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ABSTRACT

Hyperspectral imaging has recently consolidated as a useful technique for pigment mapping and iden-
tification, although it is commonly supported by additional non-invasive analytical methods. Since it is
relatively rare to find pure pigments in aged paintings, spectral unmixing can be helpful in facilitating
pigment identification if suitable mixing models and endmember extraction procedures are chosen. In
this study, a subtractive mixing model is assumed, and two approaches are compared for endmember
extraction: one based on a linear mixture model, and the other, nonlinear and Deep-Learning based. Two
spectral hyperspaces are used: the spectral reflectance (R hyperspace) and the -log(R) hyperspace, for
which the subtractive model becomes additive. The performance of unmixing is evaluated by the similar-
ity of the estimated reflectance to the measured data, and pigment identification accuracy. Two spectral
ranges (400 to 1000 nm and 900 to 1700 nm) and two objects (a laboratory sample and an aged painting,
both on copper) are tested. The main conclusion is that unmixing in the -log(R) hyperspace with a linear
mixing model is better than for the non-linear model in R hyperspace, and that pigment identification is
generally better in R hyperspace, improving by merging the results in both spectral ranges.
© 2023 The Authors. Published by Elsevier Masson SAS on behalf of Consiglio Nazionale delle Ricerche
(CNR).
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

Hyperspectral devices can measure the spectral reflectance
of objects across different ranges: from UV (between 330 and

The conservation of cultural heritage is crucial to ensure its
continued existence and value for future generations. In this con-
text, the study of paintings is of great importance for their preser-
vation and restoration [1-4].

For this purpose, the use of non-invasive techniques is generally
preferred [2-4]. Spectral imaging techniques [5] allow both identi-
fication and mapping of pigments, which is used to understand the
technique of the artist, the evolution of painted surfaces over time,
to decide on the conservation strategies, and to detect restorations
or forgeries [6,7].
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380 nm) through visible and near infrared (VNIR, up to 1000 nm)
to short-wavelength infrared (SWIR, usually between 900 and
2500 nm). In the context of art conservation, different materials
exhibit unique features within these ranges: varnishes have inter-
esting properties in the UV [8], while pentimenti and underdraw-
ings are detected in the SWIR [9], and pigments have distinctive
features in the VNIR range [10]. In addition, hyperspectral imag-
ing can detect and separate the components of pigment mixtures
(spectral unmixing).

In spectral unmixing, a mixed spectrum is decomposed into
their constituent spectra, or endmembers (EMs) [11], and their rel-
ative concentrations in the mixture are estimated. EMs represent
the pure materials used to produce the mixtures, while the con-
centrations represent the proportion of each EM present in every
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pixel of the image. Unmixing is then divided into two steps: EM
extraction and concentration estimation.

The unmixing process is based upon mixing models that de-
scribe the physical processes that occur when different pigments
are mixed. They can be classified as linear or non-linear. In linear
models, the mixed spectrum is obtained from a linear combination
of EMs weighted by the concentrations. It is commonly used in re-
mote sensing [12-14] and it is assumed as an acceptable approxi-
mation in many real scenarios. Its assets are physical interpretabil-
ity, computational tractability, and ease of implementation [15,16].
It has been used in the field of cultural heritage with promising
results [17,18].

Nevertheless, when pigments are mixed, the individual compo-
nents are not discernible with imaging technologies [19]. There-
fore, these mixtures are better characterized by a non-linear model
[20,21]. For instance, the Kubelka-Munk model describes the rela-
tionship between the absorption and scattering coefficients of in-
cident light in highly light-scattering materials, requiring informa-
tion about the optical properties of the materials studied [22]. It
has been used in the cultural heritage domain as a proof of con-
cept [23], but it is not extended due to memory requirements and
computation times [G]. In remote sensing, non-linear unmixing is
performed by parametric extensions of the linear model address-
ing the spectral variability found in the set of EM across different
pixels [24] or considering different combinations within the set of
EM [25]. These approaches do not incorporate the physical princi-
ples that underlie the Kubelka-Munk model. Recently, a generative
Deep-Learning based model (DeepGun) was introduced for unsu-
pervised unmixing [26] using low-dimensional representations of
EMs in the latent space of the generative model. The network is
re-trained for each scene and provides a set of EM for each pixel.
This model performs better than the parametric non-linear exten-
sions of the linear model, and it is not computationally expensive
if subsampling techniques reduce the number of pixels in the spec-
tral image.

