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Spectral-daylight recovery by use of only a few
sensors
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Linear models have already been proved accurate enough to recover spectral functions. We have resorted to
such linear models to recover spectral daylight with the response of no more than a few real sensors. We
performed an exhaustive search to obtain the best set of Gaussian sensors with a combination of optimum
spectral position and bandwidth. We also examined to what extent the accuracy of daylight estimation de-
pends on the number of sensors and their spectral properties. A set of 2600 daylight spectra [J. Opt. Soc. Am.
A 18, 1325 (2001)] were used to determine the basis functions in the linear model and also to evaluate the
accuracy of the search. The estimated spectra are compared with the original ones for different spectral day-
light and skylight sets of data within the visible spectrum. Spectral similarity, colorimetric differences, and
integrated spectral irradiance errors were all taken into account. We compare our best results with those
obtained by using a commercial CCD, revealing the CCD’s potential as a daylight-estimation device. © 2004
Optical Society of America

OCIS codes: 150.0150, 150.2950, 040.0040.
1. INTRODUCTION
Daylight spectral power distribution (SPD) data are im-
portant to many scientific disciplines and areas of indus-
try and technology; thus a complete knowledge of daylight
SPDs in the visible, ultraviolet, and near-infrared ranges
of the spectrum, sometimes at different sites and for vary-
ing atmospheric conditions, is often called for. Ideally a
high-resolution daylight SPD is measured in different
spectral bands with a spectroradiometer, but either prac-
tical or economic restraints sometimes prevent us from
using complex and expensive instrumentation.

Because of the high temporal and spatial variability of
daylight, the concept of multispectral images and the de-
sign of multispectral devices have received considerable
attention from researchers during the past decade. A
multispectral image is an image in which each pixel con-
tains information about the spectral reflectance of the im-
age scene or else, as in the present paper, about the spec-
tral power distribution of the illumination impinging on
the acquisition device. A multispectral device to recover
the daylight or skylight spectra in each pixel of the image
may be relevant to several fields of application, such as
remote sensing or astronomy, where the spectral informa-
tion from the illumination is spatially and temporally
variable.

Several authors have devoted their research to estimat-
ing solar spectral radiation, using different techniques.1,2

In 1984 Michalsky and Kleckner1 described two methods
of estimating the low-resolution spectral distribution of
direct solar radiation by using seven broadband sensors
spanning a wavelength range of between 360 and 1030
nm. In another study,2 intended to demonstrate the
practicality of these techniques, Michalsky showed that
his integrated estimated spectra had a margin of error
within 1% but that agreement was poorer in their spec-
tral detail. In fact, the average fractional deviation (i.e.,
1084-7529/2004/010013-11$15.00 ©
the sum of the products of the absolute values of the dif-
ferences in spectral irradiance and the wavelength inter-
val normalized by the integrated spectral irradiance) was
0.052 for the seven test spectra in question. He also
found that the results were affected to a greater extent by
the spectral position of the filters than by their band-
widths.

Different techniques for estimating spectral-reflectance
curves have also been published.3–8 They all have in
common recovery of a continuous function by using only a
small number of samples of that function. Connah et al.
used linear models to recover spectral reflectances6–8 and
studied the effect of different parameters, such as the
number of Gaussian sensors, the sensors’ spectral proper-
ties, and the choice of illuminant and sensor noise, on the
performance of the recovery algorithm. They found that
the optimum spectral sensitivity of the sensor depended
on the accuracy pursued and the spectral properties of the
illuminant used, concluding that ‘‘all these parameters in-
teract with each other in a complex way and therefore the
optimum set of parameters cannot easily be determined’’
(Ref. 7, p. 619).

