and
Drew used 18 non-grey patches of the Macbeth Colour
Checker chart and blackbody illuminants with colour
temperatures between 5,500 and 10,500 K. As the black-
body model of illuminant is not the most appropriate
model for real-world illuminants we adapted Finlayson
and Drew’s algorithm to improve in such a way that we
used the CIE standard [14] representing the daylight at
different phase of the day and the standard Munsell
reflectance data base [15] for obtaining more realistic
estimation of the direction of illuminant induced variation.
In the remainder of the article, we refer to this adapted
version of the algorithm as the projection algorithm. Once
we have estimated the more realistic direction of illumi-
nant-induced variation using eigen vector decomposition
we projected the logarithm difference features in that
direction and obtained two features that are invariant to
illuminant, and scene geometry. The two illuminant
invariant features (F1

Proj and F2
Proj) from the projection-

based algorithm were obtained as follows:
FProj
1 ¼ LogDiff ; Eig1 ð4Þ

FProj
2 ¼ LogDiff ; Eig2 ð5Þ

where LogDiff = [log (R2) − log (R1), log (R3) − log (R1), log
(R4) − log (R1)] and 〈 〉 means scalar product. The quan-
tities R1, R2, R3 and R4 are the sensor responses numbered
from the shortest wavelength end of the spectrum and
Eig1 and Eig2 are the two smallest eigen vectors obtained
from the eigen vector decomposition applied on the
normalised sensor responses.
The other algorithm that we investigated is the rela-

tively simple algorithm proposed by Ratnasingam and
Collins [11]. This algorithm is also based on the black-
body illuminant model and infinitely narrow band sensor
assumptions in deriving two illuminant invariant reflec-
tance features from four sensor responses (referred to in
this article as the model-based algorithm). As opposed
to Finlayson and Drew’s [10] algorithm, Ratnasingam
and Collins’ [11] algorithm processes three adjacent sen-
sor responses to obtain an illuminant invariant feature.
In particular, if we number the image sensor responses
as R1, R2, R3 and R4, the model-based algorithm esti-
mates an illuminant invariant reflectance feature by esti-
mating the illuminant effect on the sensor response R2

using the sensor responses R1 and R3. Similarly, a second
illuminant invariant reflectance feature is extracted by
estimating the illuminant effect on the sensor response
R3 using the sensor responses R2 and R4. The two illu-
minant invariant reflectance features (F1

Model and F2
Model)

are obtained as follows:

FModel
1 ¼ log R2ð Þ � αlog R1ð Þ þ 1� αð Þlog R3ð Þf g ð6Þ

FModel
2 ¼ log R3ð Þ � γlog R2ð Þ þ 1� γð Þlog R4ð Þf g ð7Þ

where α and γ are two parameters referred to as channel
coefficients. If λ1, λ2, λ3 and λ4 are the peak wavelengths
of the four image sensors the two features are ideally
independent of the illuminant if the two channel coeffi-
cients are chosen so that the following two equations are
satisfied [11].

1
λ2

¼ α

λ1
þ 1� α

λ3
ð8Þ

1
λ3

¼ γ

λ2
þ 1� γ

λ4
ð9Þ

A typical feature space formed by the model-based
algorithm is shown in Figure 1. In this figure, the simu-
lated responses of the four Gaussian sensors listed in
Table 1 to 202 Munsell reflectance spectra [15], illumi-
nated by CIE standard daylight [14] with a CCT 6500 K
are projected into the feature space. The sensor peak
positions were chosen to spread the spectral responses
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Figure 1 Illuminant independent feature space formed by
model-based algorithm using 202 Munsell samples and the CIE
D65 illuminant.

Table 2 The wavelengths corresponding to the peak
sensor responses and FWHM of the spectral responses of
sensors with Gaussian spectral responses used to
investigate the projection-based algorithm

Sensor ID 1 2 3 4

Peak position (nm) 437.5 512.5 587.5 662.5

Spectral width (nm) (FWHM) 80.0 80.0 80.0 80.0

Eigen vector 1 0.0977 0.366 –0.925

Eigen vector 2 0.647 –0.729 –0.220

The table also contains the eigen vectors used to calculate the illuminant
invariant features from the normalised logarithmic responses (normalised by
shortest wavelength sensor response) in projection algorithm.
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of the four image sensors evenly across the visible
spectrum, 400–700 nm, and the spectral full width at half
maximum of 80 nm was chosen to have approximately
the same width as consumer cameras (Sony DXC930).
The channel coefficients (α and γ) were obtained by the
optimisation process described by Ratnasingam et al. [12].
The channel coefficients listed in Table 1 are the optimum
values that give the best illuminant invariant reflectance
features. The two eigen vectors listed in Table 2 are the
two smallest vectors obtained by applying eigen vector
decomposition on the logarithm difference of the sensor
responses generated by the 100 pairs of Munsell samples
(1 CIELab unit pair wise distance) when illuminated by
the 20 spectra of CIE standard illuminants.
The results in Figure 1 show that, except for a region

of metamers (metamers for F1
Model and F2

Model space),
different colours are projected to different parts of this
feature space. Previously, the results obtained from the
same Munsell reflectances when illuminated by CIE
standard daylight with different CCTs showed that a
residual illuminant dependency causes small variations
in the projected position of each reflectance sample in
the feature space [11].
Table 1 The wavelengths corresponding to the peak
sensor responses and full width half maximum (FWHM)
of the spectral responses of sensors with Gaussian
spectral responses used to investigate both the
model-based and projection-based algorithms

