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In a previous work [Appl. Opt. 44, 5688 (2005)] we found the optimum sensors for a planned multispectral
system for measuring skylight in the presence of noise by adapting a linear spectral recovery algorithm pro-
posed by Maloney and Wandell [J. Opt. Soc. Am. A 3, 29 (1986)]. Here we continue along these lines by simu-
lating the responses of three to five Gaussian sensors and recovering spectral information from noise-affected
sensor data by trying out four different estimation algorithms, three different sizes for the training set of spec-
tra, and various linear bases. We attempt to find the optimum combination of sensors, recovery method, linear
basis, and matrix size to recover the best skylight spectral power distributions from colorimetric and spectral
(in the visible range) points of view. We show how all these parameters play an important role in the practical
design of a real multispectral system and how to obtain several relevant conclusions from simulating the be-
havior of sensors in the presence of noise. © 2007 Optical Society of America

OCIS codes: 150.2950, 280.0280, 040.0040.

1. INTRODUCTION

Multispectral imaging systems and techniques have be-
come powerful tools for the rapid measurement of high-
spatial-resolution spectral images. They allow us to re-
cover the spectral radiance of an illuminant, the
reflectance of an object, or the combined color signal by
using data from the responses of a few sensors, typically
those in a CCD digital camera. In this paper we focus on
skylight as an important natural illuminant from the
spectral curves of which we can extract information about
climate parameters such as optical depth or the Angstrom
exponent.1 These spectral power distribution curves
(SPDs) are normally measured with spectroradiometers,
which are complex and expensive instruments that pro-
vide only one spectrum per measurement, whereas a mul-
tispectral system such as the one simulated here will pro-
vide one accurate spectrum at each pixel of the entire
image. Multispectral imaging sys‘cems,2 therefore, are in-
creasingly replacing classical spectroradiometers in the
task of measuring SPDs owing to the substantial im-
provements they offer in spatial resolution, portability,
and speed compared with other spectral instruments.
Faced with the task of obtaining accurate spectral mea-
surements from a multispectral system, we must select
the algorithm to recover suitable spectral curves from
sensor responses, estimate and try to reduce the influence
of the noise present in the system, and choose the opti-
mum sensors or filters for the task for which this multi-
spectral system has been designed. It is possible to take
into account all these factors in a step prior to the devel-
opment of the multispectral system. Computers allow us
to simulate the spectral sensitivity of sensors and their
response to spectral information, to add simulated noise,
and to try to recover mathematically the SPD curves from
this noise-influenced sensor data. If these computational
models simulate the real physical phenomena accurately
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enough, the information provided by them will help us to
build an accurate multispectral system.

In this work we deal with all the possible factors that
should be taken into account when studying the behavior
of a practical multispectral system: the spectral sensitiv-
ity of its sensors, the number and type of sensors, the es-
timation method and linear basis chosen, the number and
quality of training spectra, and the noise that always af-
fects any electronic device. To include all these factors in
an exhaustive search is a highly demanding computa-
tional task. Our alternative approach greatly reduces
computing time by using a simulated annealing
algorithm?® that minimizes one cost function. To this end,
in Section 3 we use a previously proposed4 single-cost
function that evaluates the quality of our recovered sky-
light spectra. This is known as the colorimetric and spec-
tral combined metric (CSCM) function, which has proved
to be a good metric for evaluating spectral and colorimet-
ric differences between skylight spectra.5

As far as the spectral estimation method is concerned,
it must be clear from the outset that extracting spectral
information in the visible range from the responses of a
few sensors is an under-dimensioned mathematical prob-
lem because the projection of the skylight spectra in the
sensor-response space leads to a substantial loss of infor-
mation. Various mathematical algorithms exist that allow
us to estimate spectral information from sensor re-
sponses. These methods are commonly based on a priori
knowledge of the kind of spectra we want to recover. For
example, performing a principal component analysiszﬁ*8
(PCA) or, more recently, nonnegative matrix
factorization® ! (NMF) or independent component
anatlysisu’13 (ICA) upon a set of previously registered
spectral measurements (called training spectra) provides
a set of vectors, i.e., a linear basis, which can be linearly
combined to obtain the spectral estimation. Three of the
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four methods we have studied here, the Maloney—Wandell
method® (which has been widely used by other
authors®'*), the Imai-Berns method,’® and the Shi—
Healey method,'® rely on the use of a linear basis. An-
other way of including a priori spectral knowledge is to
develop a Wiener pseudoinverse”’18 (also called direct
pseudoinverse'®?), where the sensor responses to the
known training spectra are then used to construct a ma-
trix that provides unknown spectra from their measured
responses. These methods are described in detail in Sec-
tion 2 and have been compared here because they are the
most frequently used?*614-29 spectral estimation algo-
rithms to recover illuminant or surface spectra from sen-
sor responses owing to the accurate results they provide.

In Section 4 we present the optimum sensors and their
accuracy in reconstructions of the four estimation meth-
ods used with various amounts of added noise and com-
parisons of the influence of nonuniform versus uniform
A/D quantization for spectral skylight data representa-
tion. We also show the lowest number of training spectra
that could be used in each method. We make a compara-
tive study of the speed of each of the four spectral estima-
tion methods as a function of the size of the training set of
spectra used in the recovery method. Finally, we compare
the efficiency of the different linear bases provided by
PCA, ICA, and NMF used with the Maloney—Wandell,
Imai—Berns, and Shi-Healey methods to recover skylight
spectra and show the optimum number of basis vectors
that should be used in each case.

2. SPECTRAL ESTIMATION ALGORITHMS

We simulate the spectral response of CCD camera sensors
. . . 2,14,21-23

assuming this response to be linear. If we make

this assumption for our multispectral imaging system, we

can model its sensor responses using

p=R'E, (1)

where we have sampled the visible spectrum at N differ-
ent wavelengths and assumed vector notation for the re-
sulting magnitudes. In Eq. (1) p is the column vector rep-
resenting k sensor responses (k=3,4,5, given here the
typical dimensionality of natural illuminant spectra4’7’8),
E is the illuminant spectrum (skylight in our case, rang-
ing from 380 to 780 nm in 5 nm steps, within which we
have 81 samples per spectrum) represented by an N X 1
column vector, and R is an N X% matrix containing the
spectral sensitivities of the & sensors at N sampled wave-
lengths (superscript ¢ denotes its transpose). Any real im-
aging system is of course affected by noise, 24173032 4 fact
not explicitly accounted for in Eq. (1). Nevertheless, noise
can be represented there as an additive term®?>?? that
changes the ideal noise-free sensor responses, pf., to

P = Pfree + 0, 2)

where o is a k-row vector of uncorrelated components that
affect each sensor separately.!”"?'23 A good review of
sensor noise sources can be found in Yotter and Wilson.*?

The goal here is to recover the skylight spectra, E, from
the calculated sensor responses, p. Different estimation
methods have tried to solve this problem. As mentioned in
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the introduction, it is common to make use of a priori
knowledge of the spectra we want to recover, with PCA,
ICA, or NMF being widely used strategies.®*¢16:24-29
They coincide in providing a set of vectors that can be
used to express a given spectrum as a linear combination

E=Ve, (3)

where V is an N X n matrix containing the first n vectors
used for reconstructing N wavelengths (n is always less
than or equal to N and is usually chosen to equal k&, the
number of sensors, which often gives the best
results'®?*%). Vector € is an n-rowed vector that contains
the coefficients of the linear combination. The first three
methods discussed make use of this linear approximation
for the spectra.

