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By the principal-value decomposition process, we have obtained two linear bases for representing the spectral
power distributions of illuminants, applicable for algorithms of color synthesis and analysis in artificial vision:
one from experimental measurements of daylight and another combining both natural and artificial illumi-
nants. The first basis adequately represents daylight with dimension 3, in accordance with the previous re-
sults of Judd et al. [J. Opt. Soc. Am. 54, 1031 (1964)]; however, it does not adequately represent artificial il-
luminants, even with a higher dimension. In the case of the second basis, many good results are obtained in
the reconstruction of the spectral power distribution both of daylight and of artificial illuminants, including
some fluorescent lights, with dimension 7 or even less. In consequence, we show the possibility of obtaining
linear bases of a low dimension, even when the set of illuminants that we try to represent presents a certain
variability in shape. © 1997 Optical Society of America [S0740-3232(97)00905-8]
1. INTRODUCTION
Research on methods of color analysis and synthesis has
often dealt with linear models for representing illumi-
nants, which, together with those of reflectance represen-
tation, permit the design of algorithms applicable in arti-
ficial vision (see, e.g., Maloney and Wandell1 and
Wandell2). These models are intended to establish a ba-
sis for representing the spectral power distribution of the
illuminants in reduced dimensions. The basis is formed
by a group of characteristic vectors obtained after carry-
ing out a principal-value decomposition process on experi-
mental measurements of spectral power distributions.
In this field the references center on the works of Judd

et al.3 and Dixon.4 These authors studied the spectral
energy distribution of daylight in the visible spectrum
and concluded in a general way that three characteristic
vectors are sufficient to produce a basis for the appropri-
ate representation of this type of radiation. Other au-
thors investigating this field have drawn similar
conclusions.5,6

Nevertheless, we believe that adopting a representa-
tional basis obtained for daylight when working in artifi-
cial vision is not useful at all. Often, we find ourselves
under artificial lighting conditions and have no assurance
that the illuminants used can be adequately represented
over a basis that was established for natural light. We
might ask whether the bases deduced for the daylight
would serve under lighting conditions normally used in
artificial vision.
Thus the objectives of the present work are as follows:

first, to study the applicability of a daylight basis to rep-
resent artificial illuminants; second, to obtain a represen-
tational basis that includes both natural illuminants and
artificial ones; and, finally, to study the appropriate di-
mension of this basis and its possibilities for representing
a variety of illuminants, among these being those pro-
posed by the CIE. For this purpose we carried out our
own principal-value decomposition process; first on mea-
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surements appropriate to daylight and then over a wide
group of spectral power distributions that included both
daylight and artificial illuminants.

2. METHOD
The analytic methods used here are described in Parkki-
nen et al.7 The data were analyzed by using the
Karhunen–Loève transformation.
If we have a group of spectral power distributions Ee(l)

and we wish to obtain the set of eigenvectors associated
with the group, first we must obtain the correlation ma-
trix RT(E) to diagonalize it later. In our analysis, to ob-
tain this matrix, we first had to normalize each spectral
power distribution by the Euclidean rule,

E~l i! 5
Ee~l i!

H(
j

@Ee~l j!#
2J 1/2 , (1)

so that our study was not influenced by the possible vari-
ety in the absolute values of the spectral power distribu-
tions selected.
From each curve measured, we obtained the symmetric

matrix Rij through the inner product:

Rij 5 E~l i!E~l j!, l i 5 395 1 i5 nm,

l j 5 395 1 j5 nm, (2)

where 1 < i, j < 61; then we took spectral power distri-
bution values from 400 to 700 nm at 5-nm intervals.
Adding together all the symmetric matrices, each one

calculated for a spectral power distribution, we obtained
the correlation matrix RT(E).
Afterward, we submitted RT(E) to a principal-value

decomposition process and obtained its eigenvalues and
eigenvectors. We normalized all the eigenvectors and
sorted them according to decreasing eigenvalues; this al-
1997 Optical Society of America
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lowed us to determine which eigenvector contributed the
most strength to the basis generation.
For the mathematical reconstruction of a spectral

power distribution E(l), we used the formula

Ea~l! 5 (
n51

p

^E~l!uVn~l!&Vn~l!, (3)