Sensor ID 1 2 3 4

Peak position (nm) 437.5 512.5 587.5 662.5

Spectral width (nm) (FWHM) 80.0 80.0 80.0 80.0

Channel coefficient α = 0.4268, β = 0.4362

The table also contains the channel coefficients for the model-based algorithm [11].
As the model-based and projection-based algorithms
extract features that are independent of the lightness
component of a colour, the performance of these two
algorithms have been investigated using three sets of 100
pairs of reflectances chosen from normalised Munsell
reflectance spectra [12]. As described by Ratnasingam
et al. [12], each of these three test reflectance sets has
100 pairs of reflectances with pair wise distances of
either 0.975 to 1.025 CIELab units, 2.99 to 3.01 CIELab
units or 5.995 to 6.005 CIELab units, respectively. These
three sets were chosen based on the colourimetric
description of the CIELab space. In the CIELab space,
colours separated by less than 1 unit are described as
not perceptibly different, 1–3 units are as very good
match to each other and 3–6 units as a good match for
an average person [16]. These colourimetric descriptions
have widely been used by researchers in colourimetric
experiments [16-18]. Even though differences of 1 CIELab
unit are described as not perceptible by an average human
observer [18] we have included this data in the test set to
investigate if the proposed algorithm is better than the
human visual system in recognising perceptually similar
colours. In fact our results show that the algorithm can
differentiate more than 25% of the pairs of ‘colours’ that
are described as not perceptibly different to an average
human.
To investigate both the algorithms in more realistic

circumstances the sensor noise was modelled as described
by Ratnasingam and Collins [11]. Particularly, 30 and 40
dB signal-to-noise ratio (SNR) was considered in this
investigation and the resultant responses were quantised
with a 10-bit quantiser [12]. The features extracted from
the simulated noisy sensor responses to a particular
reflectance spectrum when it is illuminated by daylight
spectra with different CCTs form a cluster of points in the
two-dimensional feature spaces. These clusters arise be-
cause of a combination of the differences between the
power spectral densities of daylight and those of black-
bodies, finite spectral sensor width and the noisy sensor
responses. To investigate the relative significance of these
two factors, the features extracted from 1,269 Munsell
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samples were compared. When ‘illuminated’ by 20 CIE
daylight spectra all the colours exhibited a behaviour simi-
lar to the behaviour shown by the five representative
Munsell reflectances (Munsell samples: 2.5R 9/2, 5YR
6/10, 10Y 9/10, 5 PB 2.5/1 and 10P 4/1) shown in Figure 2.
In particular, it was found that on average when the SNR
is 40 dB the variation caused by the residual illuminant
dependence is three times larger in a particular direction
(see Figure 2b) compared to the variations caused by the
sensor noise. More importantly, the residual illuminant
dependency causes variation mainly in one direction and
the sensor noise shows a Gaussian distribution. This
observation suggests that if any information related to the
probable illuminant spectrum is available then it might be
possible to improve the interpretation of the features
obtained from a pixel-level colour constancy algorithm.
3. Proposed approach for improving colour
constancy
The Sun is the dominant natural light source during the
day. The power spectral density of the sunlight above
the Earth’s atmosphere can be approximated by the spec-
trum of a blackbody. However, this is only an approxima-
tion and the spectral peak wavelength, 475 nm, is the
same as the peak wavelength for a blackbody with colour
temperature 6,101 K, whilst taking into account the entire
spectrum the CCT is 5750 K [19]. To reach the Earth’s
surface this light must travel through the atmosphere
where it is both scattered and absorbed. The path length
of the light from the edge of the atmosphere to the Earth’s
surface depends upon the angle of elevation between the
horizon and the Sun’s position in the sky. As a result the
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CCT of the daylight reaching the surface of the Earth is
expected to depend upon the solar elevation.
The relationship between the CCT of measured day-

light spectra and either the solar elevation or the time of
day has been investigated using daylight spectra mea-
sured over a 2-year period (1996 and 1997) in Granada,
Spain [20]. Over the 2-year period, 2,600 daylight spectra
were measured at approximately hourly intervals and
the time at which each spectrum was measured was
recorded using GMT. In particular, these spectral
measurements were taken in different seasons, different
weather conditions and also under direct sunlight,
skylight and with the Sun behind clouds. Figure 3 shows
the mean variation and standard deviation of CCT of
measured daylight with elevation. These results show
that the CCT of the daylight is approximately 5,750 K
during the middle of the day and during this period the
standard deviation of the CCT values is relatively low. In
contrast, just after sunrise and just before sunset the mean
value of CCT of the daylight increases and the standard
deviation also increases (see Figure 3). The important ob-
servation from the data in Figure 3 is that using solar
elevation information to influence the interpretation of
the outputs from colour constancy algorithms might im-
prove the results obtained. The solar elevation can be cal-
culated from the location of a camera and the time of the
day [21].
The path length of the light through the atmosphere is

only one of the factors that determine the amount of
scattering and absorption that will occur at a particular
moment. Moreover, the amount of absorption and scat-
tering per unit length along this path will depend upon
atmospheric conditions. These atmospheric conditions
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will vary during each day and between days. However,
seasonal weather patterns will mean that conditions on
days within the same season will be more similar than
between days in different seasons. Effects such as typical
weather patterns and the interaction between the sun-
light and the atmosphere mean that although the CCT
of the daylight will primarily depend upon the solar
elevation, it may also depend upon the time of year.
In this study, the amount of available data means that