A. Maloney-Wandell Method
This method® simply substitutes Eq. (3) into Eq. (1) to ob-
tain

p=R'Ve=Age, (4)

where A is a k X n matrix that directly transforms the co-
efficients, €, into the sensor responses, p. By calculating
A’s pseudoinverse (denoted by superscript *), we obtain
the coefficients for the linear estimate of the spectrum
from the camera’s sensor responses and can then recover
the skylight spectrum

Er=VA*p. (5)

According to this method the a priori information pro-
vided by the training spectra is included in matrix V
(which contains the basis vectors), which also appears in
A, as can be seen in Eq. (4). With this method it is also
necessary to measure the spectral sensitivities, R, of the %
sensors to obtain matrix A.

B. Imai-Berns Method

Imai and Berns developed a method® for recovering spec-
tral data based directly on a relationship between sensor
responses p and coefficients €, which now includes a col-
umn in p; and ¢ for each of the m training spectra (sub-
script ¢s stands for training spectra; we will use different
values for m in this study, as will be explained later):

€15 = Gpts . (6)

In this new equation, the system matrix, G, is an nxk ma-
trix, which is formally similar to A* in Eq. (5) but is now
determined empirically by a least-squares analysis of the
training-spectra measurements. Hence it is not necessary
to measure the spectral sensitivities, R, of the camera
to wuse this method with real sensor-response
measurements.’® We can estimate matrix G via a least-
squares analysis by pseudoinverting the 2 X m matrix p;

G = €,p;.. (7)

In our case the recovered skylight spectrum is simply cal-
culated in this method from the sensor responses, p, by

Here, the information provided by the training spectra is
included in V and in G.
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C. Shi-Healey Method

Shi and Healey'® designed a very insightful method that
allows the use of higher-dimensional models for the re-
flectance and illuminant spectra in Eq. (3). Although the
Maloney—Wandell and Imai-Berns methods can be used
with more eigenvectors than sensors (n > %), this does not
lead to the best results—as we will see later—because a
model with n>% does not determine a unique mapping
between p and ¢, since E vectors, having different e val-
ues, can generate the same p vector'® as a result of loss of
information when registering a n>% linear model with
just k parameters (the sensor responses). We call Sg the
set of vectors, E, generated when varying the n coeffi-
cients, € (more than the number of sensors %), and having
the same responses, p. To associate a sole E recovered il-
luminant vector with a p measurement vector, we can se-
lect a single vector, E*, from the set Sg with the constraint
of requiring that E” be the vector in Sy that minimizes
the mean-square error calculated throughout the training
spectra. In other words, we will choose E” from a given p
as that vector that is most similar to a training spectrum
among those vectors of Sy that are consistent with both
the linear model and the sensor vector, p.

Since we have & sensors, given a dimensionality of n for
the linear model, we separate the contributions of the last
k principal components (denoted by subscript 2) and the
remaining n —k first principal components (subscript 1) in
Eq. (4):

p=R(Vier+Vse), 9)
where V; contains the eigenvectors 1,...,n-k and V,
contains the eigenvectors n-k+1,...,n. The vectors €

and e, contain the corresponding coefficients for the lin-
ear estimation. From Eq. (9) we can solve for €, in terms
of €; according to

& =(R'Vy) H(p-R'Vie), (10
and substituting into Eq. (3), we get
E= V1€1 + Vz(RtVQ)_l(p —RtV1€1). (11)

From this equation, we can construct an N Xm matrix,
E*, of column vectors of Sy that minimizes the mean-
square error throughout the training spectra, which is the
solution of a least-squares problem that can be solved for
€; using pseudoinversion

E =Vi€, + Vo(RV,) L (p = R'Vy€)), (12)

where p* is a kXm matrix containing the sensor re-
sponses, p, to the measured spectra, E, repeated in its m
columns, and the (n-k£)Xm matrix, ei, is given by the
equation

€1 = (V1 = Vo(R'Vy) 'RV (E, - Vo(RV,) "), (13)

where E;; is an NXm matrix containing one training
spectrum per column. We have constructed an N Xm ma-
trix, E”, of estimated spectra from the sensor responses, p,
of a measured spectrum, E. Each column of E” is related
to each column of E,,, containing the training spectra. If
we calculate the distance between each column of E* to
each column of E,;, we can choose the estimated spec-
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trum, Eg, as that column of E* for which this distance is
minimum

Egr=E;, (14)

in which i selects the column of E* for which the distance
||E:—Etsi\| is minimum. The most important disadvantage
of this method is that for every given vector response, p,
we have to calculate m estimated spectra for E and
choose the minimum of m distances. If m is large the al-
gorithm is extremely slow. We also need to measure accu-
rately the spectral sensitivities, R, of the camera. This
method will be used here with n=k+1,k+2,... basis vec-
tors, since if we use just k& basis vectors, the matrix, V7,
would be zero and Eq. (12) would be exactly the same as
Eq. (5) for the Maloney—Wandell method for %2 sensors and
k basis vectors (A would be a square & X £ matrix).

D. Wiener Estimation Method

The Wiener estimation method'™ 2% is formally similar
to the Imai-Berns method, but it directly relates sensor
responses, p, with spectral estimations, Ep, using a ma-
trix (here W). Thus

Egp=Wp. (15)

We can estimate W using a least-squares approach by cal-
culating p’s pseudoinverse for the training spectra as fol-
lows:

WzEtspz—s’ (16)

In this method it is not necessary to measure the spectral
sensitivities of the camera or to calculate a linear basis of
training spectra. The information of the training spectra
is included in W, as can be seen in Eq. (16). We must try
to build a “robust-to-noise” matrix W (as explained in Sec-
tion 4) and introduce sensor responses into Eq. (15) to ob-
tain the spectral estimations.

3. SEARCH ALGORITHM

In a previous study? it was found that three PCA basis
vectors are enough to recover skylight spectra with ac-
ceptable accuracy. Assuming this dimensionality for sky-
light spectral representation based on linear basis vec-
tors, here we have tried to find the optimum set of three
to five Gaussian sensors to recover skylight spectra from
their responses by varying as much as possible all the pa-
rameters defining a Gaussian sensor (central position,
width, and relative height) within the typical commercial
values available. To this end we focused on the visible
range of the spectrum (from 380 to 780 nm) and in each
simulation varied the sensors’ central positions within
this range in 5 nm steps; we also varied their FWHM (full
width at half-maximum) from 10 to 250 nm in 5 nm steps
and their peak values from 0.5 to 1 in 0.1 steps. We simu-
lated thermal and shot sensor noise as random, normally
distributed noise with standard deviations of 1%, 3%, and
5% of the maximum sensor response. These noise levels
correspond to signal-to-noise ratios (SNRs) of 40, 30, and
26 dB, respectively, and have proved to be close to the
typical values measured in multispectral imaging
systems.2’17’20_23’27 Quantization noise is represented as



Loépez-Alvarez et al.