Fig. 1. Example of reconstruction with (a) a GFC of 0.995688,
(b) a GFC of 0.999566, (c) a GFC of 0.999939. Solid curve: or-
iginal curve; points: reconstruction.
where Ea(l) is the reconstructed spectral power distribu-
tion, ^E(l)uVn(l)& is the usual inner product (scalar
product) between the spectral power distribution and
the n-basis eigenvector Vn(l), and p is the number of
eigenvectors with which we wish to recover the spectral
distribution.
To evaluate the goodness of the mathematical recon-

struction, we used a goodness-fitting coefficient (GFC),
based on the inequality of Schwartz:
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l j 5 395 1 j5 nm, (4)

where 1 < j < 61. This GFC is just the multiple corre-
lation coefficient R and the square root of the variance-
accounted-for coefficient (VAF). The values of the GFC
range from 0 to 1, where 1 indicates a perfect reconstruc-
tion. If the reconstructed spectral power distribution
Ea(l) were normalized to unit length, the GFC would be
the cosine of the angle between E and Ea , both consid-
ered as vectors in a space of dimension 61.
Figure 1 provides examples of values that took this

coefficient when we reconstructed the spectral power dis-
tribution of a source with different numbers of vectors
from the basis. When the reconstruction presented
a GFC > 0.99, we judged the quality to be acceptable,
especially from the standpoint of colorimetry. If the GFC
obtained was >0.999, the reconstruction was considered
very good; and if it was >0.9999, it was mathematically
almost exact.
We have been interested in studying the goodness of

the reconstruction from a functional viewpoint instead of
a colorimetric point of view. Table 1 shows the chroma-
ticity coordinates of the three examples of reconstruction
in Fig. 1, which give an idea of the color differences found
in the reconstructions.
A GFC of 0.90 (VAF of 0.81) can be considered as the

19% of the energy that is missed in the reconstruction.
With this interpretation a GFC of 0.99 means that 2% is
missed, a GFC of 0.999 corresponds to 0.2% missed, and a
GFC of 0.9999 corresponds to 0.02% missed. As we can
observe, at a level of 0.02% of energy missed, it may seem
that we are worried about negligibly small errors. How-
ever, we wanted to be very strict in the reconstruction,

Table 1. Chromaticity Coordinates of the Three
Examples of Reconstructions Shown in Fig. 1

GFC Original Reconstructed

0.995688 x 5 0.3197 x 5 0.3332
y 5 0.3295 y 5 0.3405

0.999566 x 5 0.3197 x 5 0.3169
y 5 0.3295 y 5 0.3293

0.999939 x 5 0.3197 x 5 0.3194
y 5 0.3295 y 5 0.3302
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and for that reason we adopted the three categories
described above. In this way we fixed the dimension
of the basis that allowed the representation of a group of
illuminants.

3. EXPERIMENTAL MEASUREMENTS AND
DAYLIGHT BASIS
First, we tried our method on daylight measurements and
compared our results with those of other authors.3–6 We
have to point out that we have not had the objective to
cast doubt on the results of Judd et al.3 for a daylight rep-
resentation, results that are well established and have
been widely adopted by the scientific community. We
wanted to obtain our own set of daylight experimental
measurements and its linear basis representation so as to
supplement it later with the artificial illuminants spec-
tral power distributions and, in this way, to construct a
common basis for both sets of data.
For this purpose we made a series of experimental

measurements of daylight in Granada, Spain (latitude
37°118 N, longitude 3°358 W, altitude 680 m) for four days
during the month of April 1995. Table 2 shows the at-
mospheric conditions each day and the number of mea-

Fig. 2. Spectral power distribution of some experimental day-
light measurements.