Many studies have focused on obtaining robust, accurate and
tractable unmixing algorithms [11]. Grillini et al. [17] explored var-
ious mixing models, finding that the subtractive model outper-
formed others. They tested the LIP (Logarithmic Image Process-
ing) additive and LIP subtractive models but, to our knowledge,
the simplest way to transform a subtractive into an additive model
(taking the -log of the spectral reflectance data) has not yet been
explored. This transformation can be especially interesting if the
EM extraction models used are linear, like NFINDR [27] or Pixel
Purity Index (PPI) [11].

After selecting the mixture model and performing EM extrac-
tion, the next step is pigment identification. This is usually done
by linking each EM to a pigment within a reference library by
using different metrics [28]. Ideally, the reference library should
include a wide range of common pigments applied on a suit-
able ground layer, since some pigments become transparent in the
near-infrared range [29]. Finding pure pigments in artworks is usu-
ally challenging, particularly when they undergo aging [21,30,31],
weathering [32] or restoration processes [33], which makes the
use of unmixing techniques especially appropriate. Also, the use
of binders and varnishes can alter the spectral signature of a given
pigment [34].

Several approaches have been proposed for spectral unmixing
and pigment identification, like using the first and second deriva-
tive of the spectra [31,35,36], clustering [16], pattern-recognition
algorithms [37], Neural Networks, and Deep Learning [6,23,38-41].
The ENVI spectral hourglass wizard has also been used [35,42], but
it is slow and not fully automatic [29]. Achieving effective spectral
unmixing still remains a challenging task.

Most studies use the VNIR range to perform spectral
unmixing, pigment mapping and/or pigment identification
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[7,17,18,23,29,31,35]. Some have used the SWIR range to per-
form pigment mapping [36,42,43], but not unmixing.

2. Research aim

In this study, a subtractive mixing model was used, which
transforms into a linear mixing model in the -log(R) hyperspace.
Our hypothesis is that linear EM extraction algorithms will ben-
efit from the -log(R) hyperspace. The research question is if they
can outperform non-linear models in R hyperspace. To answer this
question, three EM extraction models were tested in R hyperspace.
Then, two of them (linear mixing model-based algorithm and man-
ual extraction) were tested in the -log(R) hyperspace. Apart from
showcasing the success of simple solutions for challenging tasks,
unmixing results in two spectral ranges and two different hy-
perspaces are analyzed, and the assets and drawbacks of each
method/hyperspace/range are discussed.

3. Material and methods
3.1. Samples

Two main objects have been used: an auxiliary (reference) cop-
per plate from which a checkerboard image was extracted, and the
painting on copper with the inscription "Boceto di Pablo Veronese".
These objects and the information extracted from them are de-
scribed in the next two subsections.

3.1.1. Reference copper plate

The copper reference plate and the checkerboard image with
reference pigments are shown in Fig. 1. The preparation used is
in accordance with documented period techniques from the XVIth
century [44-47]. The materials are preparation layers and pigments
found in the painting [48]. The pigments (Kremer Pigmente GmBH)
were bound with linseed oil and applied with a brush.

The unpolished copper plate (1 mm thickness) was cleaned
with calcium carbonate and vinegar, and rubbed with ground gar-
lic. Then, a layer of CaSO4 powder bound with linseed oil was ap-
plied, and a preparation layer (P1) of Bone black (BB) mixed with
Read Earth (REP) and Lead White (LW) bound with linseed oil.
Then, the pigments and mixtures are deposited on the prepared
surface. There are seven pure pigments: LW, Naples Yellow (NY),
BB, Cinnabar (CN), Lapislazuli (LL), Azurite (AZ) and REP. Three
more patches with mixtures are added: LL + LW, CN + LW, and the
P1 mixture. Ten 32x32 pixel areas were extracted from the spec-
tral image of the plate to build the reference checkerboard image
shown in Fig. 1 (bottom).