that due to A/D uniform conversion at a resolution of 8,
10, and 12 bits. We also compare this uniform quantiza-
tion noise with some previously compressed quantization
noise®® in Section 4. We developed all these simulations
for each of the four methods presented, for three different
sizes of the training spectra (as explained in the following
section), and for various numbers of basis vectors used
with those methods that need them. To appreciate the
computational burden involved, let us consider that if we
were to undertake an exhaustive search, about 10'% dif-
ferent sets would have to be evaluated to find the opti-
mum set for a three-sensor system, a search that would
require several days on existing personal computers. This
huge number grows if we try to find the best four or five
sensors, for which the task is now impractical because the
number of possible sets increases by factors of 10* and
108, respectively. Faced with such daunting computa-
tional challenges, we turned to simulated annealing
algorithms,3’4’14’17’33 which have been widely used as
search algorithms in physics and speed up considerably
the search for optimum solutions to a system with many
different sets of sensors. This search algorithm requires
the minimization of one single-cost function (the energy of
the system?), so we must be careful in choosing the metric
or cost function to be minimized according to a suitable
optimization criterion. The key question is what metric to
use. For our problem essentially two kinds of metrics ex-
ist: colorimetric and Spectral.5’34 Colorimetric metrics,
such as those proposed by the CIE (CIELUV, CIELAB,
CIE94, and CIEDE2000), approximate color differences
observed by the human eye. Spectral metrics are those
that measure the distance between two spectral curves,
such as the root-mean-square error (RMSE) or GFC
(“goodness-of-fit coefficient”),?? which uses Schwartz’s in-
equality, a widely accepted®®*3® index of similarity be-
tween two spectra. These metrics distinguish between
metamers but do not take human vision into account.
However, some new spectral metrics have been proposed
for comparing spectra that do take properties of the hu-
man visual system into account, such as weighted RMSE
(WRMSE) with the diagonal of Cohen’s matrix®* R, or Vig-
giano’s spectral comparison index® (SCI). Finally, an-
other metric widely used in solar radiation measurements
is the percentage of the integrated irradiance error®®
[ITE(%)] across the visible spectrum.

We have shown in a previous publica‘cion4 how the spec-
tral sensitivity of the optimum sensors depends much on
the metric used if we minimize only one of the metrics de-
scribed above in our optimization. Imai et al.?* suggest
that “mononumerosis” should be avoided when evaluating
the quality of spectral matches. By this they mean that
several metrics should be used to assess color reconstruc-
tion from both colorimetric and spectral standpoints. We
have to use a single cost function when developing a
simulated annealing algorithm, an approach that may
seem to contradict the recommendations of Imai et al.>*
but in fact does not, because we actually use a simple
single-cost function or metric that combines several met-
rics at once. We use GFC as a spectral metric, CIELAB
AE,, as a colorimetric cost function, and ITE(%) as a met-
ric for comparing the integrated power in the visible spec-
trum of natural illuminants. In principle, this metric
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should approach zero for near-perfect matches and give
approximately the same weight to the GFC, CIELAB
AE,,, and IIE(%) metrics. Our colorimetric and spectral
combined metric (CSCM) has proved to be satisfactory for
comparing skylight spectra and is calculated® by

CSCM = Ln(1 + 1000(1 - GFC)) + AE",, + IIE(%),
(17)

where Ln means natural logarithm. The chief advantage
of this metric is that it quantifies spectral mismatches
among metamers, perceptual differences in color
matches, and differences in such integrated radiometric
quantities as radiance and irradiance. Though this metric
may not avoid “mononumerosis,” it clearly combines the
properties of various metrics relevant to skylight spectra
and thus is a good candidate for developing an annealing
search algorithm. Hence, optimum sensors will be those
that minimize the mean value of the CSCM metric for dif-
ferences between original and recovered spectra over the
complete skylight spectra test set, as we show in the next
section.

4. RESULTS

First we present in Subsection 4.A the spectral shape (po-
sition, width, and height) of the optimum sensors found
for each reconstruction algorithm in two of the noise situ-
ations described above (for SNRs equal to 40 and 26 dB,
uniform quantization with 12 bits is used here) and use
different numbers of basis vectors in those methods that
require them (here we use those basis vectors provided by
PCA). We compare these optimum spectral sensitivities
when using three sizes of the training set of spectra, m, to
perform PCA and build system matrices: 1567, 156, and
20. The complete 1567 skylight radiance training spectra
were taken in Granada,? Spain (37°10'N, 3°36’'W, el-
evation 680 m) over two years at many different solar el-
evations, with different azimuths, and during different
seasons of the year; each spectrum ranged from
380 to 780 nm in 5 nm steps. We used the complete set
and two subsets of 156 and 20 spectral curves randomly
extracted from it just once to train the system. The origi-
nal set and the two subsets of skylight spectra proved to
have a high variety in the spectral shapes and colorimet-
ric characteristics in all cases.??” We used the complete
set of 1567 skylight spectra as a test set in all the recov-
ery experiments.

In Subsection 4.B we compare the accuracy of the re-
constructed skylight SPDs of the complete test set of 1567
spectra when they are recovered using PCA basis vectors
(if needed) and the optimum sensors found for each
method, bearing in mind the GFC, AEzb, and CSCM met-
rics described in Section 3. We show that all the methods
studied provide high-quality skylight recovered spectra,
measured with various metrics, from the responses of a
few sensors affected by noise. We also present in Subsec-
tion 4.C some results concerning the optimum number of
PCA basis vectors to be used with each method in each
noise situation and compare the accuracy achieved when
using other linear bases provided by ICA and NMF.
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In Subsection 4.D we make a brief study of the speed of
each recovery method as a function of the training-set
size, and finally we compare the performance of skylight
SPD recovery using uniform and nonuniform quantiza-
tion in the A/D conversion.®

A. Spectral Profile of Optimum Sensors
If we study the peak location and FWHM of the optimum
sensors for the Maloney—Wandell method using PCA basis
vectors, we see that they are almost the same for every
number of basis vectors used, for every training-set size,
and for every noise level. This behavior is desirable for de-
veloping a practical multispectral system. As other au-
thors have noted,*1*?1"2% sensor sensitivity curves tend to
sharpen slightly when the noise is high (i.e., low SNR).
Not surprisingly,’ the curves also sharpen as the number
of sensors increases (i.e., as we approach a narrowband
hyperspectral imaging system). We show these properties
in Fig. 1 for £=3,4,5; m=1567; and 12-bit quantization.
For the Imai-Berns method with PCA basis vectors
(Fig. 2), the optimum sensors perform very differently ac-
cording to whether the number of sensors, %, is three or
four or five, although there is no significant change in
their shapes if we change m within each value of 2. With
four sensors the decrease in SNR (caused by an increase
in noise levels) does not involve any meaningful change in
the spectral shape of the optimum sensors (they only
seem to sharpen slightly, as in the Maloney—Wandell
method). Nevertheless, with three sensors an increase in
noise results in a significant widening of the sensors and
a shift of some sensors to the blue end of the visible spec-
trum, as shown in Fig. 2 for m=1567. A similar increase
in noise with five sensors produces hardly any change in
FMWH owing to its already small value, but some sensors
also shift toward the blue. Some authors?*23 have proved
that the combination of optimum sensors must be found
for each noise level owing to a lack of robustness to noise
of those optimum filters found for low-noise situations
(i.e., the optimum sensors found in low-noise situations
give very poor recoveries when noise rises). In other
words, the shape of the optimum sensors may change sig-
nificantly if noise rises. Some authors have tried to mea-
sure this robustness to noise in various ways. Hardeberg?
calculated the condition number (the ratio between the
highest and the lowest singular value) of the transforma-
tion matrix. Shimano®'™?? calculated the singular values
of a matrix known as SLVAY2, where S represents the
spectral sensitivities, L is a diagonal matrix for the illu-
minant, V is a matrix composed of PCA eigenvectors, and
A is a diagonal matrix with the correspondent eigenval-
ues. Day20 argued, for the Imai—Berns method, that the
robustness to noise of the transformation matrix VG can
be estimated empirically from the plot of each coefficient
of this matrix as a function of wavelength. It should be
noted that in the Imai—Berns method, VG is an N X k ma-
trix that directly transforms sensor responses to SPD and
therefore that summing up the result of multiplying each
wavelength-dependent coefficient by its corresponding
sensor response provides the recovered spectra. In Fig. 3
we show that this transformation for the low-noise three
optimum sensors (solid curve) is composed of steep slopes
(note that the absolute value of its derivative would be
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Fig. 1. (a) Optimum three sensors, (b) four sensors, and (c) five
sensors for Maloney-Wandell® method with m=1567 training
spectra. Equal numbers of sensors and PCA basis vectors are
used. Solid curves denote SNR=40 dB, and dashed curves denote
SNR=26 dB.

s

high), which in turn would amplify small differences
caused by noise. The transformation obtained for high-
noise three optimum sensors (dotted curve) is smoother,
resulting in a matrix that is more robust to noise.