Table 2. Atmospheric Conditions of the Days
on Which the Experimental Measurements

Were Taken

Day
Atmospheric
Conditions

Number of
Measurements

Day 1, 4/8/95 Morning Clear 25
Evening Clear

Day 2, 4/11/95 Morning Cloudy, rain 25
Evening Cloudy, rain

Day 3, 4/13/95 Morning Clear 24
Evening Cloudy

Day 4, 4/15/95 Morning Clear, misty 25
Evening Cloudy, misty
surements carried out inclusively from sunrise to sunset
at periodic intervals of 30 min.
The experimental measurements were made by using a

white Lambertian receptor with a flat spectral reflectance
of between 400 and 700 nm, which we situated facing the
Sun, and an SR-1 Topcon spectroradiometer (Topcon
Europe B.V., Rotterdam), with which we measured the
light reflected by the white receptor at 45° to its perpen-
dicular. Therefore the geometry of the measurements
was 0/45°. In this way we made indirect measurements
of daylight (direct plus the light from the sky), since the
spectral irradiance was proportional to the spectral radi-
ance measured on the receptor, thus accomplishing the
objectives of the present work. With this geometry we
measured sunlight plus skylight, eliminating the specular
component of sunlight. When the sky was covered with
clouds, we obviously measured only the radiation from
the sky.

Fig. 3. Spectral profile of the first three eigenvectors of the basis
of experimental measurements. Solid curve: eigenvector 1;
dotted curve: eigenvector 2; dashed curve: eigenvector 3.

Fig. 4. Chromaticity coordinates of daylight measurements in
Granada, and Planckian locus (solid curve) and CIE daylight lo-
cus (dashed curve).
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Table 3. GFC Obtained in Each of the Standard CIE Illuminants with the Global Basis and the Basis of
Experimental Measurements with Use of Different Numbers of Vectors

Standard CIE
Illuminants

GFC

Global Basis
(No. of
Vectors)

Basis of Experimental
Measurements

(No. of
Vectors)

A 0.990342 (3) 0.993925 (3)
0.999425 (4) 0.996868 (4)
0.999528 (7) 0.999195 (7)
0.999965 (10) 0.999289 (10)

B 0.998202 (3) 0.998268 (3)
0.998590 (4) 0.998389 (4)
0.999927 (7) 0.998935 (7)
0.999981 (10) 0.999059 (10)

C 0.996222 (3) 0.996258 (3)
0.997254 (4) 0.996651 (4)
0.999963 (7) 0.997512 (7)
0.999994 (10) 0.997816 (10)

D55 0.998601 (3) 0.999333 (3)
0.998661 (4) 0.999735 (4)
0.999847 (7) 0.999754 (7)
0.999993 (10) 0.999777 (10)

D65 0.998261 (3) 0.999540 (3)
0.999657 (4) 0.999747 (4)
0.999850 (7) 0.999756 (7)
0.999991 (10) 0.999777 (10)

F2 0.943412 (3) 0.902988 (3)
0.997532 (4) 0.906935 (4)
0.999822 (7) 0.960598 (7)
1.000000 (10) 0.962187 (10)

F7 0.977805 (3) 0.927684 (3)
0.984056 (4) 0.927935 (4)
0.999831 (7) 0.949162 (7)
1.000000 (10) 0.954743 (10)

F11 0.977489 (3) 0.633774 (3)
0.999904 (4) 0.635411 (4)
1.000000 (7) 0.706311 (7)
1.000000 (10) 0.724624 (10)
It should be mentioned that we did not attempt an ex-
haustive characterization of daylight or its absolute val-
ues in Granada; rather, we sought a variety of spectral
distribution curves corresponding to different phases of
daylight and varying meteorological conditions, which al-
lowed us to obtain a highly representative basis to
achieve our objective. Figure 2 presents some examples
of the daylight spectral distributions obtained.
The first three eigenvectors obtained for the group of 99

spectral distributions, which we use to generate the first
basis, called the basis of experimental measurements, are
shown in Fig. 3. The first eigenvector corresponds to the
mean of the spectral distributions contributing to the cor-
relation matrix. This presents a roughly flat profile with
lower values toward the ends of the spectrum, as found by
other authors.3–6

The second and third vectors varied with the wave-
length, proving sensitive to yellow–blue and pink–green
variations in daylight, in agreement with the results
shown by Judd et al.3 and Sastri and Das.5

The chromaticity coordinates computed from our data
are shown in Fig. 4. As we can observe, most of them are
located near the Planckian locus, with correlated color
temperatures between 4500 and 7000 K, in overall agree-
ment with the results of other authors.3–6