it has been possible to split data into different number
of periods of the year (2 to 12) to find the optimum
number of periods. From Figure 3, it can be seen that
the CCT shows an increasing trend with low values of
solar elevation. Since low solar elevations occur at the
beginning and end of each day, this observation initially
suggested that the data from mornings and evenings
should be treated in the same way. However, an inves-
tigation of the 2,600 measured illuminant spectra at
different times of day (morning and afternoon), such as
the pair shown in Figure 4, suggested that even when
the daylight spectra in the morning and evening have
similar values of CCT the actual spectra are subtly dif-
ferent. Although these subtle variations are not captured
by the CCT of each spectrum they suggested that the
results obtained using solar elevation alone should be
compared to results obtained using solar elevation but
distinguishing between the morning and the evening.
This comparison showed that distinguishing between
these two parts of the day lead to a 22.8% improvement
compared to the results obtained using solar elevation
alone. For the results presented in this article, each day
has therefore been split into three phases that will be
referred to as just after sunrise (morning), in the middle
of the day (midday) and just before sunset (evening) and
the times corresponding to the periods of the year.
However, daylight spectra measured at different times
and locations suggest that the power spectral variation
with time and solar elevation follows a general pattern
regardless of the location [20]. Therefore, the approach
we present in this article can be applied to any location
in the world with the local time information.

4. Results and discussion
4.1. Fitting the Mahalanobis distance boundary
Ratnasingam and Collins [11] have suggested that the
relative quality of the spectral information that can be
obtained from feature spaces can be determined by using
the clusters of responses from two reflectance spectra to
determine decision boundaries for distinguishing bet-
ween the two spectra and then determining the per-
centage of feature points that fall within the correct
boundary. The cluster of points in a two-dimensional
feature space for two particular reflectance spectra
shown Figure 5 is typical of the clusters of responses
that have been obtained from many reflectance spectra.
Since the typical cluster of points is not circular the
distribution of points has been characterised using a
Mahalanobis distance. For a multivariable normal distri-
bution, the Mahalanobis distance between the centre of
the distribution C and a point P is defined as follows:

D2
M ¼ P � Cð Þ0Σ�1 P � Cð Þ; ð10Þ

where Σ is the covariance matrix of the distribution.
The first step in determining the boundaries for a par-

ticular pair of reflectances is to find the centre of each
cluster of responses using the average position of all the
responses in the cluster. The Mahalanobis distances (Dm1 is
the Mahalanobis distance from cluster centre 1 and Dm2 is
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the Mahalanobis distance from cluster centre 2) that go
through the midpoint (P) of the line connecting the two
mean points (C1 and C2) of the pairs of clusters were then
calculated.

D2
m1 ¼ P � C1ð Þ0Σ1

�1 P � C1ð Þ ð11Þ

D2
m2 ¼ P � C2ð Þ0Σ2

�1 P � C2ð Þ; ð12Þ

where Σ1
−1 and Σ2

−1 are the inverse covariance matrices of
the clusters 1 and 2, respectively. The boundaries obtained
using Dm1 and Dm2 as the distances from the relevant clus-
ter centre lead to overlap of some of the cluster boundaries
(shown in Figure 5a). To find the boundaries that just touch
each other (referred to as the touching boundaries), the
points on a boundary at a Mahalanobis distance slightly
smaller than Dm1 and Dm2 from the respective cluster
centres were then calculated for both pairs of reflectances.
Previously, Ratnasingam and Collins [11] have determined
the touching boundaries by gradually increasing the
Mahalanobis distances between the boundaries and the
centres until the boundaries touched (shown in Figure 5b).
This process maximises the number of responses that are
correctly classified; however, it is time consuming. To
make the process of finding the Mahalanobis distance
boundary simpler and to avoid any overlap, boundaries
were drawn with the Mahalanobis distance of 90% of the
distance Dm1 and Dm2 (shown in Figure 5c). Results such
as the typical results shown in Figure 5 show that the
boundaries drawn with 90% of Dm1 and Dm2 do not over-
lap but will slightly underestimate the ability to correctly
identify the source of a feature point generated using
either the model-based or projection-based algorithms.
Slightly underestimating the identification performance is
acceptable compared to overestimating the performance
of an algorithm.

4.2. Selecting the boundary parameters based on the
phase of a day
The possible benefits of employing the phase of the day
in conjunction with date information when identifying
the possible source of a set of features obtained using a
pixel-level colour constancy algorithm have been assessed
using the measured daylight spectra [20]. In particular, the
daylight spectra measured in the year of 1996 (daylight
spectra set 1) were used to determine the 90% of Dm1 and
Dm2 boundaries for 100 pairs of reflectances. The daylight
spectra measured in the year of 1997 (daylight spectra
set 2) was then used to generate the simulated sensor
responses from which features were obtained. The per-
centage of the feature points that fell within the correct
boundary was then determined for each of the 100 pairs
of reflectances in the test dataset.
The features obtained from two Munsell reflectance

samples (Munsell samples: 2.5R 9/2 and 5Y 7/1) that are
separated by 6 units in CIELab space when illuminated
by 146 daylight spectra (measured in the first day of
every month in 1996) are shown in Figure 6. This figure
also shows a Mahalanobis distance boundary around the
different features obtained for each Munsell sample.
Figure 7 shows the same Munsell pair (Munsell samples:
2.5R 9/2 and 5Y 7/1) projected on to the feature space
when illuminated by daylight measured just after sunrise
(solar elevation less than 20°), in the middle of the
day (solar elevation greater than 20°) and just before
sunset (solar elevation less than 20°). The respective
Mahalanobis distance boundaries are also shown in
Figure 7. By comparing Figures 6 and 7, it can be seen that