In Fig. 4 we show the optimum sensors found for the
Shi-Healey method with PCA basis vectors and m=1567,
although the only significant dependence in their spectral
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sensitivity found by decreasing m was a small sharpen-
ing. The optimum sensors with this method are very pe-
culiar since they seem to fall equidistantly within the vis-
ible range and are very narrowband, which indicates that
they could easily be obtained using a liquid-crystal tun-
able filter (LCTF) with narrowband modes.? The optimum
sensors with this method also sharpen concomitantly
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Fig. 2. (a) Optimum three sensors, (b) four sensors, and (c) five
sensors for Imai-Berns'® method with m =1567 training spectra.
Equal numbers of sensors and PCA basis vectors are used. Solid
curves denote for SNR=40 dB, and dashed curves denote SNR
=26 dB.
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Fig. 3. Plot of the transformation matrix versus wavelength at
various noise levels. Matrix coefficients are given by the opti-
mum sensors of the Imai-Berns'® method for three sensors, three
PCA basis vectors, and m=1567.

with a rise in noise, as they do in the Maloney—Wandell
method. When five sensors are involved, some of them
shift to the blue end of the spectrum with high noise, as
they do in the Imai-Berns method.

Finally, the optimum sensors for the Wiener estimation
method look very similar to those obtained with the
Maloney—Wandell method in every situation, although
this method requires the use of a linear basis of reduced
dimensions and a knowledge of the spectral sensitivities
of the camera, whereas the Wiener method does not. The
sharpening of the optimum sensors concomitantly with
noise is also notable, as shown in Fig. 5 for m=1567 (once
more, no important changes occurred in the optimum
spectral sensitivities when m decreased).

We can appreciate visually in Fig. 1, 2, 4, and 5 how the
peak positions of the optimum sensors found for the four
methods seem to be similar to the positions of the usual
absorption bands typically found in skylight spectral
curves (see Fig. 6). We may conclude that the spectral re-
covery algorithms studied here try to locate their opti-
mum sensors in those positions of minimum smoothness
in the spectral curves in an attempt to sample accurately
the discontinuities in the absorption bands.

B. Accuracy of Spectral Reconstructions

The values for the GFC, CIELAB AE ,,, and CSCM met-
rics obtained in the spectral reconstructions of the com-
plete test set of 1567 skylight spectra with each of the
four methods described above using the optimum sensors
found for them are set out in Table 1. We use uniform
12-bit quantization in this section. For the Maloney—
Wandell and Imai-Berns methods, we show the results
when we used equal numbers of PCA basis vectors and
sensors. We did this because it led to better values for all
the metrics used—as we show later—thus giving better
spectral and colorimetric reconstructions of the skylight
SPDs, as other authors have found before. 51471625 Gince
the Shi—Healey method is designed to work with a larger
dimensionality, more PCA basis vectors are used (here we
show the results when n=k+2 for this method). The re-
sults of this study for the Maloney—Wandell, Imai—Berns,
Shi—Healey, and Wiener (in this case, no basis vectors are
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needed) methods are set out in Table 1. We show in each 1
row the results obtained using a different number of sen-
sors for GFC, CIELAB AE_,, and CSCM metrics. We

separate into columns three cases of simulated noise and 08
the number m of training spectra used in every noise situ- ‘E‘
ation. § 0.6
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Fig. 4. (a) Optimum three sensors, (b) four sensors, and (c) five from three to four sensors. This same tendency toward in-

sensors for Shi—-Healey'® method with m=1567 training spectra.
Here n=k+2 PCA vectors are used. Solid curves denote SNR
=40 dB, and dashed curves denote SNR=26 dB.

creasing k also applies to the Imai—Berns method, the re-
sults of which are also set out in Table 1. This latter
method gives better results than the Maloney—Wandell



Table 1. Mean Values+Standard Deviations for Various Metrics and Noise Situations When Recovering the Complete Test Set of 1567 Skylight
Spectra Using the Optimum Sensors Found in Each Case with Various Sizes m of the Training Set of Spectra

