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Selecting algorithms, sensors, and linear bases for
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In a previous work [Appl. Opt. 44, 5688 (2005)] we found the optimum sensors for a planned multispectral
system for measuring skylight in the presence of noise by adapting a linear spectral recovery algorithm pro-
posed by Maloney and Wandell [J. Opt. Soc. Am. A 3, 29 (1986)]. Here we continue along these lines by simu-
lating the responses of three to five Gaussian sensors and recovering spectral information from noise-affected
sensor data by trying out four different estimation algorithms, three different sizes for the training set of spec-
tra, and various linear bases. We attempt to find the optimum combination of sensors, recovery method, linear
basis, and matrix size to recover the best skylight spectral power distributions from colorimetric and spectral
(in the visible range) points of view. We show how all these parameters play an important role in the practical
design of a real multispectral system and how to obtain several relevant conclusions from simulating the be-
havior of sensors in the presence of noise. © 2007 Optical Society of America
OCIS codes: 150.2950, 280.0280, 040.0040.
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. INTRODUCTION
ultispectral imaging systems and techniques have be-

ome powerful tools for the rapid measurement of high-
patial-resolution spectral images. They allow us to re-
over the spectral radiance of an illuminant, the
eflectance of an object, or the combined color signal by
sing data from the responses of a few sensors, typically
hose in a CCD digital camera. In this paper we focus on
kylight as an important natural illuminant from the
pectral curves of which we can extract information about
limate parameters such as optical depth or the Angstrom
xponent.1 These spectral power distribution curves
SPDs) are normally measured with spectroradiometers,
hich are complex and expensive instruments that pro-
ide only one spectrum per measurement, whereas a mul-
ispectral system such as the one simulated here will pro-
ide one accurate spectrum at each pixel of the entire
mage. Multispectral imaging systems,2 therefore, are in-
reasingly replacing classical spectroradiometers in the
ask of measuring SPDs owing to the substantial im-
rovements they offer in spatial resolution, portability,
nd speed compared with other spectral instruments.
Faced with the task of obtaining accurate spectral mea-

urements from a multispectral system, we must select
he algorithm to recover suitable spectral curves from
ensor responses, estimate and try to reduce the influence
f the noise present in the system, and choose the opti-
um sensors or filters for the task for which this multi-

pectral system has been designed. It is possible to take
nto account all these factors in a step prior to the devel-
pment of the multispectral system. Computers allow us
o simulate the spectral sensitivity of sensors and their
esponse to spectral information, to add simulated noise,
nd to try to recover mathematically the SPD curves from
his noise-influenced sensor data. If these computational
odels simulate the real physical phenomena accurately
1084-7529/07/040942-15/$15.00 © 2
nough, the information provided by them will help us to
uild an accurate multispectral system.
In this work we deal with all the possible factors that

hould be taken into account when studying the behavior
f a practical multispectral system: the spectral sensitiv-
ty of its sensors, the number and type of sensors, the es-
imation method and linear basis chosen, the number and
uality of training spectra, and the noise that always af-
ects any electronic device. To include all these factors in
n exhaustive search is a highly demanding computa-
ional task. Our alternative approach greatly reduces
omputing time by using a simulated annealing
lgorithm3 that minimizes one cost function. To this end,
n Section 3 we use a previously proposed4 single-cost
unction that evaluates the quality of our recovered sky-
ight spectra. This is known as the colorimetric and spec-
ral combined metric (CSCM) function, which has proved
o be a good metric for evaluating spectral and colorimet-
ic differences between skylight spectra.5

As far as the spectral estimation method is concerned,
t must be clear from the outset that extracting spectral
nformation in the visible range from the responses of a
ew sensors is an under-dimensioned mathematical prob-
em because the projection of the skylight spectra in the
ensor-response space leads to a substantial loss of infor-
ation. Various mathematical algorithms exist that allow
s to estimate spectral information from sensor re-
ponses. These methods are commonly based on a priori
nowledge of the kind of spectra we want to recover. For
xample, performing a principal component analysis2,6–8

PCA) or, more recently, nonnegative matrix
actorization9–11 (NMF) or independent component
nalysis12,13 (ICA) upon a set of previously registered
pectral measurements (called training spectra) provides
set of vectors, i.e., a linear basis, which can be linearly

ombined to obtain the spectral estimation. Three of the
007 Optical Society of America
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our methods we have studied here, the Maloney–Wandell
ethod6 (which has been widely used by other

uthors4,14), the Imai–Berns method,15 and the Shi–
ealey method,16 rely on the use of a linear basis. An-

ther way of including a priori spectral knowledge is to
evelop a Wiener pseudoinverse17,18 (also called direct
seudoinverse19,20), where the sensor responses to the
nown training spectra are then used to construct a ma-
rix that provides unknown spectra from their measured
esponses. These methods are described in detail in Sec-
ion 2 and have been compared here because they are the
ost frequently used2,4,6,14–29 spectral estimation algo-

ithms to recover illuminant or surface spectra from sen-
or responses owing to the accurate results they provide.

In Section 4 we present the optimum sensors and their
ccuracy in reconstructions of the four estimation meth-
ds used with various amounts of added noise and com-
arisons of the influence of nonuniform versus uniform
/D quantization for spectral skylight data representa-

ion. We also show the lowest number of training spectra
hat could be used in each method. We make a compara-
ive study of the speed of each of the four spectral estima-
ion methods as a function of the size of the training set of
pectra used in the recovery method. Finally, we compare
he efficiency of the different linear bases provided by
CA, ICA, and NMF used with the Maloney–Wandell,
mai–Berns, and Shi–Healey methods to recover skylight
pectra and show the optimum number of basis vectors
hat should be used in each case.