Figure 6 Typical feature space formed by the model-based
algorithm when illuminating a pair of Munsell samples
(Munsell samples: 2.5R 9/2 and 5Y 7/1) by daylight spectra
measured between 5.00 and 20.00 GMT (daylight set 1). A
Mahalanobis distance boundary is drawn for each Munsell sample
(shown in thick solid black line). A cross and a small circle show the
feature obtained using model-based algorithm by illuminating the
Munsell samples: 2.5R 9/2 and 5Y 7/1 illuminated by one of the CIE
standard illuminant, respectively.
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taking the phase of the day into account has made the
cluster of features obtained from each Munsell colour
smaller, particularly in the middle of the day (elevation
larger than 20°). A small cluster size means that a larger
number of perceptually similar reflectances could be iden-
tified. This suggests that incorporating the phase of the
day with quarter of the year (season) information into
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Figure 7 Typical feature space formed by the model-based algorithm
samples: 2.5R 9/2 and 5Y 7/1) as used in Figure 7a by daylight spectr
the morning, (b) solar elevation greater than or equal to 20° during m
Mahalanobis distance boundary is drawn for each Munsell sample (shown
obtained using model-based algorithm by illuminating the Munsell sample
illuminant, respectively.
account to determine the boundary settings in the feature
space obtained from either the model-based or the
projection-based algorithms could improve the ability to
distinguish similar or very similar colours. However, close
investigation of Figure 7 shows that in the spaces shown
in Figure 7a,c the mean positions of the clusters have
shifted to the lower right-hand side and the cluster size is
relatively large compared to Figure 7b. The reason could
be that at midday direct sunlight dominates and the vari-
ation in CCT during midday is small (shown in Figure 3).
The reason for the larger cluster sizes in the periods just
after sunrise and just before sunset compared to the mid-
dle of the day is the larger variations in CCT just after
sunrise and just before sunset for smaller elevation of the
Sun (shown in Figure 3). Comparing the typical bounda-
ries shown in Figure 7a,c it can be seen that the bounda-
ries of this typical pair do not appear to significantly be
different between morning and evening. However, com-
pared to using the same boundaries for morning and
evening a significant performance improvement (22.8%)
was obtained using two different boundaries for morning
and evening.
It is possible to switch the boundaries between just

after sunrise, the middle of day and just before sunset at
different threshold values for the solar elevation. To
investigate the impact of the solar elevation threshold,
when switching the boundary between different phases
of day, we varied the elevation threshold and tested the
performance of the proposed approach for recognition
of perceptually similar colours. In particular, we varied
the threshold between 0 and 35°. In this investigation, we
used the 3-CIELab units Munsell test set and the mea-
sured daylight spectra (set 1). The projection algorithm
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when illuminating the same pair of Munsell samples (Munsell
a measured when the smaller elevation was (a) less than 20° in
idday and (c) solar elevation less than 20° in the evening. A
in thick solid black line). A cross and a small circle show the feature
s 2.5R 9/2 and 5Y 7/1 illuminated by one of the CIE standard
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Figure 9 Test results when varying the number of periods in a
year to find the boundary settings.
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was used to extract features from the simulated noisy sen-
sor responses to the pairs of reflectances in the Munsell
test reflectance datasets when illuminating with measured
daylight spectra. The Mahalanobis distance boundary
was then determined for both members of each pair of
Munsell colours. The percentage of points from the test
data that fell inside the correct Mahalanobis distance
boundary in the pair was then counted. This test was
carried out on all the 100 pairs in a test reflectance set
and the percentage of correctly classified points was calcu-
lated. The results are shown in Figure 8. From these
results it can be seen that switching the boundaries when
the solar elevation is at 20° gives the best performance.
Therefore, we used 20° as the threshold for solar elevation
for switching the boundary settings in a day in the rest of
the results presented in this article.
Another factor that affects the results obtained is the

number of periods (with equal time length) in a year. To
find the optimum number of periods in a year we varied
the number of periods from 12 (each month starting
from January) to 2 (every 6 months) without considering
the seasons. These results are shown by filled square in
Figure 9. When dividing the year into four we also
divided the boundaries considering the months in the
four seasons and the result is shown by star. From these
results it can be seen that dividing the year into four
equal periods by considering the seasonal information
(here, quarter 1 consists of months 12, 1 and 2; quarter
2 consists of months 3, 4 and 5; quarter 3 consists of
months 6, 7 and 8; quarter 4 consists of months 9, 10
and 11) results the best performance. This was done
based on the seasonal information in Granada, Spain. It
is therefore very unlikely that this same division of the
year be the best method of grouping days elsewhere in
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Figure 8 Test results when varying the threshold of the solar
elevation in the steps of 5° between 0 and 35°. In this figure,
y-axis shows the performance improvement of the projection-based
algorithm obtained by incorporating the auxiliary information
(solar elevation, phase of day and time of year).
the world. However, our results suggest that it will be
sensible to take into account information about regional
annual weather patterns.
Based on the above investigation a solar elevation of