For very low spectral-resolution detail, Michalsky’s
techniques1,2 are perfectly adequate. Daylight spectra,
however, unlike spectral reflectances, are not smoothly
varying functions, and so a normal resolution spectrum
(e.g., one sampled every 5 nm) consists of abrupt emission
and absorption features that are due to either the solar or
the terrestrial atmosphere. Our aim here is to examine
the reliability of a 5-nm-resolution spectral-daylight re-
covery algorithm by using a set containing only a few
Gaussian sensors, carefully chosen for their close similar-
ity to the spectral sensitivity of commercial camera chan-
nels. The algorithm is based on linear models frequently
used in artificial-vision algorithms for recognizing and
identifying colors.9–12 We investigated systematically
2004 Optical Society of America
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the influence of the number of sensors, their spectral lo-
cation, and their bandwidth. To evaluate the accuracy of
our recoveries, we used both spectral and colorimetric er-
ror measurements and an extensive set of experimental
daylight spectra. We completed our study with a com-
mercial CCD to compare its performance with a daylight-
estimation algorithm of this sort.

2. DAYLIGHT LINEAR MODELS
Daylight-measurement campaigns13–17 were conducted in
several countries during the 1960s and 1970s to deter-
mine representative daylight spectra. Despite the vari-
ety of techniques and equipment used by the various re-
searchers in these campaigns, their studies consistently
arrived at two basic conclusions. First, the chromatici-
ties of different phases of daylight lie near the Planckian
locus of the 1931 chromaticity diagram adopted by the
Commission Internationale de l’Eclairage (CIE); second,
different daylight power spectra are closely correlated
with one another, and this underlying similarity has
many practical uses. In fact, a low-dimensional, linear
efficient representation of a daylight SPD benefits from
daylight spectral correlation.

We denote a daylight SPD by E(l), where l is the
wavelength variable with values in the visible range of
the spectrum. Daylight E(l) SPDs are nonnegative
functions. We can describe these spectra by a linear
model9–12:

E~l! 5 (
i51

p

e iVi~l!, (1)

where Vi(l) are fixed and known basis functions and e i
are weighting coefficients (expansion coefficients) or coor-
dinates. But how well does a linear model capture the
range of the spectral variation of daylight? To put it an-
other way, how many basis functions are required to ap-
proximate accurately a large daylight data set E(l) that
corresponds to different atmospheric conditions? If a
daylight SPD is sampled over a wavelength range of 380
to 780 nm at 5-nm intervals (N 5 81 samples), we need
in principle 81 basis functions in Eq. (1) in order to rep-
resent E(l) exactly. In practice, however, the correlation
among daylight spectra means that we may set p , N
without losing any meaningful spectral information.

There are infinite possible choices of basis functions
Vi(l). If the basis functions in Eq. (1) are calculated to
minimize the mean squared error9,10,12 of a set of empiri-
cal spectra, then they are all orthogonal eigenvectors and
may be obtained from a principal component analysis
(PCA). Mathematically stated,

^VjuVk& 5 0 5 (
i51

N

Vj~l i!Vk~l i!, j Þ k, (2)

where ^u& is the inner product. In this case the weighting
coefficients e i can be obtained by

e i 5 ^E~l!uVi~l!&. (3)

Therefore the mathematical reconstruction ER(l) of
the original SPD, E(l) from the eigenvectors Vi(l) is
given by
ER~l! 5 (
i51

p

^E~l!uVi~l!&Vi~l!, (4)

where p is the number of eigenvectors with which we wish
to recover the spectral distribution.

In a previous study18 we made a PCA using 2600 day-
light spectra (global spectral irradiances on a horizontal
surface from direct sunlight—when present—and the en-
tire sky) recorded over a period of two years in the city of
Granada (Spain) from sunrise to sunset, under nearly all
weather conditions. We found that the first five eigen-
vectors (basis functions) accounted for 99.991% of the ob-
served variance between 380 and 780 nm and that up to
five eigenvectors were needed to recover daylight SPDs
accurately in the visible region of the spectrum (380–780
nm). We found in fact that, according to CIE
recommendations,19 it was possible with only three eigen-
vectors to achieve daylight recoveries that are colori-
metrically indistinguishable from the corresponding origi-
nal daylight SPD.

