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Optimum sensors for color constancy in scenes
illuminated by daylight

Sivalogeswaran Ratnasingam,1,* Steve Collins,1 and Javier Hernández-Andrés2

1Department of Engineering Science, University of Oxford, OX1 3PJ, Oxford, UK
2Department of Optics, Sciences Faculty, University of Granada, Granada 18071, Spain

*Corresponding author: siva@robots.ox.ac.uk

Received February 10, 2010; revised August 11, 2010; accepted August 17, 2010;
posted August 17, 2010 (Doc. ID 123908); published September 20, 2010

The apparent color of an object within a scene depends on the spectrum of the light illuminating the object.
However, recording an object’s color independent of the illuminant spectrum is important in many machine
vision applications. In this paper the performance of a blackbody-model-based color constancy algorithm that
requires four sensors with different spectral responses is investigated under daylight illumination. In this in-
vestigation sensor noise was modeled as Gaussian noise, and the responses were quantized using different
numbers of bits. A projection-based algorithm whose output is invariant to illuminant is investigated to im-
prove the results that are obtained. The performance of both of these algorithms is then improved by optimiz-
ing the spectral sensitivities of the four sensors using freely available CIE standard daylight spectra and a set
of lightness-normalized Munsell reflectance data. With the optimized sensors the performance of both algo-
rithms is shown to be comparable to the human visual system. However, results obtained with measured day-
light spectra show that the standard daylights may not be sufficiently representative of measured daylight for
optimization with the standard daylight to lead to a reliable set of optimum sensor characteristics. © 2010
Optical Society of America
OCIS codes: 330.0330, 330.1690, 330.1720, 330.1730.
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. INTRODUCTION
n naturally illuminated scenes direct sunlight and
hadow can create a scene with a wide dynamic range
hat can then lead to saturation and underexposure of
arts of a scene. These large variations in intensity to-
ether with changes in the spectral power distribution of
aylight can also cause unwanted variations in the appar-
nt color of the surfaces in a scene. It is these variations
n the recorded colors of surfaces that make it difficult to
se color as a reliable source of information when creating
achine vision systems. In contrast reliable chromaticity

nformation can be obtained from the sunlight or skylight
lluminated scenes using an algorithm based on the
lackbody model of the spectrum of the illuminant [1].
archant and Onyango [2] proposed an algorithm for

olving color constancy under daylight by taking ratios of
ensor responses. This algorithm is based on the assump-
ions that the power spectrum of daylight can be approxi-
ated by the blackbody model, and that the spectral
idth of the image sensors is infinitely narrow. In addi-

ion, the large variation of intensity and power spectrum
f illuminant in a daylight scene can be easily separated
rom the reflectance by taking the logarithm of the sensor
esponses. In solving color constancy the advantage of us-
ng logarithmic responses was proposed in the Retinex al-
orithm [3] and in Horn’s algorithm [4]. Based on the
lackbody assumption Finlayson and Hordley [5] pro-
osed an algorithm based on the logarithm of three sensor
esponses to find a one-dimensional (1D) solution to the
olor constancy problem. However, it was shown that
nding a 1D solution to the color constancy problem leads
o confusion of perceptually different colors [6]. Finlayson
1084-7529/10/102198-10/$15.00 © 2
nd Drew [7] applied this 1D color constancy algorithm to
our sensor responses to form an illuminant-independent
wo-dimensional (2D) space [7]. Based on the blackbody
odel Romero et al. [8] proposed an algorithm for color

onstancy in scenes illuminated by natural light. Recent-
y, Ratnasingam and Collins [1] proposed a model-based
lgorithm that extracts two illuminant-independent fea-
ures that represent the surface reflectance using data
rom four sensors. For mathematical convenience Ratnas-
ngam and Collins [1] assumed that the sensors respond
o only a single wavelength, and that the illuminant spec-
rum can be modeled by a blackbody spectrum. This
odel-based algorithm estimates the illuminant effect on

ne sensor response using the responses of two other sen-
ors to create an illumination-independent feature [1].
owever, sensors with such extremely narrow spectral re-

ponses are both difficult to manufacture and would re-
uire long exposure times. Ratnasingam and Collins [1]
ave shown that narrow spectral responses are not essen-
ial to the algorithm.