20° has been used to separate each day into three parts.
In addition, days have been grouped into four quarters,
in which quarter 1 consists of months 12, 1 and 2; quarter
2 consists of months 3, 4 and 5; quarter 3 consists of
months 6, 7 and 8; quarter 4 consists of months 9, 10 and
11. In the rest of the article, we will use these four quarters
to determine the boundary settings. A Mahalanobis dis-
tance boundary for each pair of test reflectances was then
obtained for each of these set of illuminants. Subse-
quently, the phase of the day and the date that a measured
daylight spectrum was obtained in the second year was
used to determine the appropriate set of classification
boundaries from the 12 available sets of boundaries. The
impact of this method of adapting the Mahalanobis dis-
tance boundaries was investigated with features obtained
using both the model-based and projection-based algo-
rithms (parameters listed in Tables 1 and 2).

4.3. Results for 30-dB SNR
The variability in the features extracted using pixel-level
colour constancy algorithms depend upon both the CCT
of the illuminant and the sensors SNR. To investigate the
effect of different noise levels both the model-based and
projection-based algorithms were used to obtain features
from sensor responses with a 30-dB SNR. Figure 10 shows
a typical reflectance sample projected onto the feature
space when the SNR of both of the responses are 30 and
40 dB. It can be seen that when the noise level increases,
the variation in the extracted features also increases. This
must have an impact on the ability to distinguish between
reflectances.
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Figure 10 A typical Munsell reflectance projected on the feature space when illuminated with 20 spectra of daylight with sensor noise
of (a) 40 dB and (b) 30 dB. Each star shows the feature obtained with Munsell sample 2.5R 9/2 and the CIE standard daylight illuminant with
CCT 6,500 K.
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Table 3 shows the performance of the model-based and
projection-based algorithms when the SNR of the sensor
responses is 30 dB. The results obtained from the features
extracted with the two algorithms have been comparable
and it has been found that using phase of the day and quar-
ter of year information improves the results obtained in
most of the cases. However, the most important conclusion
from these results and the results shown in Table 4 confirm
that as expected the larger variability of the extracted
features caused by the increase in the amount of noise in
the data degrades the quality of information that can be
obtained from the features. Even when the phase of the day
Table 3 Performance of the model-based and projection-base
generated by 80-nm FWHM evenly spread sensors

Phase of day Solar
elevation

Projection-based algorithm

Without solar
elevation and
phase of day

With solar
elevation and
phase of day

Im

Quarter 1 Morning −10 to 20 13.9 12.4 −

Midday 20 to 90 17.4 20.0 +

Evening −10 to 20 12.0 11.9 −

Quarter 2 Morning −10 to 20 15.3 15.5 +

Midday 20 to 90 16.2 20.1 +

Evening −10 to 20 14.2 14.0 −

Quarter 3 Morning −10 to 20 13.8 14.1 +

Midday 20 to 90 15.8 20.1 +

Evening −10 to 20 14.3 15.0 +

Quarter 4 Morning −10 to 20 14.6 14.9 +

Midday 20 to 90 15.0 19.4 +

Evening −10 to 20 13.4 15.1 +

In this test, Munsell samples separated by 3-CIELab units and measured daylight sp
distributed hundred random numbers with a mean value of 1 and standard deviati
Mahalanobis distance boundary settings were applied in three phases of the day (m
and date information is used it is therefore important to
ensure that the SNR of the sensor responses is as high as
possible. We also applied our proposed approach on the
original Finlayson and Drew’s [10] algorithm and the test
results are given in Table 5. Comparing the column 4 of
Tables 3 and 5 it can be seen that our modified algorithm
(projection-based algorithm) gives significantly better per-
formance compared to that of the original Finlayson and
Drew’s [10] algorithm. Moreover, applying our proposed
approach of utilising the auxiliary information (phase of
day, time of year and solar elevation) results in significant
improvement (see column 6 of Table 5).
d algorithms when applying the sensor responses

Model-based algorithm

provement (%) Without solar
elevation and
phase of data

With solar
elevation and
phase of day

Improvement (%)

10.7 13.9 11.8 −15.1

14.9 17.1 20.1 +17.5

0.8 12.2 11.9 −2.4

1.3 15.5 15.8 +1.9

24.1 16.0 20.4 +27.5

1.4 13.9 14.0 +0.7

2.2 13.5 14.0 +3.7

27.2 15.7 20.4 +29.9

4.9 14.0 15.1 +7.8

2.1 14.4 14.7 +2.1

29.3 14.8 19.5 +31.8

12.7 13.3 15.3 +15.0

ectra were applied. The sensor responses were multiplied by normally
on 3% and the resulting linear responses were quantised to 10 bits. The
orning, midday and evening) with elevation threshold of 20°.