. SPECTRAL ESTIMATION ALGORITHMS
e simulate the spectral response of CCD camera sensors

ssuming this response to be linear.2,14,21–23 If we make
his assumption for our multispectral imaging system, we
an model its sensor responses using

� = RtE, �1�

here we have sampled the visible spectrum at N differ-
nt wavelengths and assumed vector notation for the re-
ulting magnitudes. In Eq. (1) � is the column vector rep-
esenting k sensor responses (k=3,4,5, given here the
ypical dimensionality of natural illuminant spectra4,7,8),

is the illuminant spectrum (skylight in our case, rang-
ng from 380 to 780 nm in 5 nm steps, within which we
ave 81 samples per spectrum) represented by an N�1
olumn vector, and R is an N�k matrix containing the
pectral sensitivities of the k sensors at N sampled wave-
engths (superscript t denotes its transpose). Any real im-
ging system is of course affected by noise,2,4,17,30–32 a fact
ot explicitly accounted for in Eq. (1). Nevertheless, noise
an be represented there as an additive term2,21,22 that
hanges the ideal noise-free sensor responses, �free, to

� = �free + �, �2�

here � is a k-row vector of uncorrelated components that
ffect each sensor separately.4,17,21–23 A good review of
ensor noise sources can be found in Yotter and Wilson.32

The goal here is to recover the skylight spectra, E, from
he calculated sensor responses, �. Different estimation
ethods have tried to solve this problem. As mentioned in
he introduction, it is common to make use of a priori
nowledge of the spectra we want to recover, with PCA,
CA, or NMF being widely used strategies.2,4,6–16,24–29

hey coincide in providing a set of vectors that can be
sed to express a given spectrum as a linear combination

E = V�, �3�

here V is an N�n matrix containing the first n vectors
sed for reconstructing N wavelengths (n is always less
han or equal to N and is usually chosen to equal k, the
umber of sensors, which often gives the best
esults15,24,25). Vector � is an n-rowed vector that contains
he coefficients of the linear combination. The first three
ethods discussed make use of this linear approximation

or the spectra.

. Maloney–Wandell Method
his method6 simply substitutes Eq. (3) into Eq. (1) to ob-
ain

� = RtV� = ��, �4�

here � is a k�n matrix that directly transforms the co-
fficients, �, into the sensor responses, �. By calculating
’s pseudoinverse (denoted by superscript +), we obtain

he coefficients for the linear estimate of the spectrum
rom the camera’s sensor responses and can then recover
he skylight spectrum

ER = V�+�. �5�

According to this method the a priori information pro-
ided by the training spectra is included in matrix V
which contains the basis vectors), which also appears in
, as can be seen in Eq. (4). With this method it is also
ecessary to measure the spectral sensitivities, R, of the k
ensors to obtain matrix �.

. Imai–Berns Method
mai and Berns developed a method15 for recovering spec-
ral data based directly on a relationship between sensor
esponses � and coefficients �, which now includes a col-
mn in �ts and �ts for each of the m training spectra (sub-
cript ts stands for training spectra; we will use different
alues for m in this study, as will be explained later):

�ts = G�ts. �6�

n this new equation, the system matrix, G, is an nxk ma-
rix, which is formally similar to �+ in Eq. (5) but is now
etermined empirically by a least-squares analysis of the
raining-spectra measurements. Hence it is not necessary
o measure the spectral sensitivities, R, of the camera
o use this method with real sensor-response
easurements.19 We can estimate matrix G via a least-

quares analysis by pseudoinverting the k�m matrix �ts

G = �ts�ts
+ . �7�

n our case the recovered skylight spectrum is simply cal-
ulated in this method from the sensor responses, �, by

ER = VG�. �8�

ere, the information provided by the training spectra is
ncluded in V and in G.
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. Shi–Healey Method
hi and Healey16 designed a very insightful method that
llows the use of higher-dimensional models for the re-
ectance and illuminant spectra in Eq. (3). Although the
aloney–Wandell and Imai–Berns methods can be used
ith more eigenvectors than sensors �n�k�, this does not

ead to the best results—as we will see later—because a
odel with n�k does not determine a unique mapping

etween � and �, since E vectors, having different � val-
es, can generate the same � vector16 as a result of loss of

nformation when registering a n�k linear model with
ust k parameters (the sensor responses). We call SE the
et of vectors, E, generated when varying the n coeffi-
ients, � (more than the number of sensors k), and having
he same responses, �. To associate a sole ER recovered il-
uminant vector with a � measurement vector, we can se-
ect a single vector, E*, from the set SE with the constraint
f requiring that E* be the vector in SE that minimizes
he mean-square error calculated throughout the training
pectra. In other words, we will choose E* from a given �
s that vector that is most similar to a training spectrum
mong those vectors of SE that are consistent with both
he linear model and the sensor vector, �.

Since we have k sensors, given a dimensionality of n for
he linear model, we separate the contributions of the last

principal components (denoted by subscript 2) and the
emaining n−k first principal components (subscript 1) in
q. (4):

� = Rt�V1�1 + V2�2�, �9�

here V1 contains the eigenvectors 1, . . . ,n−k and V2
ontains the eigenvectors n−k+1, . . . ,n. The vectors �1
nd �2 contain the corresponding coefficients for the lin-
ar estimation. From Eq. (9) we can solve for �2 in terms
f �1 according to

�2 = �RtV2�−1�� − RtV1�1�, �10�

nd substituting into Eq. (3), we get

E = V1�1 + V2�RtV2�−1�� − RtV1�1�. �11�

rom this equation, we can construct an N�m matrix,
*, of column vectors of SE that minimizes the mean-

quare error throughout the training spectra, which is the
olution of a least-squares problem that can be solved for
1 using pseudoinversion