3. SPECTRAL-DAYLIGHT RECOVERY
Previous results indicate that low-dimensional linear
models suffice for the representation of both
natural18,20–22 and artificial23 illuminants. More re-
cently, DiCarlo and Wandell24 described a possible im-
provement in the quality of linear models if the coeffi-
cients e i are highly structured (i.e., if some of these
coefficients are a function of others), it being feasible to
estimate values for several coefficients from a knowledge
of others. They asserted that a knowledge of the struc-
ture of the coefficients e i may increase the quality of the
estimation with fewer sensors and lower cost and thus
help in sensor design.

No attempts have been made, however, to find the op-
timum sensor design when what is of interest is the prac-
ticality of linear models for the estimation of natural illu-
minant spectra. It is impossible, for example, to have
sensors with the same spectral transmittance Rk(l) as
the eigenvectors Vi(l) obtained from a PCA, because
eigenvectors, being orthogonal, must have negative val-
ues, as shown in Fig. 1. Therefore Eq. (4) is only a math-
ematical approach to the problem, not a realistic one.
Consequently, the practicality of such a daylight-recovery
algorithm relies heavily on the suitable choice of an opti-
mum real set of sensors.

Let us assume that an array of q sensors, each with a
different spectral sensitivity Rk(l), are directly detecting
the illuminant. For daylight, E(l), a sensor with a spec-
tral sensitivity Rk(l) will give the following response to
the incident light:

rk 5 (
n51

N

E~ln!Rk~ln!. (5)

Let r̄ be the vector of the q sensor responses r̄
5 (r1 , r2 ,..., rq)T, where the T superscript denotes
transpose. If we use a linear representation of E(l), as
in Eq. (4), then Eq. (5) becomes a simple matrix equation,

r̄ 5 L̂ē, (6)
where
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~L̂!ki 5 (
n51

N

Vi~ln!Rk~ln!, (7)

~ ē !i 5 ^E~l!uVi~l!&. (8)

We have a set of simultaneous matrix equations [Eq.
(6)], all sharing the same L̂ matrix. If the number of sen-
sors is the same as the number of basis functions (i.e.,
p 5 q), then we can solve the equation r̄ 5 L̂ē for ē by
inverting the matrix L̂, thus obtaining the reconstructed
daylight spectrum as

ER~l! 5 (
i51

p

~ ē !iVi~l!. (9)

If this daylight-recovery algorithm must be imple-
mented through the use of a particular set of sensors,
then, as discussed above, it is essential to choose the most
adequate sensors—obviously with the constraint of posi-
tive Rk(l)—as we now do below.

4. SEARCH FOR OPTIMUM SENSORS
Among different methods for selecting the optimal filters
(see Refs. 25 and 26 for an overview of different ap-
proaches for filter selection and design), we have made an
exhaustive search to find the best set of sensors for pro-
viding the least error in recovering our 2600 daylight
spectral curves, using our daylight eigenvectors Vi(l)
(Fig. 1) in the range from 380 to 780 nm with a spectral
resolution of 5 nm. To do this we imposed certain restric-
tions and made several assumptions a priori. First, we
limited our study to sensors that are Gaussian functions
of wavelength. Although some researchers have pro-
posed different mathematical techniques to obtain nonne-
gative reflectance basis functions that maintain the opti-
mum compression properties of the PCA scheme while
providing accurate reconstructions of reflectance spectra
(see, for example, Refs. 27 and 28), we chose Gaussian
sensors because the spectral sensitivity of the sensors of

Fig. 1. Spectral distribution of eigenvectors V1(l), V2(l),
V3(l), and V4(l) for our 2600 daylight measurements (see Ref.
18). Plain solid curve, V1(l); dashed curve, V2(l); dotted
curve, V3(l); solid curve with triangles, V4(l).
many commercial cameras is close to that of Gaussian
functions.29 Second, we limited the number of sensors to
between three and five because this is the optimum num-
ber of eigenvectors needed to represent daylight spectra,
depending upon the degree of accuracy required. Third,
we assumed that the number of sensors is the same as the
number of basis functions ( p 5 q) in the recovery pro-
cess, which leads to a squared matrix L̂. And fourth, we
took it that the spectral sensitivity of the sensors does not
depend on the level of daylight irradiance.