Table 4 Test results of the model-based and projection-based algorithms when applying the sensor responses
generated by 80-nm FWHM evenly spread sensors

Phase of day Solar
elevation

Projection-based algorithm Model-based algorithm

Without solar
elevation and
phase of day

With solar
elevation and
phase of day

Improvement (%) Without solar
elevation and
phase of day

With solar
elevation and
phase of day

Improvement (%)

Quarter 1 morning −10 to 20 35.2 23.6 −32.9 34.6 19.6 −43.3

midday 20 to 90 41.4 57.2 +38.2 37.8 57.6 +52.4

evening −10 to 20 27.5 25.4 −7.6 26.7 24.5 −8.2

Quarter 2 Morning −10 to 20 39.1 38.8 −0.8 38.5 39.5 +2.6

midday 20 to 90 36.7 57.7 +57.2 34.1 58.5 +71.5

evening −10 to 20 28.6 35.8 +25.2 26.3 35.5 +34.9

Quarter 3 Morning −10 to 20 29.0 34.2 +17.9 27.7 33.0 +19.1

midday 20 to 90 35.6 56.6 +59.0 32.5 57.7 +77.5

evening −10 to 20 32.0 44.6 +39.4 28.8 43.6 +51.4

Quarter 4 Morning −10 to 20 32.5 33.0 +1.5 31.1 32.2 +3.5

midday 20 to 90 30.2 51.2 +69.5 27.4 51.4 +87.6

evening −10 to 20 27.5 33.8 +22.9 24.8 32.6 +31.4

In this test, Munsell samples separated by 3-CIELab units and measured daylight spectra were applied. Each sensor response was multiplied by normally
distributed hundred random numbers with a mean value of 1 and standard deviation 1% and the resulting linear responses were quantised to 10 bits. The
Mahalanobis distance boundary settings were applied in three phases of the day (morning, midday and evening) with elevation threshold of 20°.
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4.4. Results for 40-dB SNR
The results obtained from the test Munsell test data for
40-dB SNR are given in Tables 4, 6 and 7. The first
conclusion from Tables 4, 6 and 7 is that the results
obtained using features extracted with the model-based
and projection-based algorithms are almost identical.
The second conclusion is that the percentage perfor-
mance improvement obtained when using the solar
elevation and phase of day information to determine the
Table 5 Performance of the original Finlayson and Drew’s [10
generated by 80-nm FWHM evenly spread sensors

Phase of day Solar elevation Projection

Without s
and phase

Quarter 1 Morning −10 to 20 2.9

Midday 20 to 90 3.4

Evening −10 to 20 2.5

Quarter 2 Morning −10 to 20 3.0

Midday 20 to 90 3.2

Evening −10 to 20 3.0

Quarter 3 Morning −10 to 20 3.0

Midday 20 to 90 3.0

Evening −10 to 20 2.9

Quarter 4 Morning −10 to 20 3.1

Midday 20 to 90 2.9

Evening −10 to 20 2.7

In this test, Munsell samples separated by 3-CIELab units and measured daylight sp
distributed hundred random numbers with a mean value of 1 and standard deviati
Mahalanobis distance boundary settings were applied in three phases of the day (m
appropriate decision boundaries show that this ancillary
information is helpful and has improved the performance
in most of the cases. In particular, using this ancillary
information reduces the quality of the results obtained in
only 14 of the 72 comparisons in these tables. All of these
14 cases occur, just after sunrise (morning) and just before
sunset (evening) when, as shown in Figure 3, significant
variations in CCT at smaller solar elevations occur. Since
the decision boundaries that are created without using
] algorithm when applying the sensor responses

-based algorithm

olar elevation
of day

With solar elevation
and phase of day

Improvement (%)

11.9 310

19.0 458

11.2 348

14.5 383

18.9 490

13.2 340

13.2 340

19.1 536

14.1 386

14.0 351

18.4 534

14.4 433

ectra were applied. The sensor responses were multiplied by normally
on 3% and the resulting linear responses were quantised to 10 bits. The
orning, midday and evening) with elevation threshold of 20°.



Table 6 Test results of the model-based and projection-based algorithms when applying the sensor responses
generated by 80-nm FWHM evenly spread sensors

Phase of day Solar
elevation

Projection-based algorithm Model-based algorithm

Without solar
elevation and
phase of day

With solar
elevation and
phase of day

Improvement (%) Without solar
elevation and
phase of day

With solar
elevation and
phase of day

Improvement (%)

Quarter 1 Morning −10 to 20 13.5 10.8 −20.0 12.5 8.2 −34.4

Midday 20 to 90 11.6 26.4 +128 9.3 25.8 +177

Evening −10 to 20 9.0 8.2 −8.9 8.2 7.3 −10.9

Quarter 2 Morning −10 to 20 13.8 13.3 −3.6 12.7 12.9 +1.6

Midday 20 to 90 9.0 26.5 +194 7.5 26.6 +255

Evening −10 to 20 7.6 13.4 +76.3 6.1 13.0 +113

Quarter 3 Morning −10 to 20 8.1 8.3 +2.5 7.2 7.5 +4.2

Midday 20 to 90 8.9 26.1 +193 7.2 26.1 +263

Evening −10 to 20 9.8 13.3 +35.7 7.6 11.5 +51.3

Quarter 4 Morning −10 to 20 10.4 10.8 +3.8 9.1 9.8 +7.7

Midday 20 to 90 7.2 23.4 +225 5.8 23.2 +300

Evening −10 to 20 7.1 9.0 +26.8 5.6 7.9 +41.0

In this test, Munsell samples separated by 1-CIELab units and measured daylight spectra were applied. Each sensor response was multiplied by normally
distributed hundred random numbers with a mean value of 1 and standard deviation 1% and the resulting linear responses were quantised to 10 bits. The
Mahalanobis distance boundary settings were applied in three phases of the day (morning, midday and evening) with elevation threshold of 20°.
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ancillary information cover a larger area of the feature
space this consequence of using the ancillary information
is not surprising. More importantly, the results in Tables 4,
6 and 7 show that the suggested method of using ancillary
information always improves our ability to distinguish
between perceptually similar reflectances during the mid-
dle period of each day. This combined with the fact that
the improvements in some cases are as large as 300%
Table 7 Performance of the model-based and projection-base
generated by 80-nm FWHM evenly spread sensors