E* = V1�1
* + V2�RtV2�−1��* − RtV1�1

*�, �12�

here �* is a k�m matrix containing the sensor re-
ponses, �, to the measured spectra, E, repeated in its m
olumns, and the �n−k��m matrix, �1

*, is given by the
quation

�1
* = �V1 − V2�RtV2�−1RtV1�+�Ets − V2�RtV2�−1�*�, �13�

here Ets is an N�m matrix containing one training
pectrum per column. We have constructed an N�m ma-
rix, E*, of estimated spectra from the sensor responses, �,
f a measured spectrum, E. Each column of E* is related
o each column of Ets, containing the training spectra. If
e calculate the distance between each column of E* to

ach column of E , we can choose the estimated spec-
ts
rum, ER, as that column of E* for which this distance is
inimum

ER = Ei
*, �14�

n which i selects the column of E* for which the distance
Ei

*−Etsi
� is minimum. The most important disadvantage

f this method is that for every given vector response, �,
e have to calculate m estimated spectra for E* and

hoose the minimum of m distances. If m is large the al-
orithm is extremely slow. We also need to measure accu-
ately the spectral sensitivities, R, of the camera. This
ethod will be used here with n=k+1,k+2, . . . basis vec-

ors, since if we use just k basis vectors, the matrix, V1,
ould be zero and Eq. (12) would be exactly the same as
q. (5) for the Maloney–Wandell method for k sensors and
basis vectors (� would be a square k�k matrix).

. Wiener Estimation Method
he Wiener estimation method17–24,26 is formally similar
o the Imai–Berns method, but it directly relates sensor
esponses, �, with spectral estimations, ER, using a ma-
rix (here W). Thus

ER = W�. �15�

e can estimate W using a least-squares approach by cal-
ulating �’s pseudoinverse for the training spectra as fol-
ows:

W = Ets�ts
+ . �16�

n this method it is not necessary to measure the spectral
ensitivities of the camera or to calculate a linear basis of
raining spectra. The information of the training spectra
s included in W, as can be seen in Eq. (16). We must try
o build a “robust-to-noise” matrix W (as explained in Sec-
ion 4) and introduce sensor responses into Eq. (15) to ob-
ain the spectral estimations.

. SEARCH ALGORITHM
n a previous study29 it was found that three PCA basis
ectors are enough to recover skylight spectra with ac-
eptable accuracy. Assuming this dimensionality for sky-
ight spectral representation based on linear basis vec-
ors, here we have tried to find the optimum set of three
o five Gaussian sensors to recover skylight spectra from
heir responses by varying as much as possible all the pa-
ameters defining a Gaussian sensor (central position,
idth, and relative height) within the typical commercial
alues available. To this end we focused on the visible
ange of the spectrum (from 380 to 780 nm) and in each
imulation varied the sensors’ central positions within
his range in 5 nm steps; we also varied their FWHM (full
idth at half-maximum) from 10 to 250 nm in 5 nm steps
nd their peak values from 0.5 to 1 in 0.1 steps. We simu-
ated thermal and shot sensor noise as random, normally
istributed noise with standard deviations of 1%, 3%, and
% of the maximum sensor response. These noise levels
orrespond to signal-to-noise ratios (SNRs) of 40, 30, and
6 dB, respectively, and have proved to be close to the
ypical values measured in multispectral imaging
ystems.2,17,20–23,27 Quantization noise is represented as
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hat due to A/D uniform conversion at a resolution of 8,
0, and 12 bits. We also compare this uniform quantiza-
ion noise with some previously compressed quantization
oise28 in Section 4. We developed all these simulations

or each of the four methods presented, for three different
izes of the training spectra (as explained in the following
ection), and for various numbers of basis vectors used
ith those methods that need them. To appreciate the

omputational burden involved, let us consider that if we
ere to undertake an exhaustive search, about 1015 dif-

erent sets would have to be evaluated to find the opti-
um set for a three-sensor system, a search that would

equire several days on existing personal computers. This
uge number grows if we try to find the best four or five
ensors, for which the task is now impractical because the
umber of possible sets increases by factors of 104 and
08, respectively. Faced with such daunting computa-
ional challenges, we turned to simulated annealing
lgorithms,3,4,14,17,33 which have been widely used as
earch algorithms in physics and speed up considerably
he search for optimum solutions to a system with many
ifferent sets of sensors. This search algorithm requires
he minimization of one single-cost function (the energy of
he system4), so we must be careful in choosing the metric
r cost function to be minimized according to a suitable
ptimization criterion. The key question is what metric to
se. For our problem essentially two kinds of metrics ex-

st: colorimetric and spectral.5,34 Colorimetric metrics,
uch as those proposed by the CIE (CIELUV, CIELAB,
IE94, and CIEDE2000), approximate color differences
bserved by the human eye. Spectral metrics are those
hat measure the distance between two spectral curves,
uch as the root-mean-square error (RMSE) or GFC
“goodness-of-fit coefficient”),29 which uses Schwartz’s in-
quality, a widely accepted5,34,35 index of similarity be-
ween two spectra. These metrics distinguish between
etamers but do not take human vision into account.
owever, some new spectral metrics have been proposed

or comparing spectra that do take properties of the hu-
an visual system into account, such as weighted RMSE

WRMSE) with the diagonal of Cohen’s matrix34 R, or Vig-
iano’s spectral comparison index35 (SCI). Finally, an-
ther metric widely used in solar radiation measurements
s the percentage of the integrated irradiance error36