40 dB 30dB 26 dB

Method  Sensors  Metric m= 1567 m=156 m=20 m = 1567 m=156 m=20 m = 1567 m=156 m=20
GFC  0.999420.0012  0.9994+0.0012  0.9993+0.0018 | 0.9988+0.0014  0.9986+0.0015 0.9986+0.0020 | 0.9978+0.0022 0.9976+0.0026 0.9979+0.0027
32 AE", 0.8100£0.5652 0.8253+0.5475 0.847130.5780 | 1.1128+0.6554  1.1930+0.7290 1.1729+0.6518 | 1.5283+0.9397 1.5020+0.8601 1.4408+0.7580
CSCM__ 2.0125+1.0836  2.0887=1.1111 2.0375+1.1637 | 4.0604+2.1096 4.1479+2.1333  4.0540+2.1303 | 6.1107+3.2926 6.2546+3.3288  6.1138+3.3531
Maloney- GFC  0.9997+0.0003 0.9997+0.0003  0.9997+0.0003 | 0.9992+0.0006 0.9991+0.0006 0.9991+0.0006 | 0.9980+0.0016 0.9982+0.0014 0.9980+0.0015
Wandell 4? AE®, 0.6033+0.3512 0.5991+0.3445 0.5829+0.3335 | 0.9522+0.5032 0.9567+0.5286 (.9877+0.5482 | 1.353320.7084 1.3320+0.6958 1.3348+0.7011
CSCM_ 1.4725+0.6926  1.4846+0.7046  1.4831+0.7208 | 3.4594+1.7657  3.4385+1.6999  3.4594£1.7007 | 5.4057+2.8011 5.4808+2.8623 5.4401+2.7033
GFC  0.999820.0001 0.9998+0.0001 0.9998+0.0001 | 0.9992+0.0006 0.9991+£0.0006 0.9992+0.0006 | 0.9980+0.0015 0.9980+0.0014 0.9981+0.0015
5 AE',  034960.1830 0.3397+0.1764 0.3370+0.1749 | 0.9247x0.4694  0.9183+0.4821 0.9032+0.4594 | 1.3957+0.6956 1.4943+0.7619 1.4447+0.7647
CSCM  1.0701+0.4956  1.1235+0.5539  1.0804:+0.5352 | 3.1745+1.4771  3.2934+1.6028 3.2405:1.5367 | 5.2575£2.4056 5.2783+2.4434 5.2395+2.4878
GFC  0.999320.0012 0.9993+0.0012 0.9993+0.0018 | 0.9981+0.0022  0.9982+0.0021 0.9980+0.0026 | 0.9972+0.0030 0.9970+0.0030 0.9972+0.0031
3 AE'p  0.7725x0.5104 0.8484+0.5946 0.8415£0.5890 | 1.1219+0.6580 1.1195x0.6270 1.1848+0.6931 | 1.4748+0.9059 1.5389+0.9456 1.4868+0.8635
CSCM_ 2.0089+1.0866 2.0685:1.1334  2.0534+1.2000 | 3.6348+1.8038 3.6257+1.7812 3.6670+1.8030 | 5.1959+:2.8922 5.3481+2.8313 5.4909+2.7111
Imai- GFC  0.9997+0.0003 0.9997+0.0003 0.9997+0.0003 | 0.9992:0.0006 0.9991+0.0007 0.9990+0.0007 | 0.9982+0.0020 0.9982+0.0014 0.9982+0.0020
Berns 4° AE‘, 05721203276 0.5669+0.3225 0.5846x0.3209 |0.9591£0.5161 0.9723x0.5077 1.0356+0.5906 | 1.2780+0.6927 1.4028+0.7768 1.4630+0.7856
CSCM _ 1.4730+0.7046  1.4791+0.7269  1.4987+0.7289 | 3.4413+1.7031 3.4844+1.7002 3.5106+1.6668 | 5.2884+2.8253 5.4192+2.8545 5.2509+2.5917
GFC  0.9998+0.0001 0.9998:0.0001 0.9998+0.0001 | 0.9992+0.0005 0.9992+0.0005 0.9992:0.0006 | 0.9979+0.0017 0.9982+0.0014  0.9985+0.0012
5 AE", 0.3571£0.1792 0.3645:+0.1892 0.3816+0.2032 | 0.9291+0.4478 0.9319+0.4815 0.9084+0.4539 | 1.4078+0.7814 1.4489+0.7758 1.4400+0.7935
CSCM_ 1.103440.5340  1.1365+0.5725  1.1356=0.5581 | 3.1452+1.4183 3.3012+1.6668 3.2431+1.5515 | 5.1244+2.4092 5.1662+2.4734  5.1072+2.5020
GFC  0.9997+0.0003  0.9996+0.0005 0.9987:0.0017 | 0.9991+0.0010 0.9990+0.0016 0.9988+0.0023 | 0.9981+0.0020 0.9981+0.0021 0.9981:0.0028
3P AE",;  0.5730£0.4611 0.6967+0.5384 0.6316+0.4208 | 0.8832+0.4889 0.8890:0.4967 1.1735+0.8138 | 1.3389x0.7019 1.3161+0.7102 1.48320.9410
CSCM __1.1727+0.7586  1.4901+1.0324  2.0429+1.0811 |2.5490+1.4844 2.6150+£1.5585 3.0210+1.6681 | 3.8812+2.1784 3.8049+2.0534 3.9562+2.0785
Shi- GFC  0.9998+0.0001 0.9998=0.0004 0.9997+0.0013 |0.9992+0.0006 0.9992+0.0007 0.9990+0.0023 | 0.9984+0.0011 0.9983+0.0013  0.9981+0.0027
Healey 4" AE", 0.3669+0.2180 0.4456:0.3094 0.542020.4360 |0.8840+0.4819 0.8894x0.4970 0.8991+0.5929 | 1.3024+0.6822 1.3096+0.7299 1.3241+0.7802
CSCM _ 0.9346+0.4894  1.0987+0.7234 1.5045+1.3626 |2.4704+12324 2.5011+1.2186 2.6105x1.3912 | 3.6070£1.7733 3.6710£1.8168 3.8736+2.0198
GFC  0.9999+0.0001 0.9998+0.0005 0.9997:0.0009 |0.9993+0.0005 0.9992+0.0005 0.9988+0.0025 | 0.9981+0.0013 0.9982+0.0011 0.9970+0.0024
5b AE", 0.3615+0.1983 0.3791£0.2046 0.4646202711 |0.9109£0.5045 0.9337+0.5440 1.0216:05914 | 1.3725+0.7638 1.3308+0.7277 1.5407+0.8005
CSCM__ 0.8575+0.4171 1.0537+0.6105  1.3610+0.7250 [2.2915+1.0790 2.4337+1.1714 3.0265+1.4449 | 3.9762+1.8952 3.9648+18174 4.7803+2.1479
GFC  0.9994+0.0012 0.9993£0.0012 0.9992+0.0018 |0.9985+0.0013  0.9985+0.0014 0.9985+0.0017 | 0.9973+0.0021 0.9974+0.0025 0.9977+0.0027
3 AE", 0.7873+0.5240 0.7740£0.5051 0.8757+0.5760 |[1.1093£0.6222 1.0559+0.5711 1.0172+0.5413 | 1.6387+0.9101 1.4439£0.7997 1.4872+0.7656
CSCM __ 1.9882+1.0422 2.0499+1.1038 2.1259+1.1779 |3.9327+1.8896  3.8940+1.8102 3.8921+1.9276 | 5.9300+2.7607 6.0421+3.1725 5.9929+3.2187
Wiener GFC  0.9997+0.0003  0.9997+0.0003  0.9997+0.0003 |0.9992+0.0006 0.9992+0.0006 0.9992+0.0006 | 0.9980+0.0016 0.9982+0.0013 0.9982+0.0014
4 AE', 0568303159 0.5717:0.3251 0.5735+03181 |0.9542£0.5096 0.9592+0.5014 0.9657x0.5169 | 1.4628+0.8502 1.3707:0.7364 1.3288£0.7035
CSCM  1.4539+0.6839  1.4604+0.7041 1.4537+0.6898 |3.4429+1.7070 3.4186+1.7301 3.3701+1.6212 | 5.3745+2.6812 5.3681+2.7878 5.3167+2.6276
GFC  0.9998+0.0001 0.9998+0.0001 0.9998+0.0001 |0.9993+0.0006 0.9993+0.0005 0.9993x0.0006 | 0.9930+0.0014 0.9981+0.0014 0.9982+0.0012
5 AE';  0.3446+0.1795 0.3661£0.1967 0.3626+0.1935 |0.8302£0.4275 0.881320.4377 0.8884:0.4614 | 1.4010+0.7082 1.4392+0.7196 1.3577+0.6695
CSCM  1.0983+0.5165 1.0928+0.5311 1.1181+0.5445 |3.1439+1.6343 3.1311+1.5465 3.0790+1.5236 | 5.0855+2.5114 5.3258+2.5206 5.1500+2.4326

Note: Uniform 12-bit quantization was used. The best results for each metric within each method and each noise situation are in bold type.
“Equal numbers of sensors and PCA basis vectors are used.
A number of PCA vectors n=k+2 are used.
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method when the noise rises, the improvement being
more noticeable with three sensors. The Imai—Berns
method has the additional advantage of rendering it un-
necessary to measure the spectral sensitivities of the sen-
sors, which usually leads to systematic errors in the
Maloney—Wandell method if this task is not undertaken
with great precision. With both of these methods, the
value of m plays little part in the accuracy of the recon-
structions (just as we found in the shape of the optimum
sensors). In a previous work,® we showed for the
Maloney—Wandell method that the optimum sensors
found with the 1567 skylight spectra as a training set pro-
vide accurate spectral recovery results when tested with a
different set of 240 spectra measured in a different place.
Here, we obtain the same results for every value of m (ex-
cept in the case of the Shi—-Healey method, as we show
later), proving the reliability of the results even for spec-
tra not included in the training set and, hence, for spectra
that could be measured at a different location.