3.1.2. Painting on copper

The copper plate was prepared specifically for a pigment identi-
fication test of a painting on copper with the inscription "Boceto di
Pablo Veronese", a Maternity containing the Virgin, St. Joseph and
Jesus. This painting was studied using X-Ray Fluorescence (XRF)
and X-Ray Diffraction (XRD) techniques [48], concluding that it
contained five pigments: LW, BB, LL, NY and CN.

The dimensions of the painting are 13.5 x 17.5 cm, and it
has recently been restored. In the restoration process, the chro-
matic reintegration was made with Maimeri pigments ochre, nat-
ural earth, toasted ochre, Naples yellow (Lead antimonium), Zinc
white, Lapislazuli, and Cadmium Red from Windsor Newton. A
new layer of varnish was applied (Lefranc-Bougeois satined with
UV protection). An RGB image obtained with three spectral bands
(R = 605 nm, G = 535 nm and B = 430 nm) is shown in Fig. 2,
with several 3 x 3 pixels areas marked in bright yellow, which
were used to build the manual extraction (MEx) EM library as ex-
plained in Section 3.3.2.
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Fig. 1. (Top) Reference copper plate. Reference checker areas extracted are highlighted with red squares. (Bottom) Reference checkerboard image containing areas 1-10 (for
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Fig. 2. Restored painting used in this study, with the 3 x 3 pixels areas used for
manual EM extraction marked in bright yellow.

3.2. Spectral image capture and reference library

We used two cameras from Resonon Ltd. coupled to a linear
stage to capture the reference copper plate and the painting. The
first (Pika L) covers the spectral range from 380 to 1080 nm (VNIR
range). The second (Pika IR+) covers from 888 to 1732 nm (SWIR
range). We cropped the extremes of the range, obtaining finally 121
bands in VNIR and 161 bands in SWIR. The sampling interval was
5 nm for both ranges.

After capturing the reference plate, a reference library of eight
spectra for pigment identification (REFL from now on) was built
using the average reflectance of 30x30 pixels areas within the
patches labelled as 1-7 and 10 in Fig. 1 top. The areas used in
REFL were different from those in the reference checkerboard im-
age shown in Fig. 1 bottom. All image processing and unmixing
modelling has been performed using Matlab® software.

In Fig. 3, the spectral reflectances from the REFL in both VNIR
and SWIR ranges are shown. The spectra differ both in shape and
scale.

3.3. Unmixing methods

The process of unmixing often takes two steps: EM extraction
(Section 3.3.2) and concentration estimation (Section 3.3.1).

3.3.1. Concentration vector estimation and reflectance hyperspaces
Two mixing models have been used depending on the hyper-

space. In the R hyperspace, the subtractive model [49] was used.

The spectra of i EMs are multiplied consecutively, elevated to the
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Fig. 3. (Left) REFL spectra in the VNIR range. (Right) REFL spectra in the SWIR range.

power of the concentrations (Eq. (1)).
(1)

where, Y is the reflectance of the mixture, q is the number of can-
didate EMs, p; is the reflectance of the ith EM, and ¢; its concen-
tration.

Some blind EM estimation algorithms, like NFINDR [27] and
FIPPI (Fast Iterative Pixel Purity Index) [50], are based on a lin-
ear model. This fact prompted the idea of introducing the -log(R)
hyperspace for performing unmixing. In -log(R) hyperspace, the re-
flectance of a subtractive mixture transforms into a linear combi-
nation of EMs, as shown in Eq. (2) [51].

q
Y=3 ap
i1

The goal of spectral unmixing is retrieving the vector of concen-
trations (C = (aq, o, ...ctq)) from the reflectance of the mixture
(Y) and the library of candidate EMs (E = (p1. 02, ... pig))- For this,
a constrained optimization method is used. In this study, the fmin-
con function with the interior point algorithm [52] implemented in
Matlab® was used. The constraints are non-negativity (¢; > 0, V i),

(2)

and sum-to-one (Zq: o;=1).
i=1

For the cost function, usually spectral metrics are used, such as
Mean Square Error (MSE [17]) or the complement of the Goodness-
of-Fit coefficient (cGFC [53]), related to the Spectral Angle Mapper
metric (SAM). MSE is influenced by offset differences, and cGFC
only accounts for shape differences. A perfect match would have
zero MSE and cGFC values. Our cost function (M) merges both to-
gether (Eq. (3)).