Phase of day Solar
elevation

Projection-based algorithm

Without solar
elevation and
phase of day

With solar
elevation and
phase of day

Im

Quarter 1 Morning −10 to 20 57.6 48.6 −

Midday 20 to 90 75.8 86.0 +

Evening −10 to 20 50.8 51.0 +

Quarter 2 Morning −10 to 20 66.0 67.6 +

Midday 20 to 90 74.0 87.1 +

Evening −10 to 20 63.9 61.7 −

Quarter 3 Morning −10 to 20 64.7 68.1 +

Midday 20 to 90 73.5 86.9 +

Evening −10 to 20 64.1 74.3 +

Quarter 4 Morning −10 to 20 62.1 62.6 +

Midday 20 to 90 69.7 83.3 +

Evening −10 to 20 61.2 62.1 +

In this test, Munsell samples separated by 6-CIELab units and measured daylight sp
distributed hundred random numbers with a mean value of 1 and standard deviati
Mahalanobis distance boundary settings were applied in three phases of the day (m
suggests that using ancillary information will significantly
improve the ability to draw correct conclusions from the
features from pixel-level colour constancy algorithms.
Finally, comparing the results in Tables 4, 6 and 7 suggests
that these improvements will particularly be most signifi-
cant when distinguishing between objects whose reflec-
tance spectra are so similar that an expert would find
them impossible to distinguish.
d algorithms when applying the sensor responses

Model-based algorithm

provement (%) Without solar
elevation and
phase of day

With solar
elevation and
phase of day

Improvement (%)

15.6 56.8 44.3 −22.0

13.4 74.3 86.9 +16.9

0.4 49.2 49.8 +1.2

2.4 65.2 67.8 +3.9

17.7 73.0 88.6 +21.3

3.4 61.9 60.2 −2.7

5.2 63.0 67.0 +6.3

18.2 72.3 88.6 +22.5

15.9 62.0 73.4 +18.3

0.8 60.2 61.0 +1.3

19.5 68.3 83.9 +22.8

1.5 59.1 60.6 +2.5

ectra were applied. The sensor responses were multiplied by normally
on 1% and the resulting linear responses were quantised to 10 bits. The
orning, midday and evening) with elevation threshold of 20°.
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5. Conclusions
If the spectrum of the scene illuminant can be approxi-
mated by the spectrum of a blackbody then pixel-based
colour constancy algorithms can be used to extract
features that are almost independent of the illuminant.
The blackbody approximation used to derive these algo-
rithms is most appropriate when the illuminant is
daylight. Results have been presented using measured
daylight spectra that show that the residual illuminant
dependence of the features is caused by a combination
of noise, finite spectral width and the non-blackbody
spectrum. The latter effect means that the features ob-
tained from a reflective surface vary with the spectrum of
the daylight, usually characterised by its CCT. An inves-
tigation of the CCTs of daylight spectra measured in
Granada, Spain, over 2 years shows that the CCT of day-
light varies with the solar elevation and to a lesser extent
on the date. We investigated the optimum number of
periods in a year and the solar elevation threshold that
results the best performance. Based upon these observa-
tions, the measured daylight spectra for 1 year have been
used to create 12 sets of illuminants. These illuminants
have then been used to create boundaries in the feature
space that can be used to distinguish between pairs of sur-
faces whose colours are very good matches to each other.
Using the data from a second year which is different from
the training set, it has been shown that for good quality
images the ability to successfully distinguish these surfaces
is significantly improved on average using the phase of
the day and date information by 33.7 and 45.4% for
projection-based and model-based algorithms, respec-
tively. In particular, a larger improvement (average im-
provement: 85.9 and 113.7%) was obtained during the
middle period of each day which is defined as when the
solar elevation is larger than 20°. This method would
therefore seem to be particularly useful for scenes illumi-
nated by daylight in the middle of the day. One possible
application that suits these restrictions is precision far-
ming, in which machine vision techniques can be used to
target the treatment of small areas of a field or individual
plants [22,23]. In the future, the possibility of optimising
the sensor characteristic and using a third illuminant
invariant feature will be investigated.

Competing interests
The authors declare that they have no competing interests.

Acknowledgement
This study was done while Sivalogeswaran Ratnasingam was at the
University of Oxford, Oxford, UK. Javier Hernández-Andrés's work was
supported by the Ministry of Economy and Competitiveness, Spain, under
research grant DPI2011-23202.

Author details
1Department of Engineering Science, University of Oxford, OX1 3PJ Oxford,
UK. 2Department of Optics, Sciences Faculty, University of Granada, Granada
18071, Spain. 3The Australian National University, Canberra ACT 0200,
Australia. 4NICTA Canberra Research Laboratory, 7 London Circuit, Canberra
ACT 2601, Australia.

Received: 5 August 2012 Accepted: 16 February 2013
Published: 18 March 2013

References
1. SD Buluswar, BA Draper, Color machine vision for autonomous vehicles.

Eng. Appl. Artif. Intell. 11, 245–256 (1998)
2. S Hordley, Scene illuminant estimation: past, present, and future. Color Res.