The results concerning the Shi-Healey method are
shown in Table 1 for a number of PCA basis vectors n
=k +2. This method provides the best spectral reconstruc-
tions of skylight compared with the other three methods
tested, although it is extremely slow, as we shall see later.
Owing to the individual comparison of the spectra in-
volved in this method (as explained in Section 2), it is al-
ways better to use as many training spectra as possible,
while the other methods seem to behave similarly for any
value of m. It can also be seen that an increase in the
number of sensors does not lead to better spectral recov-
eries when the noise present in the system is high (for low
SNRs), a result already found in the other methods and
by other authors.**?” This can be appreciated by noting
that the improvement achieved in noise-free simulations
when increasing the number of sensors, k&, is negligible if
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Fig. 6. Skylight spectral radiance and the double of the corre-
sponding spectral error curves for the 95th percentile of the
CSCM metric and the Maloney—Wandell® method, which is recov-
ered with the four methods studied (MW, Maloney—Wandell®; IB,
Imai-Berns'?; SH, Shi—HealeylG; W, Wiener'”). Five sensors are
used with a SNR of 30 dB, 12-bit quantization, and m =156. Five
PCA basis vectors are used with the Maloney-Wandell® and
Imai-Berns'® methods, while six PCA vectors are used with the
Shi-Healey'® method.

k is already from four to seven, for example?"?’ (the par-
ticular numbers of sensors depend on system hardware

Loépez-Alvarez et al.

and on the shapes of the spectral data imaged), while the
individual noise contributed by each sensor makes the to-
tal noise effect considerable in this situation.

The Wiener method produces slightly better results
than either the Maloney—Wandell or Imai—Berns method
in almost every situation (Table 1), with the additional
advantage of not having to calculate either a linear basis
or camera sensitivity, R. The behavior of the Wiener
method when noise rises is the same as that found with
the Maloney—Wandell method; hence the previous discus-
sion is also valid for this latter method. We also see a
small dependence with the training-set size, m, in the ac-
curacy achieved with the Wiener estimation method.

In Fig. 6 we show an example of a skylight spectrum
reconstructed using the optimum sensors found with each
of the four methods studied here and using five sensors,
m =156 training spectra, an SNR of 30 dB, and 12 bits for
quantization. The sample of spectral skylight chosen for
this figure is the 95th percentile for the CSCM metric and
the Maloney—Wandell method with five sensors and five
basis vectors. We chose this curve since the Maloney—
Wandell method is the one that gives the highest best
mean value for the CSCM metric (see Table 1). Five PCA
vectors were used with the Maloney—Wandell and Imai—
Berns methods, while six PCA vectors were used with the
Shi-Healey method since these give the best results, as
we describe in Subsection 4.C. It can be seen in Fig. 6 that
all the skylight SPDs reconstructed from the responses of
five sensors are very faithful to the original curve mea-
sured with a spectroradiometer, especially those recon-
structed with the Shi-Healey and Wiener methods. In
particular, they conserve the absorption spiky bands typi-
cal of skylight spectra. Thus we may be confident that all
the methods studied provide high-quality recovered sky-
light spectral curves.

C. Basis Vectors

Here we study the optimum number of PCA basis vectors,
n, to be used in each recovery method (except the Wiener
estimation method, where no basis vectors are needed) as
a function of the number, %, of sensors and the noise
present in the system (£=3,4,5 here as usual in this pa-
per). We used n=3,4,5 for the Maloney—Wandell and
Imai—Berns methods and n=4,...,8 for the Shi-Healey
method, since this is sufficient to represent the depen-
dence on n of all these methods. In Fig. 7 we show the
mean value throughout the complete 1567 skylight-
spectra test set for the CSCM metric as a function of &
—n, the difference between the number of sensors and ba-
sis vectors used. The CSCM values represented in Fig. 7
were obtained after recovering the test spectra using the
optimum sensors found in each situation, with m =156 as
the training-set size and with the usual three situations
of added noise used in this study. It can be seen that with
the Maloney—Wandell and Imai—Berns methods, the low-
est values for the CSCM metric are almost always ob-
tained if n=~, particularly when the noise in the system
is low. With the Shi-Healey method an increase in the
number of vectors, n, over the number of sensors, k&, is fa-
vorable up to a certain limit, which is usually n=7 for
high SNRs and n=6 when the noise rises, whatever the
number of sensors used. It can also be seen in Fig. 7 that
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Fig. 7. Mean values for the CSCM metric when recovering the
complete test set of skylight spectra with the optimum sensors
found using m =156 and different numbers of PCA basis vectors
with three methods (MW, Maloney—Wandell;6 IB, Imai-Berns;"
SH, Shi—Healey'®). Uniform 12-bit quantization was used. (a)
SNR=40 dB, (b) SNR=30 dB, (c) SNR=26 dB. Note the different

vertical axis scale in each case.

with the Shi—-Healey method an increase in the number of
sensors does nothing to improve the CSCM metric when
noise is high (i.e., low SNR), since the values for the
CSCM metric with five or four sensors are poorer than
those for three sensors, as discussed in Subsection 4.B.
We also compare the optimum sensors and accuracy in
the spectral recoveries when we used NMF and ICA basis
vectors, compared with those presented for PCA basis vec-
tors for the case of three sensors (£=3). In Fig. 8 we show
the optimum three sensors obtained with each of the lin-
ear bases provided by PCA, NMF, and ICA with a SNR
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equal to 30 dB, using a training-set size of m =156 spectra
and the three estimation methods that require the use of
a linear basis. We used n=3 NMF vectors for the
Maloney—Wandell and Imai-Berns methods and n=5
NMF vectors for the Shi—-Healey method, since the results
obtained with NMF vectors are very similar to those ob-
tained for PCA vectors, as we show below. A higher num-
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Fig. 8. Optimum three sensors for (a) Maloney—Wandell,® (b)
Imai-Berns,'® and (c¢) Shi-Healey'® methods with m =156 train-
ing spectra at SNR=30 dB and 12-bit uniform quantization. In
(a) and (b) the solid curves denote three PCA basis vectors and
the dashed curves denote three NMF basis vectors. In (c) the
solid curves denote five PCA basis vectors and the dashed curves
denote five NMF basis vectors. Dotted curves denote nine ICA ba-
sis vectors in all the cases.
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Table 2. Mean Values+*Standard Deviations for Various Metrics When
Recovering the Complete Test Set of 1567 Skylight Spectra Using
the Optimum Three Sensors Found in Each Case”

Linear
Method Basis n GFC AE, CSCM
PCA 3 0.9986+0.0015  1.1930+0.7290  4.1479+2.1333
Maloney- NMF 3 0.9986+0.0013  1.2389+0.6804 4.0643+2.1118
Wandell 3 0.9984+0.0015  1.0861+06449  3.1473+1.4617
ICA 6  0.9990£0.0025 1.0174+0.6905 2.6387+1.8315
9 0,9990+£0.0027 1.0125:£0.7166  2.6255+1.9525
12 0.9990+0.0019  0.9935+0.6471  2.6249+1.8808
PCA 3 0.9982+0.0021  1.1195£0.6270  3.6257+1.7812
NMF 3 0.9982+0.0019  1.2389+0.7691  3.7764+1.9498
Imai- 3 0.9949+0.0119  1.6535:1.5041  5.1594+3.4341
S 0.9965+0.0082  1.3930+1.2161 = 4.2487+2.7396
Berns ICA 9  0.9971+0.0048  1.0853+0.7866 3.6178+2.1217
15 0.9982+0.0035 0.9473:0.6240  3.0226+1.8637
18 0.9983+0.0033  0.8998+0.5769  2.8879+1.8294
21 0.9986+0.0029 0.9116+0.5551 2.7692+1.7772
24 0.9987+0.0026  0.9135+£0.5443  2.6930+1.6982
PCA 5  0.9990+0.0016  0.8890+0.4967 2.6150+1.5585
NMF 5 0.9990+0.0010  0.9723+0.6065 2.6697+1.4481
Shi 5 0.9991£0.0010  1.0498+0.6831 2.6955+1.5323
6  0.9991+0.0012  1.0334+0.6865 2.5142+1.4284
Healey ICA 9  0.9989+0.0021  1.0210£0.7334  2.4980+1.5535
12 0.9990+0.0013  1.0401+0.6970  2.4978+1.5208
15 0.9990+0.0014  1.0258+0.6888  2.4389+1.4649
18 0.9990+0.0012  1.0167+0.6708  2.4206+1.3843
21 0.9990+0.0014  1.0051£0.6772 2.3725+1.4810
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“SNR=30 dB and 12-bit quantization; m=156 training spectra. The highest values of n shown for ICA vectors was the

optimum found for each method according to CSCM metric.