We exhaustively and systematically investigated the
influence of the number of Gaussian sensors, their spec-
tral location, and their bandwidths. We allowed the peak
sensitivity of each sensor to be at any wavelength from
380 to 780 nm in 5-nm steps, and the FWHM to vary from
10 to 400 nm in 5-nm steps. In this way we included in
our search both narrowband and wideband sensors. Al-
lowing the full parameter space (number of sensors, sen-
sor peak sensitivity, and sensor bandwidth) to be
searched involves high computational cost: The search
for the three optimum Gaussian sensors, for instance, re-
quired the evaluation of 2.6 3 1011 filter combinations
(2.6 3 1011 5 813 3 793). Note also that the optimum
sensors will depend on the experimental data used to
carry out the search and also on the eigenvectors used in
the linear recovery model [Eqs. (5)–(9)].

While carrying out this exhaustive and systematic
search, by using Eq. (9) we compared the reconstructed
function, ER(l), with the original, E(l), making a triple
evaluation in accordance with the recommendations of
Imai et al.,30 who indicated that there is no single param-
eter that permits us to assess the validity of a spectral re-
construction. Therefore we used a triple cost function:
Our evaluation consists of a spectral index (goodness-of-
fit coefficient GFC,31 based on Schwartz’s inequality, pre-
viously used in Refs. 18, 20, 22, 23, and 30), a colorimetric
index (CIELUV color difference32,33), and the usual, es-
sential parameter in solar research, the relative error be-
tween integrated irradiances (both original and recon-
structed) throughout the visible spectrum (380–780 nm).
Our set of optimum sensors therefore must simulta-
neously maximize the mean GFC value, minimize the
mean CIELUV color difference, and minimize the mean
integrated irradiance error.

We have found in previous studies18,22 that colorimetri-
cally accurate daylight recoveries require GFC . 0.995,
whereas what we might call a good spectral fit requires
GFC . 0.999, and an almost-exact fit GFC . 0.9999.
Note also that three CIELUV color-difference units are of-
ten taken to be one just-noticeable difference in technical
and industrial applications. Other authors have studied
and proposed different quality metrics for the optimal de-
sign of camera spectral-sensitivity functions.34,35

Thus by using these three cost functions to evaluate the
quality of the reconstruction and to find the optimum sen-
sors, we avoid focusing our results on just one aspect.30

Therefore we avoid an exhaustive search that produces as
optimum sensors both those that generate metameric
daylight reconstructions and those that allow us to re-
cover daylight with similar integrated irradiance but with
low colorimetric and spectral quality (another form of
metamerism).
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5. RESULTS
In this section we present an evaluation of the accuracy of
our optimization search when it is tested against a set of
2600 daylight spectra18 and our daylight basis functions
(Fig. 1). Table 1 shows the characteristics of the opti-
mum sensors (optimized peak sensitivity and FWHM),
which are also represented in the graph in Fig. 2. Con-
nah et al.7 found that the ‘‘nature of the cost function af-
fects the spectral properties of the filters’’: When they
used a root mean square (RMS) cost function, their three
sensors were evenly spread throughout the spectrum, and
when they used the CIELAB DE error as the cost func-
Fig. 2. Optimized spectral sensitivities of Gaussian sensors to recover daylight: (a) three optimum Gaussian sensors, (b) four optimum
Gaussian sensors, (c) five optimum Gaussian sensors, (d) spectral response function of the sensors of the JVC TK-1270E CCD color
camera.