IIE(%)] across the visible spectrum.
We have shown in a previous publication4 how the spec-

ral sensitivity of the optimum sensors depends much on
he metric used if we minimize only one of the metrics de-
cribed above in our optimization. Imai et al.34 suggest
hat “mononumerosis” should be avoided when evaluating
he quality of spectral matches. By this they mean that
everal metrics should be used to assess color reconstruc-
ion from both colorimetric and spectral standpoints. We
ave to use a single cost function when developing a
imulated annealing algorithm, an approach that may
eem to contradict the recommendations of Imai et al.34

ut in fact does not, because we actually use a simple
ingle-cost function or metric that combines several met-
ics at once. We use GFC as a spectral metric, CIELAB
Eab

* as a colorimetric cost function, and IIE(%) as a met-
ic for comparing the integrated power in the visible spec-
rum of natural illuminants. In principle, this metric
hould approach zero for near-perfect matches and give
pproximately the same weight to the GFC, CIELAB
Eab

* , and IIE(%) metrics. Our colorimetric and spectral
ombined metric (CSCM) has proved to be satisfactory for
omparing skylight spectra and is calculated4,5 by

CSCM = Ln�1 + 1000�1 − GFC�� + �E*
ab + IIE�%�,

�17�

here Ln means natural logarithm. The chief advantage
f this metric is that it quantifies spectral mismatches
mong metamers, perceptual differences in color
atches, and differences in such integrated radiometric

uantities as radiance and irradiance. Though this metric
ay not avoid “mononumerosis,” it clearly combines the

roperties of various metrics relevant to skylight spectra
nd thus is a good candidate for developing an annealing
earch algorithm. Hence, optimum sensors will be those
hat minimize the mean value of the CSCM metric for dif-
erences between original and recovered spectra over the
omplete skylight spectra test set, as we show in the next
ection.

. RESULTS
irst we present in Subsection 4.A the spectral shape (po-
ition, width, and height) of the optimum sensors found
or each reconstruction algorithm in two of the noise situ-
tions described above (for SNRs equal to 40 and 26 dB,
niform quantization with 12 bits is used here) and use
ifferent numbers of basis vectors in those methods that
equire them (here we use those basis vectors provided by
CA). We compare these optimum spectral sensitivities
hen using three sizes of the training set of spectra, m, to
erform PCA and build system matrices: 1567, 156, and
0. The complete 1567 skylight radiance training spectra
ere taken in Granada,29 Spain (37°10�N, 3°36�W, el-

vation 680 m) over two years at many different solar el-
vations, with different azimuths, and during different
easons of the year; each spectrum ranged from
80 to 780 nm in 5 nm steps. We used the complete set
nd two subsets of 156 and 20 spectral curves randomly
xtracted from it just once to train the system. The origi-
al set and the two subsets of skylight spectra proved to
ave a high variety in the spectral shapes and colorimet-
ic characteristics in all cases.29,37 We used the complete
et of 1567 skylight spectra as a test set in all the recov-
ry experiments.

In Subsection 4.B we compare the accuracy of the re-
onstructed skylight SPDs of the complete test set of 1567
pectra when they are recovered using PCA basis vectors
if needed) and the optimum sensors found for each
ethod, bearing in mind the GFC, �Eab

* , and CSCM met-
ics described in Section 3. We show that all the methods
tudied provide high-quality skylight recovered spectra,
easured with various metrics, from the responses of a

ew sensors affected by noise. We also present in Subsec-
ion 4.C some results concerning the optimum number of
CA basis vectors to be used with each method in each
oise situation and compare the accuracy achieved when
sing other linear bases provided by ICA and NMF.
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In Subsection 4.D we make a brief study of the speed of
ach recovery method as a function of the training-set
ize, and finally we compare the performance of skylight
PD recovery using uniform and nonuniform quantiza-
ion in the A/D conversion.38

. Spectral Profile of Optimum Sensors
f we study the peak location and FWHM of the optimum
ensors for the Maloney–Wandell method using PCA basis
ectors, we see that they are almost the same for every
umber of basis vectors used, for every training-set size,
nd for every noise level. This behavior is desirable for de-
eloping a practical multispectral system. As other au-
hors have noted,4,14,21–23 sensor sensitivity curves tend to
harpen slightly when the noise is high (i.e., low SNR).
ot surprisingly,4 the curves also sharpen as the number

f sensors increases (i.e., as we approach a narrowband
yperspectral imaging system). We show these properties

n Fig. 1 for k=3,4,5; m=1567; and 12-bit quantization.
For the Imai–Berns method with PCA basis vectors

Fig. 2), the optimum sensors perform very differently ac-
ording to whether the number of sensors, k, is three or
our or five, although there is no significant change in
heir shapes if we change m within each value of k. With
our sensors the decrease in SNR (caused by an increase
n noise levels) does not involve any meaningful change in
he spectral shape of the optimum sensors (they only
eem to sharpen slightly, as in the Maloney–Wandell
ethod). Nevertheless, with three sensors an increase in

oise results in a significant widening of the sensors and
shift of some sensors to the blue end of the visible spec-

rum, as shown in Fig. 2 for m=1567. A similar increase
n noise with five sensors produces hardly any change in
MWH owing to its already small value, but some sensors
lso shift toward the blue. Some authors20–23 have proved
hat the combination of optimum sensors must be found
or each noise level owing to a lack of robustness to noise
f those optimum filters found for low-noise situations
i.e., the optimum sensors found in low-noise situations
ive very poor recoveries when noise rises). In other
ords, the shape of the optimum sensors may change sig-
ificantly if noise rises. Some authors have tried to mea-
ure this robustness to noise in various ways. Hardeberg2

alculated the condition number (the ratio between the
ighest and the lowest singular value) of the transforma-
ion matrix. Shimano21–23 calculated the singular values
f a matrix known as SLV�1/2, where S represents the
pectral sensitivities, L is a diagonal matrix for the illu-
inant, V is a matrix composed of PCA eigenvectors, and
is a diagonal matrix with the correspondent eigenval-

es. Day20 argued, for the Imai–Berns method, that the
obustness to noise of the transformation matrix VG can
e estimated empirically from the plot of each coefficient
f this matrix as a function of wavelength. It should be
oted that in the Imai–Berns method, VG is an N�k ma-
rix that directly transforms sensor responses to SPD and
herefore that summing up the result of multiplying each
avelength-dependent coefficient by its corresponding

ensor response provides the recovered spectra. In Fig. 3
e show that this transformation for the low-noise three
ptimum sensors (solid curve) is composed of steep slopes
note that the absolute value of its derivative would be
igh), which in turn would amplify small differences
aused by noise. The transformation obtained for high-
oise three optimum sensors (dotted curve) is smoother,
esulting in a matrix that is more robust to noise.