ber of ICA vectors had to be used to show dependence
upon n for the accuracy of this basis because the recon-
structions improve substantially in quality if we use a
larger number of ICA vectors, compared with the results
obtained with PCA and NMF. In Table 2 we show some
numerical results of these simulations. Figure 8 is drawn
for n=9 ICA basis vectors in all cases, though the shape of
the respective optimum sensors is almost the same for ev-
ery value of n.

The optimum sensors found when using NMF basis
vectors are very similar to the ones obtained before for
PCA basis vectors for the three spectral estimation meth-
ods, as shown in Fig. 8. The accuracy achieved in the
spectral reconstructions is also comparable (Table 2). Fur-
thermore, we found that the best results were achieved if
three NMF vectors were used with three sensors with the
Maloney—Wandell and Imai-Berns methods. Thus we
found no practical advantage or disadvantage in using
NMF instead of PCA to obtain a linear basis for the spec-
tral recovery of skylight SPDs, except that longer compu-
tation time is needed to calculate a NMF basis compared
with PCA and that it is compulsory in NMF to choose the
number of vectors to be generated before doing it (the
shape of the vectors depends on the number to be
generated,9 which does not apply to PCA). Some
authors”®® maintain that NMF has two advantages over

PCA: First, NMF basis vectors are strictly positive and
can be understood as physically realizable additive
colors;? second, their truncated-positive pseudoinverses39
could represent the spectral sensitivities of the sensors,
the responses of which, p, would be directly the weights, e,
in the linear combinations in Eq. (3). Nevertheless, the
spectral shape of these NMF basis sensors is not so easily
achievable as that of Gaussian sensors.

The three optimum sensors obtained with the ICA ba-
sis are quite different from those obtained with PCA or
NMF bases for the Maloney—Wandell and Imai-Berns
methods, while they are very similar for the Shi—Healey
method (Fig. 8). The reconstructions using three sensors
and ICA vectors are more accurate with all the estimation
methods tested than those obtained with PCA or NMF
bases, as other authors have also found®>*® when recov-
ering spectral reflectances of objects or radiance spectra
of scenes. For the Maloney—Wandell method with three
sensors, the ICA results improve on those of PCA or NMF
bases even when using just three vectors, and the ICA re-
sults are improved by increasing n up to 12. With the
Imai—Berns and Shi-Healey methods, the ICA results are
also better than those obtained using PCA or NMF but at
the price of using more vectors, where the highest value of
n shown for the ICA vectors was the optimum found
(Table 2).



Loépez-Alvarez et al.

D. Speed of Algorithms and Quantization

In this section we make a brief comparison between the
time required by each method to estimate the spectra as a
function of m (the size of the training set). We presume we
have already trained the system; i.e., we have calculated
the matrices V, A, W, and G described in Section 2 from
the training spectra and only have to measure the time
required for estimating the spectra from three optimum
sensor responses. Hence the Maloney—Wandell, Imai—
Berns, and Wiener methods have only to compute a ma-
trix multiplication in the form

10| —*—MW, IB and W methods -
~—+—SH method
10° ¢ :
F
.2
g 107} ]
£
F=]
10'} :
10°F % ” X
20 156 1567
training size m
Fig. 9. Relative comparison of the computation time with the

four recovery methods as a function of the training-set size m.
Three sensors are used with all the methods (MW,
Malone%r—Wandellﬁ; 1B, Imai—Bernsls; SH, Shi—Healeyw; W,
Wiener'®). Three basis vectors are used with the
Maloney—Wandell® and Imai-Berns'® methods, while five basis
vectors are used with the Shi-Healey'® method.
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E=Xp, (18)

where X is an N X3 matrix that transforms sensor re-
sponses to skylight spectra. This matrix is estimated in
different ways depending on the method used. It would
not be surprising if these three methods took the same
computing time. In Fig. 9 we show a vertical time scale, in
arbitrary units, which shows the relative time taken by
each method to recover our 1567 skylight spectra using
three sensors and different values for m. In this simula-
tion the Maloney—Wandell and Imai-Berns methods were
developed using three basis vectors, while the Shi—-Healey
method used five.

We can see that the Maloney—Wandell, Imai—Berns,
and Wiener methods take the same computing time for a
given task once the system is trained. The Shi—-Healey
method, although it gives the best results, is extremely
slow compared with the other three methods tested here,
especially when m is large. All these parameters should
be taken into account in the design of a practical multi-
spectral system. When selecting the most suitable estima-
tion method, one should balance the accuracy hoped for
against the computation time needed to achieve the recov-
eries. In a multispectral system with many pixels and one
spectrum per pixel, computation time may be quite con-
siderable if a slow method is used.

To summarize all the results shown in previous sec-
tions, we present in Table 3 a brief comparison between
the most important characteristics and the results pro-
vided by the four spectral estimation methods studied
here.

Finally, we compare the effect of using uniform versus
nonuniform quantization at various bit levels, although
typically the influence of the quantization noise is much
less than the influence of other noise sources.*!” In Table

Table 3. Differences and Similarities among the Four Spectral Estimation

Methods

Method Maloney-Wandell Imai-Berns Shi-Healey Wiener
Linear basis Yes Yes Yes No
Training Yes (PCA) Yes (PCA and Yes (PCA and Yes (pseudo-
spectra pseudo-inverse) comparison) inverse)
Spectral Yes No Yes No
sensitivities
Computation Fast and constant  Fast and constant Slow and Fast and constant
time with m with m increasing with m with m
Influence of Low Low Low Low
training set on
optimum
sensors
Influence of Low Low High Low
training set on
results
Influence of Sharpen Sharpen and Sharpen Sharpen
noise on displacement
optimum
Sensors
Influence of 40dB:30dB:26dB  40dB:30dB:26dB  40dB:30dB:26dB  40dB:30dB:264B
noise on results CSCM=1:2:3 CSCM=1:233 CSCM=1:2:3 CSCM=1:2:3
n=k Better n=k Better n=k Better n=6,7 --
with PCA depending on