Table 1. Optimum Spectral Sensitivities of the Gaussian Sensors for Daylight Recovery

Number of
Sensors

Gaussian Sensor
Characteristics

Spectral Sensitivity (nm)

First
Sensor

Second
Sensor

Third
Sensor

Fourth
Sensor

Fifth
Sensor

3 Peak sensitivity 425 440 740
FWHM 250 120 300

4 Peak sensitivity 430 445 520 750
FWHM 290 100 40 330

5 Peak sensitivity 450 485 505 590 750
FWHM 230 110 110 15 370
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Fig. 3. GFC results obtained with the three optimum Gaussian sensors in Fig. 2(a) versus our set of 2600 daylight spectra. Solid
curves, original; dashed curves, recovery.

Table 2. Mean, Standard Deviations, and 99th Percentile Results Obtained with the Optimum Sensors
(Table 1) and Our Daylight Eigenvectors (Fig. 1) Tested against a Set of 2600 Daylight Spectraa

Number
of Sensors

GFC DEuv

Integrated
Irradiance Error

Fractional
Deviation RMS Error

Mean
(SD)

99th
Percentile

Mean
(SD)

99th
Percentile

Mean
(SD)

99th
Percentile

Mean
(SD)

99th
Percentile

Mean
(SD)

99th
Percentile

3 0.9997
(0.0004)

0.9983 0.3360
(0.2983)

1.1855 0.0133%
(0.0116%)

0.0572% 0.0173
(0.0092)

0.0497 0.3715
(0.4078)

1.6072

CCD
camera

0.9991
(0.0015)

0.9921 0.1967
(0.1740)

0.6825 1.1874%
(1.0116%)

5.1053% 0.0298
(0.0198)

0.1083 0.6295
(0.7686)

2.6421

4 0.9998
(0.0003)

0.9990 0.1186
(0.1208)

0.4354 0.0056%
(0.0051%)

0.0209% 0.0112
(0.0061)

0.0328 0.2620
(0.3001)

1.086

5 0.9999
(0.0002)

0.9995 0.1072
(0.1180)

0.3972 0.0058%
(0.0052%)

0.0222% 0.0076
(0.0044)

0.0226 0.1771
(0.2234)

0.7225

a Also included are the results obtained with a JVC TK-1270E CCD color camera. Standard deviations (SD) are given in parentheses.
tion, the spectral sensitivities of the sensors were strik-
ingly similar to those of the human cone fundamentals.7

Unlike Connah et al.,7 we focus our work on the recovery
of daylight, not on spectral reflectances, and, more impor-
tant, we have used a triple cost function that takes into
account a spectral measure (the GFC), the properties of
the human visual system (the CIELUV color difference),
and the relative error between integrated irradiances.
Therefore the nature of these three cost functions biases
the spectral profile of our optimum sensors.
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The mean, standard deviations, and 99th percentile re-
sults of the recoveries are summarized in Table 2, where
the fractional deviations are added to help compare our
results with those of Michalsky,2 who found an average
fractional deviation of 0.052 when using seven sensors.
We have also included the RMS errors and the values for
the quality of the estimation when the three nonoptimum
color channels (not obtained after an optimization search)
of a typical CCD camera [shown in Fig. 2(d)] are consid-
ered in the recovery algorithm.

From the results shown in Table 2 we may conclude
that even with a set of only three optimum sensors, day-
light spectra can be recovered to a very high degree of
spectral and colorimetric accuracy: The 99th percentile
for the GFC is 0.99828, and the 99th percentile for DEuv
is 1.1855. We found that the performance of the opti-
mum sensors was in general comparable to that of the
eigenvectors22 and that we got very low values in com-
parison with any kind of spectral and color tolerances.
Moreover, the average fractional deviation with only
three optimum sensors (0.0173) was three times lower
than that pertaining to Michalsky’s results.2
Table 2 also indicates that an increase in the number of
optimum sensors enhances both the spectral and the colo-
rimetric performance of the recovery algorithm; with five
optimum sensors the accuracy is almost perfect, produc-
ing an average GFC of 0.9999, an average DEuv of 0.1072,
and an average fractional deviation of 0.0076. Table 2
shows an unexpected result however: The mean inte-
grated error with five sensors is slightly worse than with
four sensors (0.0056% versus 0.0058%). This result can
be put down to the cost function, which in our work is a
triple cost function, rather than to the optimization
search design. So in fact the RMS error (which is di-
rectly related to the eigenvector expansion because the ei-
genvector expansion is the best mean-squared-error ap-
proximation) with five sensors is no worse than with four
sensors.