M = cGFC + B - MSE (3)

B is a scaling parameter to balance the contribution of both
sub-metrics to the final combined metric. In a preliminary experi-
ment, the optimal value for 8 parameter to ensure equal contribu-
tion of both metrics was found to be 8 = 1.0936.

Summarizing, both R and -log(R) hyperspaces, each with its un-
mixing model (subtractive and additive, respectively), are used for
the checkerboard image with different EM libraries in VNIR and
SWIR ranges. The best performing method according to the criteria
explained in Section 3.5 is selected for analyzing the painting on
copper.

293

3.3.2. EM extraction

EMs can be obtained by blind separation using different algo-
rithms, like Pixel Purity Index (PPI [54,55]), or Fast Iterative PPI
(FIPPI [50]) and NFINDR [27]. The first two use a heuristic ap-
proach. NFINDR is geometry-based, searching for members of a
simplex hyperspace that can cover the input data [56]. NFINDR and
PPI assume the presence of at least one pure pixel per EM in the
data [11]. The NFINDR and DeepGun [26] methods have been se-
lected for this study as representative instances of automatic EM
extraction methods with different design strategies. The Matlab®
libraries of ENVI integrated package for NFINDR, and the code pro-
vided by the authors of DeepGun [57] was used with the default
parameters adapted to the number of extracted EM. For DeepGun,
the extraction was performed only in (R) hyperspace, because the
DeepGun algorithm is non-linear in R hyperspace.

Other possibility is to extract the library directly from the
painting, out of representative areas including mixed pigments
(Manual Extraction or MEx method) [35]. Five 3 x 3 pixel repre-
sentative areas (shown in Fig. 2) of black, blue, red, white, and yel-
lowish colors were extracted from the image of the painting. The
spectra were averaged to build the MEx_p library. The MEx_p li-
brary is very likely constituted by mixtures and not pure EMs, but
our hypothesis is that this library will provide more accurate con-
centration estimations since it is obtained directly from the paint-
ing. In any case, the MEx_p EMs will be used for pigment identifi-
cation using the REFL spectra shown in Fig. 3 as reference.

Summarizing, we have seven libraries in R hyperspace for each
spectral range. Four of them are extracted from the copper refer-
ence board: REFL, which will only be used for pigment identifi-
cation, and other three (with 7 EM), which will be used for un-
mixing: the NFINDR library (NFDL), the DeepGun library (DeGu),
and the Manual Extraction library (MEx), which includes the same
pure pigments as REFL but extracted from different areas. The re-
maining three libraries (with 5 EM) are extracted from the paint-
ing spectral image: NFDL_p, DeGu_p and MEx_p. The goal is not to
find the best extraction method in absolute terms, but to choose
three representative instances of extraction methods to showcase
the proposed methodology.

In -log(R) hyperspace, for each spectral range we have the two
NFINDR libraries with 7 and 5 EMs, and the two M_Ex libraries for
concentration estimation.

3.4. Pigment identification

The method consists of two parts: the first, computation of a
combined distance metric between each pair of spectra from the
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Fig. 4. Workflow of the steps used in the different phases of this study.

candidate library and REFL. The metric for the VNIR spectra is
shown in Eq. (4):

MId = cGFC + 0.5MSE + 0.02AEqg (4)

The coefficients are obtained assuming the following tolerances
for the three components of the metric: 0.01 for ¢cGFC, 0.02 for
MSE and 0.5 for AEyg. They ensure that all the factors would con-
tribute equally to the metric value in an acceptable reflectance
match. The tolerance values are based on experience and corre-
spond with tolerances found in the literature for spectral estima-
tion [53]. The metric contains a color difference term because color
can be relevant for pigment identification, while both scale and
shape differences in spectra are also accounted for. The combined
metric in the SWIR range contains only the two first factors. The
lower the MId value, the higher the similarity between the com-
pared spectra.