SNR
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Table 4. Mean Values+ Standard Deviations for Various Metrics When
Recovering the Complete Test Set of 1567 Skylight Spectra Using the
Optimum Three Sensors Found in Each Case at a SNR of 40 dB and Using

m=1567 Training Spectra

Method  Quantization Bits GFC AE CSCM
8 0.9993x0.0012  0.8384+0.5619  2.2722+1.1569
uniform 10 0.9994+0.0012  0.8132+0.5567  2.0563£1.1148
12 0.9994:0.0012  0.8100+0.5652  2.0125+1.0836
Maloney-  potential 8  0.9993+0.0012  0.8182+0.5675  2.1180+1.1056
Wandel® 5,033 10 0.9994:0.0012  0.8110+0.5564  2.0285+1.1068
12 0.9994:0.0012  0.8106+0.5536 _ 2.0099+1.1029
p-law 8 0.9994+0.0012  0.8177+0.5746 _ 2.0867+1.1256
p=255 10 0.9994:0.0012  0.8103+0.5576  2.0296+1.1079
12 0.9994:0.0012  0.8092+0.5635  2.0078+1.1045
8  0.9993+0.0012  0.8286+0.5201  2.2912+1.1649
uniform 10 0.9993+0.0012 _ 0.7924+0.4950  2.0324+1.0955
12 0.9993:0.0012  0.7725+0.5104  2.0089+1.0866
Imai- potential 8  0.9993+0.0012  0.8064:0.5103  2.1320+1.1276
Berns® p=033 _10  0.9993x0.0012  0.7920+0.4934 _ 2.0144£1.0912
12 0.9993:0.0012  0.7733+0.4901  2.0075+1.0781
p-law 8  0.9993+0.0012  0.8034+0.5089  2.1085+1.0936
p=255 10 0.9993+0.0012  0.7928+0.4929  2.0121+1.0913
12 0.9993+0.0012  0.7733+0.4900  2.0061+1.0782
8 0.9996+0.0003  0.6210+0.4763  1.3552+0.8273
uniform 10 0.9997+0.0003  0.5628+0.4709  1.1676+0.7902
12 0.9997+0.0003  0.5730+0.4611  1.1727+0.7586
Shi- potential 8  0.9997+0.0004  0.6012:0.4875  1.2448+0.8048
Healey” p=0.33 10 0.9997+0.0004  0.5624+0.4826  1.1787+0.8076
12 0.9997+0.0003  0.5690+0.4808  1.1773::0.7842
p-law 8  0.99970.0003  0.5840+0.4784  1.2187+0.7916
p =255 10 0.9997+0.0003  0.5562+0.4713  1.1569-+0.7928
12 0.9997+0.0003  0.5687+0.4789  1.1666+0.7723
8  0.9993+0.0012  0.8166+0.5020  2.2432+1.1310
uniform 10 0.9994:0.0012  0.7742+0.4968  2.0139+1.0794
12 0.9994+0.0012  0.7873+0.5240  1.9882+1.0422
Wiener potential 8  0.9993+0.0012  0.7945+0.5021 _ 2.0766+1.0897
p=033 _10__ 0.9994+0.0012  0.7721x0.4990  2.007+1.0640
12 0.9994+0.0012 _ 0.7868+0.4946  1.9816+1.0773
p-law 8  0.9993+0.0012  0.7972+0.4976  2.0598+1.0893
p=255 10 0.9994+0.0012  0.7728+0.4975  2.0070+1.0626
12 0.9994:0.0012  0.7872+0.4952  1.9835+1.0767
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“Three sensors and PCA basis vectors are used.
Three sensors and five PCA basis vectors are used.

4 we show the mean and standard deviation values
throughout the complete test set of 1567 skylight spectra
(the training-set size, m, was also 1567) when these were
recovered using the optimum three sensors found in Sec-
tion 4 with each method at a SNR of 40 dB. They are A/D
converted by using uniform quantization and two differ-
ent nonlinear transformations of the data prior to quan-
tization; i.e., the potential transformation?® (we transform
each i component of the vector of sensor responses from p;
to p?, with p being a real number of less than unity) or
p-law transformation,38 which is a usual quantization
strategy used in voice communications in which u=255.
The intention of these two transformations was to assign
more quantum steps whenever the signal was lower,
hence increasing the mean quantization SNR (the SNR
achieved if only quantization noise was present38). It can

be seen in Table 4 that an increase in the number of bits
from 8 to 10 results in a significant improvement in the
metrics tested, while the results achieved with 12 bits are
very similar to those of 10-bit quantization. The two non-
uniform quantization schemes are also recommendable if
we use only 8 bits, but the improvement achieved with
these previous data-compression strategies when quantiz-
ing with 10 or 12 bits is negligible.

5. CONCLUSIONS

We have presented a complete study of a practical multi-
spectral system for the spectral recovery of skylight from
the noise-affected responses of a set of from three to five
Gaussian sensors. We searched for the optimum sensors
for this multispectral system by testing four different
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spectral estimation methods: the Maloney—Wandell,6
Imai—Berns,15 Shi—Healey,16 and Wiener'® methods. We
found that the position, width, relative height, and num-
ber of the optimum sensors are different for each method
and that they also depend on the noise present in the sys-
tem and the characteristics of the linear basis used. With
the Maloney—Wandell, Imai—Berns, and Wiener methods,
the optimum spectral sensitivities and the accuracy of the
reconstructions depended only slightly on the size of the
training set of spectra, and thus we could use small train-
ing sets of spectra with these methods. For the Shi-
Healey method we found that an increase in the size of
the training set of spectra provided better results and a
small sharpening of the optimum sensors. Spectral sharp-
ening of the optimum sensors was also found with the
Maloney—Wandell and Wiener methods when the noise
and the number of sensors in the multispectral system in-
creased. Thus we conclude that we should accurately es-
timate system noise first and then use the set of optimum
sensors found for the corresponding noise level.

Our aim was to find the best reconstructions of skylight
spectral curves from the responses of the optimum set of
Gaussian sensors of a given estimation method, from
spectral, colorimetric, and radiometric points of view,
even in the presence of noise. We have concluded that the
Shi-Healey method proved to be the best method for this
task, providing recovered skylight spectral curves very
similar to those measured using a spectroradiometer,
thus allowing us to use a multispectral system instead.
Nevertheless, the accuracy and computation time of the
Shi—Healey method depends highly on the training-set
size, proving to be extremely slow compared with the
Maloney—Wandell, Imai—-Berns, and Wiener methods. Our
preferred approach would be to use the Wiener estimation
method because it is fast and robust to noise, even when
using a small training set of spectra. It does not require
the previous calculation of either a linear basis or the
spectral sensitivities of the system, and finally it affords
the best results, apart from those obtained with the Shi—
Healey method, while still permitting the construction of
a multispectral system with a few Gaussian sensors for
accurately estimating spectral skylight.

We found that with the Shi—-Healey method an increase
in the number of sensors did not necessarily improve the
accuracy of the recovered spectra if noise was high be-
cause each sensor’s individual contribution to noise was
more appreciable than the slight improvement achieved
in low-noise situations when increasing the number of
sensors to more than four. With the other three methods
little improvement was achieved when using five sensors
instead of four to recover skylight spectra from sensor re-
sponses if noise was high.

We searched for the optimum number of PCA basis vec-
tors to be used with the Maloney—Wandell, Imai—Berns,
and Shi—-Healey methods in each noise situation and
found that it was always preferable to use the same num-
ber of PCA vectors and sensors with the Maloney—
Wandell and Imai—Berns methods. Since the Shi-Healey
method is designed to use higher dimensionalities, we
found the best results when using seven PCA vectors for
low noise and six PCA vectors for higher noise. We also
tested the effect on the optimum sensors and accuracy in
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the reconstructions for three different schemes for obtain-
ing linear bases, i.e., PCA, NMF, and ICA, and found very
similar results with PCA and NMF bases. ICA basis vec-
tors provided better results with all the estimation meth-
ods that required linear bases, at the price of using more
vectors.

Finally, we studied the effect of uniform and nonuni-
form quantization noise with different numbers of bits
and found a significant improvement when previously
compressing the data and using at least 10 bits in the A/D
conversion.
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