In our case the first three eigenvectors of the basis of
experimental measurements accounted for 99.97% of the
variance. With the first three eigenvectors, 100% of the
99 curves obtain a GFC . 0.99, 97.98% obtain a GFC
> 0.999, and 62.63% obtain a GFC > 0.9999. We obtain
the worst representations for the sunrise and sunset mea-
surements, with a minimum GFC of 0.9977. The recon-
struction of our 99 experimental daylight measurements
with the first three eigenvectors of the basis of experimen-
tal measurements provided an average GFC of 0.999825,
which represents a very good fit. For this reason we con-
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cluded, in agreement with Judd et al.,3 that 3 is an appro-
priate dimension for the basis obtained for representa-
tions of these types of measurement.
However, we might ask what occurs when we attempt

to represent, with this basis, spectral power distributions
different from those used in generating the correlation
matrix. Let us examine the situation in which we try to
reconstruct mathematically the D65 illuminant, artificial
illuminants such as the A illuminant, or a fluorescent one
such as F2.
In column 3 of Table 3, the GFC’s obtained are shown

for the three above illuminants with different numbers of
vectors of the basis. As can be seen, good results are
gained with three vectors for the D65 illuminant. Never-
theless, for other daylight-type illuminants, such as C,
the results are not as good, even with seven eigenvectors.
For illuminant A seven vectors were necessary for a re-

construction comparable with that of the D65 , and, in the
case of the fluorescent illuminants, no acceptable recon-
struction was achieved, even with a greater number of
vectors. This might be expected, given the peculiarities
of the fluorescent illuminants, with emission peaks at
some wavelengths corresponding to spectral lines of cer-
tain elements.
If we wish to establish, with few parameters, a basis

that represents a greater quantity of illuminants, we
must include in the correlation matrix either those that
we seek to represent or spectral-emission characteristics
similar to those that were included. Therefore, in the fol-
lowing section, we describe how we obtained a basis that
served to represent a variety of illuminants, both natural
and artificial, with a dimension as reduced as possible.

4. GLOBAL BASIS
To generate this basis, we created the correlation matrix
from 48 daylight spectral distributions (chosen from
among our measurements), seven spectral power distribu-
tion curves from the blackbody of temperatures (2000,
3000, 4000, 5000, 6000, 7000, and 8000 K), and seven dis-
tributions corresponding to standard illuminants of the
CIE (B, C, D55 , D65 , F2 , F7 , and F11). We used three of
the standard CIE fluorescent illuminants that represent
the general characteristics of fluorescent sources: stan-
dard (F2), broadband (F7), and three narrow-band (F11),
as recommended by the CIE8 from 380 to 780 nm at 5-nm
intervals. The latter seven spectral distributions were
introduced into the matrix three times (that is, with
weight 3). In this way we sought a certain equilibrium
between distributions of the daylight-type measurements
and the rest of the illuminants used.
The graphical representation of the first ten eigenvec-

tors is shown in Fig. 5. The inclusion of fluorescent illu-
minants caused the eigenvectors to lose smoothness.
In Table 3 we have added the GFC obtained on testing

the global basis with the use of different standard illumi-
nants. As can be seen, the global basis adequately rep-
resented all the illuminants tested, both daylight and ar-
tificial, with dimension 7, even improving the one
obtained by the basis of experimental measurements for
daylight-type illuminants.
Thus we can state that four eigenvectors make it pos-
sible with the global basis to reconstruct quite satisfacto-
rily the illuminants A, D65 , F2 , and F11 , which is graphi-

Fig. 5. Spectral profile of the first six eigenvectors of the global
basis. (a) Eigenvectors 1 to 3. Solid curve: eigenvector 1; dot-
ted curve: eigenvector 2; dashed curve: eigenvector 3. (b)
Eigenvectors 4 to 6. Solid curve: eigenvector 4; dotted
curve: eigenvector 5; dashed curve: eigenvector 6. (c) Eigen-
vectors 7 to 10. Solid curve: eigenvector 7; dotted curve:
eigenvector 8; dashed curve: eigenvector 9; points: eigen-
vector 10.
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cally illustrated in Figs. 6(a), 6(b), 6(c), and 6(d),
respectively.
Our aim was to test the basis obtained with illumi-

nants whose spectral-emission curves were not used in
the generation of the basis. The results for illuminant A,
as shown above, can be considered highly satisfactory, as
might be expected, since this illuminant corresponds to
the blackbody of temperature 2856 K and therefore with a
spectral power distribution very similar to the blackbody
of 3000 K introduced into the correlation matrix.
In addition, good results are achieved for this illumi-

nant when it is reconstructed with the daylight basis.
The explanation is that our experimental daylight mea-
surements presented color temperatures of between 2000
and 8000 K as well as chromaticity coordinates very near
or over the blackbody locus in the CIE 1931 chromatic
diagram, as in the results of other authors.3–6