The second part is the label assignment: the REFL label corre-
sponding to the pigment with the minimum metric value is as-
signed to each EM.

Finally, the hit rate of the pigment identification process is cal-
culated as the percentage of correctly identified pigments.

3.5. Evaluation of results

The evaluation of the results obtained is based on three factors:

a) Spectral reconstruction: the similarity between estimated
spectra and the original spectra, assessed separately by the
three metrics that form MId (Eq. (4)).

b) Visual assessment: using concentration or presence maps.
The data shown in Ref. [48] will be used to determine if the
maps are plausible for the painting.

¢) Hit rate: from pigment identification.

Fig. 4 shows the workflow of the methods to clarify the proce-
dures described in the previous subsections.

4. Results and discussion
4.1. Copper reference plate

In this section, a summary of the EM extraction and unmixing
results for the spectral data of the checker reference image (Fig. 1
bottom) is shown. Extended results are presented in the supple-
mentary material for briefness.

4.1.1. Unmixing results
4.1.1.1. Spectral reconstruction quality. Regarding R hyperspace, the
best results in terms of cGFC, RMSE and AEg, values are obtained
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with the MEx library (see Supplementary Material for numerical
results). The second-best corresponds globally to NFDL, which is
close to DeGu in most spectral metrics. In -log(R) hyperspace, the
best results belong to NFDL in all metrics (VNIR range), and in
¢GFC in the SWIR range. In general, the -log(R) transformation is
beneficial for the NFDL in both ranges, which points to the impor-
tance of ensuring correspondence between the mixing models in
EM extraction and concentration estimation.

Comparing both spectral ranges, the estimation of the image re-
flectances is more accurate in the SWIR range. This is expected be-
cause the SWIR reflectances tend to be flatter and with less scale
changes than the VNIR reflectances.

4.1.1.2. Concentration and presence maps. The concentration maps
show, in grayscale, the concentration of the endmembers for each
pixel of the checkerboard reference image, ranging between 0
(black) and 1 (white). In Fig. 5, the concentration maps corre-
sponding to the three libraries tested in the VNIR range and R hy-
perspace are shown, along with the labeled checkerboard reference
image. For NFDL and DeepGun, the EMs are not directly mapped
into pigments, as it happens for the MEx library. But sometimes
correspondences can be induced from the concentration maps’ re-
sults. For instance, if an EM concentration map shows significant
presence of the EM in patches 5 (LL) and 8 (LL+LW), with higher
concentration values in patch 5, and just negligible traces in the
other patches, it is safe to assume that this EM corresponds to the
LL pigment.

Even for the MEX library, the results of the unmixing as judged
by the concentration maps shown in Fig. 5 (right column) are
not completely satisfactory. For instance, EM3 (NY) is not detected
with a high concentration in patch four, and the two red pigments
(REP and CN, EM1 and EM4) tend to be confused to a certain ex-
tent. On the other hand, LW is correctly identified as present in
the three mixed patches (8, 9 and 10) in EM2 concentration map.
The NFDL concentration maps (Fig. 5, left column) present certain
similarities with the MEx results. For instance, EM4 concentration
map in NFDL is rather similar to EM2 (LW) for manual extraction,
and EM1 from NFDL is similar to EM4 (CN) of the MEx library. The
DeepGun concentration maps (Fig. 5, middle column) show rela-
tively good results for EM4 (presumably corresponding to LL), EM6
(which has similar appearance to the IW, MEx EM2, concentration
map) and EM2 (presumably REP). However, EM1 (presumably AZ)
is confused with the LL present in patch 8, and the other three
concentration maps (EM3, EM5 and EM7) are very much alike.

In the SWIR range, the concentration maps reflect less similar-
ity between NFINDR and MEX libraries results. In general, none of
the libraries is able to correctly reproduce the real contents of the
reference image.
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Fig. 5. VNIR range concentration maps in R hyperspace for the checker reference image and the three EM libraries tested. EMX stands for Endmember X.