In Fig. 4 we show the optimum sensors found for the
hi–Healey method with PCA basis vectors and m=1567,
lthough the only significant dependence in their spectral

ig. 1. (a) Optimum three sensors, (b) four sensors, and (c) five
ensors for Maloney–Wandell6 method with m=1567 training
pectra. Equal numbers of sensors and PCA basis vectors are
sed. Solid curves denote SNR=40 dB, and dashed curves denote
NR=26 dB.
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ensitivity found by decreasing m was a small sharpen-
ng. The optimum sensors with this method are very pe-
uliar since they seem to fall equidistantly within the vis-
ble range and are very narrowband, which indicates that
hey could easily be obtained using a liquid-crystal tun-
ble filter (LCTF) with narrowband modes.2 The optimum
ensors with this method also sharpen concomitantly

ig. 2. (a) Optimum three sensors, (b) four sensors, and (c) five
ensors for Imai–Berns15 method with m=1567 training spectra.
qual numbers of sensors and PCA basis vectors are used. Solid
urves denote for SNR=40 dB, and dashed curves denote SNR
26 dB.
ith a rise in noise, as they do in the Maloney–Wandell
ethod. When five sensors are involved, some of them

hift to the blue end of the spectrum with high noise, as
hey do in the Imai–Berns method.

Finally, the optimum sensors for the Wiener estimation
ethod look very similar to those obtained with the
aloney–Wandell method in every situation, although

his method requires the use of a linear basis of reduced
imensions and a knowledge of the spectral sensitivities
f the camera, whereas the Wiener method does not. The
harpening of the optimum sensors concomitantly with
oise is also notable, as shown in Fig. 5 for m=1567 (once
ore, no important changes occurred in the optimum

pectral sensitivities when m decreased).
We can appreciate visually in Fig. 1, 2, 4, and 5 how the

eak positions of the optimum sensors found for the four
ethods seem to be similar to the positions of the usual

bsorption bands typically found in skylight spectral
urves (see Fig. 6). We may conclude that the spectral re-
overy algorithms studied here try to locate their opti-
um sensors in those positions of minimum smoothness

n the spectral curves in an attempt to sample accurately
he discontinuities in the absorption bands.

. Accuracy of Spectral Reconstructions
he values for the GFC, CIELAB �Eab

* , and CSCM met-
ics obtained in the spectral reconstructions of the com-
lete test set of 1567 skylight spectra with each of the
our methods described above using the optimum sensors
ound for them are set out in Table 1. We use uniform
2-bit quantization in this section. For the Maloney–
andell and Imai–Berns methods, we show the results
hen we used equal numbers of PCA basis vectors and

ensors. We did this because it led to better values for all
he metrics used—as we show later—thus giving better
pectral and colorimetric reconstructions of the skylight
PDs, as other authors have found before.4,6,14–16,25 Since
he Shi–Healey method is designed to work with a larger
imensionality, more PCA basis vectors are used (here we
how the results when n=k+2 for this method). The re-
ults of this study for the Maloney–Wandell, Imai–Berns,
hi–Healey, and Wiener (in this case, no basis vectors are

ig. 3. Plot of the transformation matrix versus wavelength at
arious noise levels. Matrix coefficients are given by the opti-
um sensors of the Imai–Berns15 method for three sensors, three
CA basis vectors, and m=1567.
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eeded) methods are set out in Table 1. We show in each
ow the results obtained using a different number of sen-
ors for GFC, CIELAB �Eab

* , and CSCM metrics. We
eparate into columns three cases of simulated noise and
he number m of training spectra used in every noise situ-
tion.
We can see for the Maloney–Wandell method how an

ncrease in the number of sensors from three to five re-

ig. 4. (a) Optimum three sensors, (b) four sensors, and (c) five
ensors for Shi–Healey16 method with m=1567 training spectra.
ere n=k+2 PCA vectors are used. Solid curves denote SNR
40 dB, and dashed curves denote SNR=26 dB.
ults in better values for the metrics used in every noise
ituation. Nevertheless, with low SNRs the improvement
btained when increasing the number of sensors, k, is less
f we go from four to five sensors than it is when going
rom three to four sensors. This same tendency toward in-
reasing k also applies to the Imai–Berns method, the re-
ults of which are also set out in Table 1. This latter
ethod gives better results than the Maloney–Wandell

ig. 5. (a) Optimum three sensors, (b) four sensors, and (c) five
ensors for the Wiener method18 with m=1567 training spectra.
olid curves denote SNR=40 dB, and dashed curves denote
NR=26 dB.
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ethod when the noise rises, the improvement being
ore noticeable with three sensors. The Imai–Berns
ethod has the additional advantage of rendering it un-
ecessary to measure the spectral sensitivities of the sen-
ors, which usually leads to systematic errors in the
aloney–Wandell method if this task is not undertaken
ith great precision. With both of these methods, the
alue of m plays little part in the accuracy of the recon-
tructions (just as we found in the shape of the optimum
ensors). In a previous work,4 we showed for the
aloney–Wandell method that the optimum sensors

ound with the 1567 skylight spectra as a training set pro-
ide accurate spectral recovery results when tested with a
ifferent set of 240 spectra measured in a different place.
ere, we obtain the same results for every value of m (ex-

ept in the case of the Shi–Healey method, as we show
ater), proving the reliability of the results even for spec-
ra not included in the training set and, hence, for spectra
hat could be measured at a different location.