Appl. 31(4), 303–314 (2006)
3. DH Foster, Color constancy. Visi. Res. 51(7), 674–700 (2011). doi:10.1016/j.

visres.2010.09.006
4. B Funt, K Barnard, L Martin, Is colour constancy good enough? in Proceeding

ECCV '98 Proceedings of the 5th European Conference on Computer Vision-
Volume I - Volume I (Springer-Verlag, London, UK, 1998), pp. 445–459. ISBN
3-540-64569-1

5. J Romero, J Hernández-Andrés, JL Nieves, JA García, Color coordinates of
objects with daylight changes. Color Res. Appl. 28, 25–35 (2003)

6. M Ebner, Color Constancy (Wiley-IS&T Series in Imaging Science and
Technology, New York, 2007)

7. JA Marchant, CM Onyango, Shadow-invariant classification for scenes
illuminated by daylight. J. Opt. Soc. Am. A 17, 1952–1961 (2000)

8. GD Finlayson, SD Hordley, Color constancy at a pixel. J. Opt. Soc. Am. A
18, 253–264 (2001)

9. J Romero, J Hernández-Andrés, JL Nieves, EM Valero, Spectral sensitivity of
sensors for a color-image descriptor invariant to changes in daylight
conditions. Color Res. Appl. 31(5), 391–398 (2006)

10. GD Finlayson, MS Drew, 4-sensor camera calibration for image
representation invariant to shading, shadows, lighting, and specularities, in
ICCV 2001: International Conference on Computer Vision, Volume 2 (IEEE, Los
Alamitos, 2001), pp. 473–480

11. S Ratnasingam, S Collins, Study of the photodetector characteristics of a camera
for color constancy in natural scenes. J. Opt. Soc. Am. A 27, 286–294 (2010)

12. S Ratnasingam, S Collins, J Hernández-Andrés, Optimum sensors for color
constancy in scenes illuminated by daylight. J. Opt. Soc. Am. A 27,
2198–2207 (2010)

13. D Forsyth, J Ponce, Computer Vision: A Modern Approach (Prentice-Hall,
Upper Saddle River, NJ, 2003)

14. The Munsell Color Science Laboratory. http://www.cis.rit.edu/mcsl/online/cie.php
15. Database – “Munsell Colours Matt”. ftp://ftp.cs.joensuu.fi/pub/color/spectra/

mspec/
16. A Abrardo, V Cappellini, M Cappellini, A Mecocci, A Abrardo, V Cappellini, M

Cappellini, A Mecocci, Art-works colour calibration using the VASARI
scanner, in Published in Fourth Color Imaging Conference: Color Science,
Systems, and Applications (, Scottsdale, Arizona, 1996), pp. 94–96. ISBN
0-89208-196-1

17. JY Hardeberg, Acquisition and reproduction of color images: colorimetric and
multispectral approaches, Ph.D. dissertation, Ecole Nationale Supérieure des
Télécommunications, 1999

18. M Mahy, L van Eycken, A Oosterlinck, Evaluation of uniform color spaces
developed after the adoption of CIELAB and CIELUV. Color Res. Appl. 19(2),
105–121 (1994)

19. HC Lee, Introduction to Color Imaging Science (Cambridge University Press,
Cambridge, MA, 2005), pp. 46–47. 138–141 and 450–459

20. J Hernández-Andrés, J Romero, JL Nieves, RL Lee Jr, Color and spectral analysis
of daylight in southern Europe. J. Opt. Soc. Am. A 18, 1325–1335 (2001)

21. S Kalogirou, Solar Energy Engineering: Processes and Systems (Academic Press,
New York, 2009)

22. SR Herwitz, LF Johnson, SE Dunagan, RG Higgins, DV Sullivan, J Zheng, BM
Lobitz, JA Brass, Imaging from an unmanned aerial vehicle: agricultural
surveillance and decision support. Comput. Electron. Agric. 44(1), 49–61 (2004)

23. MS Moran, Y Inoue, EM Barnes, Opportunities and limitations for image-
based remote sensing in precision crop management. Remote Sens.
Environ. 61(3), 319–346 (1997)

doi:10.1186/1687-5281-2013-14
Cite this article as: Ratnasingam et al.: Analysis of colour constancy
algorithms using the knowledge of variation of correlated colour
temperature of daylight with solar elevation. EURASIP Journal on Image
and Video Processing 2013 2013:14.

http://dx.doi.org/10.1016/j.visres.2010.09.006
http://dx.doi.org/10.1016/j.visres.2010.09.006
http://www.cis.rit.edu/mcsl/online/cie.php
ftp://ftp.cs.joensuu.fi/pub/color/spectra/mspec/
ftp://ftp.cs.joensuu.fi/pub/color/spectra/mspec/

	Abstract
	1. Introduction
	2. Descriptions of the algorithms and assessment method
	3. Proposed approach for improving colour constancy
	4. Results and discussion
	4.1. Fitting the Mahalanobis distance boundary
	4.2. Selecting the boundary parameters based on the phase of a day
	4.3. Results for 30-dB SNR
	4.4. Results for 40-dB SNR

	5. Conclusions
	Competing interests
	Acknowledgement
	Author details
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d044204380020043704300020043a0430044704350441044204320435043d0020043f04350447043004420020043d04300020043d043004410442043e043b043d04380020043f04400438043d04420435044004380020043800200443044104420440043e043904410442043204300020043704300020043f04350447043004420020043d04300020043f0440043e0431043d04380020044004300437043f0435044704300442043a0438002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 793.440]
>> setpagedevice