When a commercial CCD camera is used, the results
are worse, particularly with regard to the integrated irra-
diance error (99th percentile ;5%), but for colorimetric
purposes this CCD camera could be quite suitable as a
daylight-estimation device, as found by Chiao et al.36

Figures 3–6 show daylight recoveries with the median,
Fig. 4. GFC results obtained with the four optimum Gaussian sensors in Fig. 2(b) versus our set of 2600 daylight spectra. Solid curves,
original; dashed curves, recovery.
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Fig. 5. GFC results obtained with the five optimum Gaussian sensors in Fig. 2(c) versus our set of 2600 daylight spectra. Solid curves,
original; dashed curves, recovery.
maximum, minimum, and 99 percentile GFC values ob-
tained with the optimum sensors and the CCD camera.

In Table 3 the results obtained with a theoretical eigen-
vector expansion [Eq. (4)] can be compared with those ob-
tained with the optimum sensors, and it can be seen how
much is lost in using positive sensors instead of the eigen-
vectors. Although these optimum Gaussian sensors are
neither orthogonal nor negative, as are the eigenvectors,
the accuracy obtained is comparable.

Our approach is open to the criticism that our conclu-
sions cannot be generalized beyond the collection of spec-
tra analyzed because the matrix L̂, which had to be in-
verted, depends on both the sensors Rk(l) and the
eigenvectors Vi(l). As Connah et al. pointed out,6 the
reconstruction errors might be high when the linear sys-
tem [Eq. (6)] is ill-conditioned, which can be quantified by
the condition number of the matrix L̂ calculated by the
product of the norms of L̂ and its inverse, L̂21. Note that
a high condition number implies that the coefficients of L̂
are becoming increasingly correlated. Consequently, we
extended our analysis to three different collections of
natural light to test the influence of the choice of eigen-
vectors both on the reconstruction errors and on the ill-
conditionness or otherwise of the matrix L̂. The three
additional sets of natural light were (1) nine typical CIE
daylight curves for different color-correlated tempera-
tures (CCTs) from 2000 to 20,000 K at intervals of
2000K,19 (2) 12 real daylight spectra, measured in the US
by R. L. Lee, Jr., and not included in the PCA described in
Section 2, and (3) a set of 1567 skylight spectra.22 This
third set was chosen because daylight and skylight spec-
tra usually differ at any given place, as do their chroma-
ticities, but traditionally they have not been distin-
guished in the confusing terminology used for daylight.

Table 4 shows the recovery errors for the set of nine
typical CIE daylight spectra with use of the optimum sen-
sors and our daylight eigenvectors, where it can be seen
that both the colorimetric and the spectral results have
deteriorated. In a previous paper20 we analyzed the in-
fluence of the daylight basis functions (there are different
sets of basis functions published in the literature) on re-
construction quality and found that a spectral resolution
of 5 nm, as opposed to 10 nm, improved the quality of the
reconstructions. Bearing in mind first that the original
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CIE daylight spectra13 were measured at a resolution of
10 nm (afterward interpolated to a sampling rate of 5
nm), second that typical CIE daylight recoveries do not
correspond to real measurements but to a method for cal-
culating the relative SPD of typical daylight phases from
CCT values alone, and last that daylight colorimetric and
spectral characteristics depend heavily on the particular
conditions under which the spectra were acquired, we are
hardly surprised by the slightly worse results shown in
Table 4.