Regarding the concentration maps in the -log R hyperspace,
the best results correspond to the NFDL in the VNIR range, which
clearly benefits from the change to an additive model.

Summarizing, neither concentration maps nor presence maps
can capture accurately enough the pigment distribution in the
checker reference image with any of the three libraries tested or in
any of the spectral ranges, although some of the libraries produce
results that are reasonable if not entirely accurate. For instance,
consistent results were offered by NFDL in -log(R) hyperspace (see
figures in Supplementary Material). In general, SWIR range tends
to offer less consistent results.

4.1.2. Pigment identification results

The best results are obtained by the NFDL in the SWIR range
and R hyperspace, with a 100 % hit rate in pigment identification,
and maximum MId values very near the tolerance of 0.02 for all
EMs. The second-best results correspond to NFDL -log(R) hyper-
space in the VNIR range, with a hit rate of 85.7 %. DeGu obtains
at most four out of seven pigments in both ranges. Despite the
good unmixing results for -log(R) hyperspace in the VNIR range
and NFINDR, the pigment identification is slightly better in the
SWIR range and R hyperspace for this library. This suggests that it
is convenient to include both ranges in the pigment identification
procedure.

4.1.3. Proposed method for analysis of the painting on copper

Given the results for the copper reference plate with known
and regular pigment distribution, the following method will be
employed for obtaining concentration/presence maps and pigment
identification for the painting on copper:

a) Use the -log(R) hyperspace and NFDL_p with 5 EMs extracted
from a subsampled spectral image (1:2 ratio) to obtain the con-
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centration and presence maps. The subsampling allows to re-
duce the computation time required for the unmixing.

b) Use the REFL library extracted from the copper plate to perform
pigment identification in both R and -log(R) hyperspaces with
NFDL_p.

In this case, we expect lower rates of success in the pigment
identification phase, because the painting has been aged for a long
period of time and the raw materials used for the pigments and
binders might not be exactly the same in the painting and refer-
ence copper plate.

4.2. Painting on copper

Although we will show the results corresponding to the method
proposed in Section 4.1.3, for brevity, a complete analysis us-
ing DeGu_p and MEx_p libraries was carried out. The results of
these libraries will be commented on only when they outperform
NFDL_p.

4.2.1. Unmixing results
4.2.1.1. Extracted EM libraries. In Fig. 6, the NFDL_p libraries in
VNIR and SWIR range in -log(R) hyperspace are shown along with
the MEx_p library.

The NFDL_p EMs are clearly higher in scale than MEx_p EMs,
and they tend to be less flat in the SWIR range.

4.2.1.2. Spectral reconstruction quality. In Table 1, the quality met-
rics are shown for the NFDL_p (based on the NFINDR algorithm
and a linear mixing model), DeGu_p (based on Deep Learning for
endmember extraction and a non linear model) and MEx_p (based
on manual EM extraction) libraries in both spectral hyperspaces
and both spectral ranges.
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Fig. 6. VNIR range libraries (left) and SWIR range libraries (right) extracted with NFINDR (upper row) and by Manual Extraction MEx_p (Lower row) from the painting on

copper. EMX stands for Endmember X.

Table 1

Spectral reconstruction quality metrics for the two EM libraries in VNIR and SWIR, and in both hyperspaces. The best results for each metric and

spectral range are in bold.

Library Hyperspace Mean cGFC (STD) Mean MSE (STD) Mean AEgy, (STD) Spectral range
NFDL_p, MEx_p, DeGu_p R 0.0104 (0.010) 0.0743 (0.0309) 12.64 (5.11) VNIR
0.0025 (0.0036) 0.0136 (0.0146) 4.16 (2.29)
0.0037 (0.0036) 0.0324 (0.0270) 6.22 (4.39)
NFDL_p, MEX_p -log(R) 0.0065 (0.0095) 0.0055 (0.0047) 3.81 (2.48)
0.0051 (0.0074) 0.0076 (0.0125) 3.69 (2.50)
NFDL_p, MEx_p, DeGu_p R 0.0032 (0.0103) 0.0108 (0.0121) - SWIR
0.0051 (0.0074) 0.0076 (0.0125) -
0.0016 (0.0030) 0.0244 (0.0213)
NFDL_p, MEx_p -log(R) 0.0035 (0.0055) 0.0047 (0.0100) -