The results concerning the Shi–Healey method are
hown in Table 1 for a number of PCA basis vectors n
k+2. This method provides the best spectral reconstruc-

ions of skylight compared with the other three methods
ested, although it is extremely slow, as we shall see later.
wing to the individual comparison of the spectra in-
olved in this method (as explained in Section 2), it is al-
ays better to use as many training spectra as possible,
hile the other methods seem to behave similarly for any
alue of m. It can also be seen that an increase in the
umber of sensors does not lead to better spectral recov-
ries when the noise present in the system is high (for low
NRs), a result already found in the other methods and
y other authors.4,21,27 This can be appreciated by noting
hat the improvement achieved in noise-free simulations
hen increasing the number of sensors, k, is negligible if

is already from four to seven, for example21,27 (the par-

ig. 6. Skylight spectral radiance and the double of the corre-
ponding spectral error curves for the 95th percentile of the
SCM metric and the Maloney–Wandell6 method, which is recov-
red with the four methods studied (MW, Maloney–Wandell6; IB,
mai–Berns15; SH, Shi–Healey16; W, Wiener17). Five sensors are
sed with a SNR of 30 dB, 12-bit quantization, and m=156. Five
CA basis vectors are used with the Maloney–Wandell6 and
mai–Berns15 methods, while six PCA vectors are used with the
hi–Healey16 method.
icular numbers of sensors depend on system hardware n
nd on the shapes of the spectral data imaged), while the
ndividual noise contributed by each sensor makes the to-
al noise effect considerable in this situation.

The Wiener method produces slightly better results
han either the Maloney–Wandell or Imai–Berns method
n almost every situation (Table 1), with the additional
dvantage of not having to calculate either a linear basis
r camera sensitivity, R. The behavior of the Wiener
ethod when noise rises is the same as that found with

he Maloney–Wandell method; hence the previous discus-
ion is also valid for this latter method. We also see a
mall dependence with the training-set size, m, in the ac-
uracy achieved with the Wiener estimation method.

In Fig. 6 we show an example of a skylight spectrum
econstructed using the optimum sensors found with each
f the four methods studied here and using five sensors,
=156 training spectra, an SNR of 30 dB, and 12 bits for

uantization. The sample of spectral skylight chosen for
his figure is the 95th percentile for the CSCM metric and
he Maloney–Wandell method with five sensors and five
asis vectors. We chose this curve since the Maloney–
andell method is the one that gives the highest best
ean value for the CSCM metric (see Table 1). Five PCA

ectors were used with the Maloney–Wandell and Imai–
erns methods, while six PCA vectors were used with the
hi–Healey method since these give the best results, as
e describe in Subsection 4.C. It can be seen in Fig. 6 that
ll the skylight SPDs reconstructed from the responses of
ve sensors are very faithful to the original curve mea-
ured with a spectroradiometer, especially those recon-
tructed with the Shi–Healey and Wiener methods. In
articular, they conserve the absorption spiky bands typi-
al of skylight spectra. Thus we may be confident that all
he methods studied provide high-quality recovered sky-
ight spectral curves.

. Basis Vectors
ere we study the optimum number of PCA basis vectors,
, to be used in each recovery method (except the Wiener
stimation method, where no basis vectors are needed) as

function of the number, k, of sensors and the noise
resent in the system (k=3,4,5 here as usual in this pa-
er). We used n=3,4,5 for the Maloney–Wandell and
mai–Berns methods and n=4, . . . ,8 for the Shi–Healey
ethod, since this is sufficient to represent the depen-

ence on n of all these methods. In Fig. 7 we show the
ean value throughout the complete 1567 skylight-

pectra test set for the CSCM metric as a function of k
n, the difference between the number of sensors and ba-
is vectors used. The CSCM values represented in Fig. 7
ere obtained after recovering the test spectra using the
ptimum sensors found in each situation, with m=156 as
he training-set size and with the usual three situations
f added noise used in this study. It can be seen that with
he Maloney–Wandell and Imai–Berns methods, the low-
st values for the CSCM metric are almost always ob-
ained if n=k, particularly when the noise in the system
s low. With the Shi–Healey method an increase in the
umber of vectors, n, over the number of sensors, k, is fa-
orable up to a certain limit, which is usually n=7 for
igh SNRs and n=6 when the noise rises, whatever the

umber of sensors used. It can also be seen in Fig. 7 that
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ith the Shi–Healey method an increase in the number of
ensors does nothing to improve the CSCM metric when
oise is high (i.e., low SNR), since the values for the
SCM metric with five or four sensors are poorer than

hose for three sensors, as discussed in Subsection 4.B.
We also compare the optimum sensors and accuracy in

he spectral recoveries when we used NMF and ICA basis
ectors, compared with those presented for PCA basis vec-
ors for the case of three sensors �k=3�. In Fig. 8 we show
he optimum three sensors obtained with each of the lin-
ar bases provided by PCA, NMF, and ICA with a SNR

ig. 7. Mean values for the CSCM metric when recovering the
omplete test set of skylight spectra with the optimum sensors
ound using m=156 and different numbers of PCA basis vectors
ith three methods (MW, Maloney–Wandell;6 IB, Imai–Berns;15