When using the 12 US real daylight spectra (not in-
cluded in the PCA) (Table 5) and our daylight basis func-
tions, unsurprisingly we got results very similar to the
Granada daylight-recovery results. These very good re-
sults indicate that the eigenvectors obtained from our set
of 2600 daylight spectra (which provided the broadest
range of daylight chromaticities and CCTs to date18) are
very representative of daylight and highlight the portabil-
ity of the optimum sensors and our eigenvectors to re-
cover daylight at different sites and for varying atmo-
spheric conditions.

The third additional set of natural-light samples tested
consisted of 1567 skylight spectra measured with a field
of view of 3° along four sky meridians.22 The spectral
and colorimetric characteristics of skylight differ greatly
from those of daylight (which includes sunlight), but un-
fortunately the tendency in the past has always been to
combine heterogeneous collections of curves (see, for ex-
ample, Judd et al.13), thus complicating still further the
already confusing nature of daylight terminology.37 This
is evident when we recover skylight spectra from the re-
sponse of our sensors optimized for daylight recovery and
the use of our daylight eigenvectors, as shown in Table 6.
The results are quite similar to those shown in Table 4
with the CIE daylight spectra, supporting our suspicion
that the work of Judd et al.13 included predominantly
skylight rather than daylight spectra.

If we use skylight eigenvectors instead of daylight ones
to recover skylight with the optimum sensors set out in
Table 1, the results (Table 7) improve considerably, be-
coming almost identical to those shown in Table 2. This
happens because the change in the eigenvectors scarcely
alters the condition number of the matrix L̂ (e.g., with
three optimum sensors it changes from 8.81 to 18.53). If,
however, we try to use the CCD camera as a skylight- (6),
estimation device with the skylight eigenvectors in Eq.
Fig. 6. GFC results obtained with the sensors of a CCD color camera (JVC TK-1270E), shown in Fig. 2(d) versus our set of 2600 daylight
spectra. Solid curves, original; dashed curves, recovery.
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the condition number worsens dramatically from 18.16 to
267.88, and this is reflected in results of quite poor qual-
ity because most of the skylight recoveries have negative
values.

6. CONCLUSIONS
Researchers into artificial-vision algorithms for recogniz-
ing and identifying colors have generally assumed that
linear models are accurate enough to recover not only
spectral reflectances but also spectral illumination. This
paper represents an initial step in determining whether
the physical implementation of linear models is suitable
for estimating daylight spectra from the response of a few
carefully chosen Gaussian sensors.

Table 3. Means and Standard Deviations
Obtained with the Optimum Sensors (Table 1)
and Our Daylight Eigenvectors (Fig. 1) Tested

against a Set of 2600 Daylight Spectra, Compared
(in Italics) with the Results Obtained with a
Theoretical Eigenvector Expansion [(Eq. 4)]a

Mean GFC
(SD)

Mean RMS
Error
(SD)

3 sensors 0.99971
(0.00039)

0.3715
(0.4078)

3 eigenvectors 0.99973
(0.00038)

0.3442
(0.3775)

4 sensors 0.99983
(0.00030)

0.2620
(0.3001)

4 eigenvectors 0.99986
(0.00025)

0.2503
(0.2868)

5 sensors 0.99992
(0.00017)

0.1771
(0.2234)

5 eigenvectors 0.99995
(0.00008)

0.1516
(0.1881)

a Standard deviations are given in parentheses.