0.0090 (0.0267)

0.0064 (0.0010)

In the VNIR range, the best results (this is, the lowest val-
ues of spectral metrics) correspond to MEx_p in -log(R) hyper-
space, although the best cGFC value is found in R hyperspace for
this library. The metric values found for NFDL_p in -log(R) hyper-
space are close to the MEx_p library, with the lowest MSE values.
However, in R hyperspace the NFDL_p estimation is clearly worse
than MEx_p estimation, and DeGu_p outperformed NFDL but not
MEx_p.

In the SWIR range, the best results for MSE are found again
for NFDL_p in -log(R) hyperspace, and for ¢cGFC in DeGu_p in R
space. In general, the quality of the estimation is acceptable or re-
markably good, depending on the hyperspace and range, save for
NFDL_p in VNIR range and R hyperspace.

The beneficial effect for the scale sensitive metrics (MSE and
AEqg) of the -log(R) hyperspace transformation is remarkable, and
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overall, the SWIR estimated spectra are closer to the original ac-
cording to the spectral metrics, which is expected because they
have lower maximum values.

4.2.1.3. Presence and concentration maps. In Fig. 7, the concentra-
tion maps for the NFDL_p and MEx_p libraries in -log(R) hyper-
space and VNIR range are shown. The order of the MEx_p EMs
corresponds to Fig. 6.

According to the XRF and XRD results [48], LL can be found
both in the Virgin's mantle and in the background. This is corrob-
orated by the VNIR range concentration maps EM1 and EM2 for
MEx_p (second row), and EM3 for NFDL_p (first row of Fig. 7).

The CN pigment is found in the Virgin’s dress and in the car-
nations, which is corroborated by MEx_p EM3 (second row) and
NFDL_p EM4 (first row). The LW is found in the carnations and
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Fig. 7. Concentration maps in -log(R) hyperspace corresponding to the libraries shown in Fig. 6. First row: NFDL_p VNIR range; second row: MEx_p VNIR range; third row:

NFDL_p SWIR range; fourth row: MEx_p SWIR range.

in the Virgin’s chemise sleeves, which is corroborated by MEx_p
EM4 (second row) and NFDL_p EM1 (first row). The BB pigment is
found in the shadowed areas and in the background, which would
be supported by MEx_p EM1 (second row) and NFDL_p EM3 (first
row). And finally, the NY pigment is found in some parts of the
carnations and in the Child’s cloth. This would correspond to EM5
in both libraries. The VNIR results are consistent, with some trend
to confuse background with LL pigment in some areas for MEx_p.

In the SWIR range, there are some remarkable findings: the first
is that the confusion between BB and LL is less marked for MEx_p
(see EM1 and EM2 in the fourth row of Fig. 7). The second is that
for NFDL_p, the LW and CN results are intermingled in EM5 con-
centration map (third row), while this does not happen for MEx_p
(see EM3 and EM4 in the fourth row). And the third is that the NY
does not appear clearly in the NFDL_p EMs, while it seems to ap-
pear in EM5 for MEx_p (fourth row). The NY pigment is the least
present in the painting and appears mostly in mixtures. Overall,
the results for the MEx_p library in the SWIR are more consistent,
even if the estimation quality is lower than for NFDL_p.

In Fig. 8, the presence maps with a threshold of 0.25 are shown
for both libraries and both ranges, in -log(R) hyperspace.

Considering the inherent limitations of the unmixing tech-
niques, the presence map results are rather satisfactory and con-
sistent with the pointwise XRF and XRD results [48]. It is found
out that the carnations are a mixture of three EMs, one of them
present as well in the Virgin's dress. Or that the Virgin's veil is
also a mixture of at least three EMs.

4.2.2. Pigment identification results

In Table 2, the results from the pigment identification for
NFDL_p using REFL library as reference are shown.