H, Shi–Healey16). Uniform 12-bit quantization was used. (a)
NR=40 dB, (b) SNR=30 dB, (c) SNR=26 dB. Note the different
ertical axis scale in each case.
qual to 30 dB, using a training-set size of m=156 spectra
nd the three estimation methods that require the use of

linear basis. We used n=3 NMF vectors for the
aloney–Wandell and Imai–Berns methods and n=5
MF vectors for the Shi–Healey method, since the results

btained with NMF vectors are very similar to those ob-
ained for PCA vectors, as we show below. A higher num-

ig. 8. Optimum three sensors for (a) Maloney–Wandell,6 (b)
mai–Berns,15 and (c) Shi–Healey16 methods with m=156 train-
ng spectra at SNR=30 dB and 12-bit uniform quantization. In
a) and (b) the solid curves denote three PCA basis vectors and
he dashed curves denote three NMF basis vectors. In (c) the
olid curves denote five PCA basis vectors and the dashed curves
enote five NMF basis vectors. Dotted curves denote nine ICA ba-
is vectors in all the cases.
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er of ICA vectors had to be used to show dependence
pon n for the accuracy of this basis because the recon-
tructions improve substantially in quality if we use a
arger number of ICA vectors, compared with the results
btained with PCA and NMF. In Table 2 we show some
umerical results of these simulations. Figure 8 is drawn
or n=9 ICA basis vectors in all cases, though the shape of
he respective optimum sensors is almost the same for ev-
ry value of n.

The optimum sensors found when using NMF basis
ectors are very similar to the ones obtained before for
CA basis vectors for the three spectral estimation meth-
ds, as shown in Fig. 8. The accuracy achieved in the
pectral reconstructions is also comparable (Table 2). Fur-
hermore, we found that the best results were achieved if
hree NMF vectors were used with three sensors with the
aloney–Wandell and Imai–Berns methods. Thus we

ound no practical advantage or disadvantage in using
MF instead of PCA to obtain a linear basis for the spec-

ral recovery of skylight SPDs, except that longer compu-
ation time is needed to calculate a NMF basis compared
ith PCA and that it is compulsory in NMF to choose the
umber of vectors to be generated before doing it (the
hape of the vectors depends on the number to be
enerated,9 which does not apply to PCA). Some
uthors9,39 maintain that NMF has two advantages over

Table 2. Mean Values±Standard
Recovering the Complete Test

the Optimum Three Se

aSNR=30 dB and 12-bit quantization; m=156 training
optimum found for each method according to CSCM metri
CA: First, NMF basis vectors are strictly positive and
an be understood as physically realizable additive
olors;9 second, their truncated-positive pseudoinverses39

ould represent the spectral sensitivities of the sensors,
he responses of which, �, would be directly the weights, �,
n the linear combinations in Eq. (3). Nevertheless, the
pectral shape of these NMF basis sensors is not so easily
chievable as that of Gaussian sensors.
The three optimum sensors obtained with the ICA ba-

is are quite different from those obtained with PCA or
MF bases for the Maloney–Wandell and Imai–Berns
ethods, while they are very similar for the Shi–Healey
ethod (Fig. 8). The reconstructions using three sensors

nd ICA vectors are more accurate with all the estimation
ethods tested than those obtained with PCA or NMF

ases, as other authors have also found39,40 when recov-
ring spectral reflectances of objects or radiance spectra
f scenes. For the Maloney–Wandell method with three
ensors, the ICA results improve on those of PCA or NMF
ases even when using just three vectors, and the ICA re-
ults are improved by increasing n up to 12. With the
mai–Berns and Shi–Healey methods, the ICA results are
lso better than those obtained using PCA or NMF but at
he price of using more vectors, where the highest value of

shown for the ICA vectors was the optimum found
Table 2).

tions for Various Metrics When
f 1567 Skylight Spectra Using
Found in Each Casea

The highest values of n shown for ICA vectors was the
Devia
Set o
nsors

spectra.
c.
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. Speed of Algorithms and Quantization
n this section we make a brief comparison between the
ime required by each method to estimate the spectra as a
unction of m (the size of the training set). We presume we
ave already trained the system; i.e., we have calculated
he matrices V, �, W, and G described in Section 2 from
he training spectra and only have to measure the time
equired for estimating the spectra from three optimum
ensor responses. Hence the Maloney–Wandell, Imai–
erns, and Wiener methods have only to compute a ma-

rix multiplication in the form

Table 3. Differences and Similariti
M

ig. 9. Relative comparison of the computation time with the
our recovery methods as a function of the training-set size m.
hree sensors are used with all the methods (MW,
aloney–Wandell6; IB, Imai–Berns15; SH, Shi–Healey16; W,
iener18). Three basis vectors are used with the
aloney–Wandell6 and Imai–Berns15 methods, while five basis

ectors are used with the Shi–Healey16 method.
E = X�, �18�

here X is an N�3 matrix that transforms sensor re-
ponses to skylight spectra. This matrix is estimated in
ifferent ways depending on the method used. It would
ot be surprising if these three methods took the same
omputing time. In Fig. 9 we show a vertical time scale, in
rbitrary units, which shows the relative time taken by
ach method to recover our 1567 skylight spectra using
hree sensors and different values for m. In this simula-
ion the Maloney–Wandell and Imai–Berns methods were
eveloped using three basis vectors, while the Shi–Healey
ethod used five.
We can see that the Maloney–Wandell, Imai–Berns,

nd Wiener methods take the same computing time for a
iven task once the system is trained. The Shi–Healey
ethod, although it gives the best results, is extremely

low compared with the other three methods tested here,
specially when m is large. All these parameters should
e taken into account in the design of a practical multi-
pectral system. When selecting the most suitable estima-
ion method, one should balance the accuracy hoped for
gainst the computation time needed to achieve the recov-
ries. In a multispectral system with many pixels and one
pectrum per pixel, computation time may be quite con-
iderable if a slow method is used.