Table 4. Means and Standard Deviations
Obtained with Our Optimum Sensors (Table 1)
and Our Daylight Eigenvectors (Fig. 1) Tested
against Nine Typical CIE Daylight Spectra of

Different CCTsa

Number
of

Sensors
Mean GFC

(SD)
Mean DEuv

(SD)

Mean
Integrated

Irradiance Error
(SD)

Mean
Fractional
Deviation

(SD)

3 0.9946
(0.0033)

24.8328
(16.1775)

0.0416%
(0.0074%)

0.0420
(0.0121)

CCD
camera

0.9831
(0.0143)

14.8362
(9.0366)

3.8200%
(2.1130%)

0.1420
(0.0820)

4 0.9979
(0.0011)

8.3701
(4.1103)

0.0078%
(0.0048%)

0.0298
(0.0062)

5 0.9980
(0.0011)

4.9978
(1.9412)

0.0328%
(0.0177%)

0.0322
(0.0022)

a 4000, 6000, 8000, 10,000, 12,000, 14,000, 16,000, 18,000, and 20,000
K.
Although both daylight and skylight have complex, un-
even spectral profiles with different absorption bands
caused by such factors as water vapor, oxygen, ozone, and
aerosols, and the strength of these bands depends on the
day or even the time of the day, we have found that a lin-
ear recovery algorithm with a set of a few optimum
Gaussian sensors returns very-high-quality reconstruc-
tions of both daylight and skylight. We have described
here a procedure to find the best set of Gaussian sensors
with optimum spectral position and bandwidth.

Although these optimum Gaussian sensors are not or-
thogonal, as are the eigenvectors, daylight spectra can be
recovered from the response of these sensors with a very
high degree of spectral and colorimetric accuracy. In
fact, the performance of the optimal sensors was in gen-
eral comparable to that of the eigenvectors. Increasing
the number of optimum sensors enhances both the spec-
tral and the colorimetric performance of the recovery al-
gorithm. Our results show that the combination of linear
models with optimal Gaussian sensors is an accurate

Table 5. Means and Standard Deviations
Obtained with Our Optimum Sensors (Table 1)

and Our Daylight Eigenvectors (Fig. 1) versus 12
Daylight Spectra Measured in the US by Lee37 a

Number
of

Sensors
Mean GFC

(SD)
Mean DEuv

(SD)

Mean
Integrated

Irradiance Error
(SD)

Mean
Fractional
Deviation

(SD)

3 0.9992
(0.0006)

0.2847
(0.2141)

0.0323%
(0.0319%)

0.0296
(0.0145)

CCD
camera

0.9967
(0.0054)

0.1776
(0.1512)

2.2306%
(2.9605%)

0.0501
(0.0472)

4 0.9995
(0.0003)

0.1136
(0.0818)

0.0110%
(0.0060%)

0.0208
(0.0066)

5 0.9996
(0.0002)

0.1531
(0.1364)

0.0060%
(0.0061%)

0.0181
(0.0061)

a These 12 spectral daylight measurements have different CCTs from
5750 to 16,780 K and a sampling rate of 5 nm. Standard deviations are
given in parentheses.

Table 6. Means and Standard Deviations
Obtained with Our Optimum Sensors (Table 1)
and Daylight Eigenvectors (Fig. 1) versus Our
Set of 1567 Skylight Spectra with a Sampling

Rate of 5 nma

Number
of

Sensors
Mean GFC

(SD)
Mean DEuv

(SD)

Mean
Integrated

Irradiance Error
(SD)

Mean
Fractional
Deviation

(SD)

3 0.9959
(0.0037)

0.6224
(0.4208)

0.0669%
(0.0562%)

0.0696
(0.0332)

CCD
camera

0.9854
(0.0131)

0.3459
(0.2409)

3.9113%
(3.3562%)

0.1375
(0.0753)

4 0.9981
(0.0017)

0.2192
(0.1510)

0.0134%
(0.0111%)

0.0474
(0.0249)

5 0.9985
(0.0016)

0.1501
(0.1278)

0.0212%
(0.0173%)

0.0413
(0.0235)

a For more details see Ref. 22.
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method to recover spectral daylight because of its preci-
sion, efficiency, and portability.

Our intention for the future is to extend this work to
different kinds of sensor, to analyze the effects of reducing
the constraints assumed in Section 4 (i.e., to relax the
constraint of an equal number of sensors as basis func-
tions), and to consider the presence of random noise and
quantization noise.
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