The best result is obtained for R hyperspace and SWIR range
with a hit rate of 80 %, failing to identify the LL pigment. How-
ever, if one considers the union of the two ranges, there would be
seven pigments, of which only one is not present in the painting
(AZ). This union strategy seems to work better also for the -log(R)
hyperspace, which would result in six pigments, of which one is
not present in the painting (AZ). These results are of course condi-

Table 2
Pigment identification results for NFDL_p, using the copper reference REFL library as reference.
Library Hyperspace Range Assigned labels Hit rate MId range
R VNIR LL, REP, NY, REP, BB 60 0.13-0.27
NEDL -log(R) LW, BB, BB, REP, BB 40 0.11-0.41
P R SWIR LW, CN, AZ, NY, BB 80 0.023-0.15
-log(R) BB, AZ, AZ, BB, NY 40 0.06-0.28
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Fig. 8. Presence maps with a threshold of 0.25, corresponding to the libraries shown in Fig. 6. Upper row: NFDL_p -log(R) VNIR range; second row: MEx_p -log(R) VNIR
range; third row: NFDL_p -log(R) SWIR range; fourth row: MEx_p -log(R) SWIR range.

tioned by the very restricted and specific set of pigments used as
reference.

Regarding the MId range values, the NFDL_p obtains the lowest
value (0.023-0.15) for SWIR and R hyperspace. The results suggest
that the SWIR range is more reliable than the VNIR range, in agree-
ment with the hit rate values. None of the other libraries obtain
better identification results than NFDL_p.

5. Conclusions

In this study, different unmixing techniques are applied for pig-
ment detection and identification in two spectral ranges: VNIR and
SWIR. The unmixing methods have been selected with the aim to
compare two different methodologies: using a non-linear Deep-
Learning based method in R space, and a linear classical method
in -log(R) space.

A reference palette has been prepared, containing the pigments
present in an oil painting on copper with the inscription “Boceto di
Pablo Veronese” on the back, plus AZ (not present in the painting)
and additional patches with mixtures.

The proposed methodology to analyze the painting has been
selected using the results obtained with a reference checkerboard
image obtained from this palette. For this image, the -log(R) hy-
perspace unmixing results are satisfactory for the NFDL library in
VNIR range in terms of concentration maps and scale dependent
quality metrics, although slightly worse for the shape-sensitive
cGFC metric. The pigment identification results are also successful.
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The method was applied to the restored painting on copper us-
ing NFDL_p in both R and -log(R) hyperspaces and in both spec-
tral ranges. NFDL_p was able to provide plausible results for the
concentration and presence maps in the VNIR range. NFDL_p in
R hyperspace (SWIR range) was the most successful method for
pigment identification. By merging the results of both ranges, the
identification would be complete, although AZ was also identified
as present in the painting. This supports the usefulness of the
SWIR range both for unmixing and pigment identification in art-
works.

The results show that, even with unsophisticated techniques (a
classical linear algorithm like NFINDR), for some instances it is
possible to obtain satisfactory results using only spectral informa-
tion for analysis of naturally aged artworks on a somewhat unusual
support like copper.

It is crucial to have adequate reference auxiliar pigment palettes
for pigment identification using spectral reflectance information, as
stated in other studies [29]. The main limitations of the proposed
methodology are in pigment identification in the painting, due to
the intrinsic differences between the reference pigments (new)
and the painting pigments (aged). Although ageing can be mod-
elled to some extent [58] or light-induced pigment degradation
can be used [31], multiple variables are involved. The natural aging
process changes the pigment spectral shape differently based on
composition, light exposure, and environmental factors. In many
cases, these specific factors are unknown, adding complexity to the
identification task. The use of painting techniques which involve
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very thin layers of pigment, like glazing, must also be considered,
and will be taken into account in future studies.

It is worth spending additional effort in refining spectral imag-
ing and unmixing methods so that they can perform on par with
alternative techniques without requiring a priori information. One
limitation is the influence of the preparation techniques, binding
agents, varnish, and ageing on the reflectance spectra. A multivari-
ate modelling of the changes introduced by all these factors could
lead to more accurate results for stand-alone spectral information-
based pigment identification in the future.
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