To summarize all the results shown in previous sec-
ions, we present in Table 3 a brief comparison between
he most important characteristics and the results pro-
ided by the four spectral estimation methods studied
ere.
Finally, we compare the effect of using uniform versus

onuniform quantization at various bit levels, although
ypically the influence of the quantization noise is much
ess than the influence of other noise sources.4,17 In Table

ong the Four Spectral Estimation
s

es am
ethod
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we show the mean and standard deviation values
hroughout the complete test set of 1567 skylight spectra
the training-set size, m, was also 1567) when these were
ecovered using the optimum three sensors found in Sec-
ion 4 with each method at a SNR of 40 dB. They are A/D
onverted by using uniform quantization and two differ-
nt nonlinear transformations of the data prior to quan-
ization; i.e., the potential transformation28 (we transform
ach i component of the vector of sensor responses from �i
o �i

p, with p being a real number of less than unity) or
-law transformation,38 which is a usual quantization
trategy used in voice communications in which �=255.
he intention of these two transformations was to assign
ore quantum steps whenever the signal was lower,

ence increasing the mean quantization SNR (the SNR
chieved if only quantization noise was present38). It can

Table 4. Mean Values±Standard
Recovering the Complete Test Se

Optimum Three Sensors Found in
m=1567 Tr

aThree sensors and PCA basis vectors are used.
bThree sensors and five PCA basis vectors are used.
e seen in Table 4 that an increase in the number of bits
rom 8 to 10 results in a significant improvement in the
etrics tested, while the results achieved with 12 bits are

ery similar to those of 10-bit quantization. The two non-
niform quantization schemes are also recommendable if
e use only 8 bits, but the improvement achieved with

hese previous data-compression strategies when quantiz-
ng with 10 or 12 bits is negligible.

. CONCLUSIONS
e have presented a complete study of a practical multi-

pectral system for the spectral recovery of skylight from
he noise-affected responses of a set of from three to five
aussian sensors. We searched for the optimum sensors

or this multispectral system by testing four different

tions for Various Metrics When
567 Skylight Spectra Using the
Case at a SNR of 40 dB and Using
g Spectra
Devia
t of 1

Each
ainin
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pectral estimation methods: the Maloney–Wandell,6

mai–Berns,15 Shi–Healey,16 and Wiener18 methods. We
ound that the position, width, relative height, and num-
er of the optimum sensors are different for each method
nd that they also depend on the noise present in the sys-
em and the characteristics of the linear basis used. With
he Maloney–Wandell, Imai–Berns, and Wiener methods,
he optimum spectral sensitivities and the accuracy of the
econstructions depended only slightly on the size of the
raining set of spectra, and thus we could use small train-
ng sets of spectra with these methods. For the Shi–
ealey method we found that an increase in the size of

he training set of spectra provided better results and a
mall sharpening of the optimum sensors. Spectral sharp-
ning of the optimum sensors was also found with the
aloney–Wandell and Wiener methods when the noise

nd the number of sensors in the multispectral system in-
reased. Thus we conclude that we should accurately es-
imate system noise first and then use the set of optimum
ensors found for the corresponding noise level.

Our aim was to find the best reconstructions of skylight
pectral curves from the responses of the optimum set of
aussian sensors of a given estimation method, from

pectral, colorimetric, and radiometric points of view,
ven in the presence of noise. We have concluded that the
hi–Healey method proved to be the best method for this
ask, providing recovered skylight spectral curves very
imilar to those measured using a spectroradiometer,
hus allowing us to use a multispectral system instead.
evertheless, the accuracy and computation time of the
hi–Healey method depends highly on the training-set
ize, proving to be extremely slow compared with the
aloney–Wandell, Imai–Berns, and Wiener methods. Our

referred approach would be to use the Wiener estimation
ethod because it is fast and robust to noise, even when

sing a small training set of spectra. It does not require
he previous calculation of either a linear basis or the
pectral sensitivities of the system, and finally it affords
he best results, apart from those obtained with the Shi–
ealey method, while still permitting the construction of
multispectral system with a few Gaussian sensors for

ccurately estimating spectral skylight.
We found that with the Shi–Healey method an increase

n the number of sensors did not necessarily improve the
ccuracy of the recovered spectra if noise was high be-
ause each sensor’s individual contribution to noise was
ore appreciable than the slight improvement achieved

n low-noise situations when increasing the number of
ensors to more than four. With the other three methods
ittle improvement was achieved when using five sensors
nstead of four to recover skylight spectra from sensor re-
ponses if noise was high.

We searched for the optimum number of PCA basis vec-
ors to be used with the Maloney–Wandell, Imai–Berns,
nd Shi–Healey methods in each noise situation and
ound that it was always preferable to use the same num-
er of PCA vectors and sensors with the Maloney–
andell and Imai–Berns methods. Since the Shi–Healey
ethod is designed to use higher dimensionalities, we

ound the best results when using seven PCA vectors for
ow noise and six PCA vectors for higher noise. We also
ested the effect on the optimum sensors and accuracy in
he reconstructions for three different schemes for obtain-
ng linear bases, i.e., PCA, NMF, and ICA, and found very
imilar results with PCA and NMF bases. ICA basis vec-
ors provided better results with all the estimation meth-
ds that required linear bases, at the price of using more
ectors.

Finally, we studied the effect of uniform and nonuni-
orm quantization noise with different numbers of bits
nd found a significant improvement when previously
ompressing the data and using at least 10 bits in the A/D
onversion.
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