When we tried the global basis with daylight spectral
distributions measured by us (but not included in the cor-
relation matrix) with three eigenvectors, we attained a re-
construction whose GFC was consistently greater than
0.9990. Nevertheless, with the use of other illuminants,
such as the blackbody for temperatures above and below
those used in the generation of the basis, the results were
not as good. Thus, whereas for a temperature of 10,000
K a GFC of 0.998933 was obtained by reconstructing with
seven eigenvectors with equal dimension, the GFC ob-
tained for 1000 K was 0.973258.
For the tests of the fluorescent illuminants, the results

again were diverse. Whereas for the standard F3 illumi-
nant, we obtained a GFC of 0.999304 in a reconstruction
with seven eigenvectors [Fig. 7(a)], for the other standard
fluorescent illuminants with this dimension, the GFC val-
ues, although in an acceptable reconstruction category, do
not reach 0.999. However, in Fig. 7(b) and 7(c), we show
representative examples in which we can consider the re-
constructions to be quite adequate, especially for colori-
metric purposes.
Last, for the reconstruction of the spectral power distri-

bution of one commercial fluorescent tube [Fig. 7(d)], the
results again, though acceptable, cannot be considered
completely satisfactory. We should mention that al-
though, to generate the correlation matrix, we used three
standard CIE fluorescent illuminants8 that represent the
general characteristics of fluorescent sources, it is difficult
with our analysis to accommodate the complete commer-
Fig. 6. Examples of reconstructions of some standard CIE illuminants using four vectors of the global basis. (a) Illuminant A. GFC
5 0.999425. Solid curve: illuminant A; points: reconstruction. (b) Illuminant D65 . GFC 5 0.999657. Solid curve: illuminant
D65 ; points; reconstruction. (c) Illuminant F2 . GFC 5 0.997532. Solid curve: illuminant F2 ; points; reconstruction. (d) Illumi-
nant F11 . GFC 5 0.999904. Solid curve: illuminant F11 ; points: reconstruction.
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Fig. 7. Examples of reconstructions of some fluorescent illuminants using the global basis. (a) Illuminant F3 with seven eigenvectors.
GFC 5 0.999304. Solid curve: illuminant F3 ; points: reconstruction. (b) Illuminant F6 with seven eigenvectors. GFC50.998886.
Solid curve: illuminant F6 ; points: reconstruction. (c) Illuminant F8 with seven eigenvectors. GFC 5 0.998660. Solid curve: il-
luminant F8 ; points: reconstruction. (d) Commercial fluorescent tube with seven eigenvectors. GFC 5 0.991128. Solid curve: com-
mercial fluorescent tube; points: reconstruction.
cial diversity of this type of light source, particularly if
the goal is a basis with reduced dimension. We would
like to make it clear that our purpose was not to generate
a basis that could represent every kind of illuminant but
to try to lay the foundations of the method to follow when
we need a basis for adequately representing a certain set
of illuminants.

5. CONCLUSIONS
We have shown how a representational basis, obtained
with daylight spectral power distributions, presents diffi-
culties for the representation of artificial illuminants.
This occurs both with dimension 3 and higher ones, al-
though exceptions can be found (illuminant A).
In general, with the basis obtained on including in the

correlation matrix both natural and artificial illuminants,
dimension 4 provides a good reconstruction of the illumi-
nants used. Nevertheless, if our basis is to represent
other illuminants, we must increase to dimension 7 in
order to obtain what we have considered to be good
reconstructions.
As a general conclusion, it can be said that if we wish to
obtain a low-dimension basis, but one that represents a
wide variety of illuminants, both natural and artificial,
these should be included, as far as possible, in the corre-
lation matrix of the one that generates the basis. In any
case the dimension necessary will be greater than 3.
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