In this paper two methods of improving the quality of
lluminant-independent reflectance descriptors (referred
o as features) are investigated. In Section 2 the perfor-
ance of the model-based algorithm proposed by Ratnas-

ngam and Collins [1] is investigated for sensors with dif-
erent spectral bandwidths and levels of both sensor noise
nd quantization noise. A projection-based approach to
btaining features that are independent of the illuminant
pectrum is then investigated as a method of improving
he quality of the features that can be obtained from the
esponses of four sensors with different spectral re-
ponses. These spectral responses are modeled using a
010 Optical Society of America
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aussian function, and the response of each sensor is
imulated by numerically integrating the image equation
1]. The resulting sensor responses are then used as the
ata from which illuminant-independent features are ob-
ained, and the quality of these features is then assessed
y using them to distinguish between perceptually simi-
ar colors. Another approach to obtaining better results is
o optimize the spectral responses of the four different
ypes of sensors for this particular application. In particu-
ar it may be possible to extend the developing interest in
rganic photodetectors integrated onto silicon substrates
9] to use families of different organic chromophores [10]
o create cameras whose pixels have application-specific
pectral responses. In Section 3 the effect of optimizing
he wavelength at which the response of each sensor is
aximal is investigated using gradient descent with par-

icular sets of reflectances and daylight spectra. The per-
ormance of the optimized algorithms is investigated by
hanging reflectances and illuminants in Sections 4 and
, respectively.

. PERFORMANCE EVALUATION
simple method of extracting chromaticity features from

ogarithmic sensors with four different spectral responses
as described recently by Ratnasingam and Collins [1].

n the derivation of this method it was assumed that the
pectral width of each sensor is infinitely narrow, and the
lluminant spectrum can be approximated by a blackbody
pectrum. If these assumptions are valid then it is pos-
ible to create two illuminant independent features (F1
nd F2) from the responses of four sensors using the equa-
ions

F1 = log�R2� − �� log�R1� + �1 − ��log�R3��, �1�

F2 = log�R3� − �� log�R2� + �1 − ��log�R4��, �2�

here R1, R2, R3, and R4 are the sensor responses, and �
nd � are two coefficients that will be referred to as chan-
el coefficients. If �1, �2, �3, and �4 are the wavelengths at
hich the four sensors have their maximum responses

hen the variations in both the illuminant intensity and
ower spectrum can be removed if the two channel coeffi-
ients satisfy the following two equations [1]:

1

�2
=

�

�1
+

1 − �

�3
, �3�

1

�3
=

�

�2
+

1 − �

�4
. �4�

In the previous investigation of the feature space
ormed by F1 and F2 [1], the reflectance data used were
hose Munsell reflectances that correspond to colors taken
rom a thin plane in the CIELab color space, and the rela-
ive spread of each of the reflectance samples on the fea-
ure space was assessed using a Mahalanobis distance
etric. The sensitivity functions of the sensors were mod-

led using Gaussian functions with a sensible choice of
arameters to cover the entire visible spectrum evenly.
Previously Ratnasingam and Collins investigated the
eature space formed by F1 and F2 using CIE standard
aylight spectra with correlated color temperatures
CCTs) between 5000 K and 9000 K. However, measure-
ents of actual daylight spectral power distributions

11,12] show that the CCT of measured daylight can occa-
ionally fall outside this range. Therefore, in this study
he algorithm’s performance with the entire CCT range
efined by the International Commission on Illumination
CIE) was used. In particular a set of spectra of CIE stan-
ard daylight was chosen with CCTs varying between
000 K and 25000 K [13]. The particular CCTs used could
e chosen so that they are spaced evenly along the mired
cale (given by 106 K−1) [14]. However our overall aim is
o differentiate surfaces illuminated by daylight. The
CTs used have therefore been chosen to have a similar
istribution of CCTs as the actual measured daylight
11,12]. This set of 20 daylight spectra is referred to as the
IE standard test daylights in the rest of this paper.
In the initial study of the model-based algorithm [1] the

eatures were obtained from the responses of evenly
pread Gaussian sensors in the visible spectrum �400
m to 700 nm� with spectral peak positions 437.5 nm,
12.5 nm, 587.5 nm, and 662.5 nm (FWHM 80 nm). Fig-
re 1 shows the illuminant-independent feature space

ormed with the features (F1 and F2) obtained from this
ensor combination. In generating the sensor responses
or this feature space 204 Munsell reflectances [15] with
imilar relative lightness were illuminated by the 20
pectra of CIE standard test daylights. In Fig. 1 the color
f each reflectance is used to represent the points in the
pace that correspond to the surface. The figure shows
hat, in typical spaces such as the one shown in this fig-
re, color in the space varies smoothly across the space.
owever, there is a small gap in the upper right hand cor-
er of the feature space, and on one side of this gap dis-
imilar colors appear as neighbors. These features occur
n all the feature spaces that we have observed and arise
ecause of the metamer problem that occurs whenever
he responses of a small number of detectors are used to
istinguish between different reflectance spectra.

ig. 1. (Color online) Chromaticity space formed by the model-
ased algorithm with unquantized responses of evenly spread
aussian sensors of FWHM of 80 nm. In this space 204 Munsell

amples are projected when illuminated by 20 spectra of CIE
tandard test daylights.
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A closer inspection of the feature space shows that the
esidual dependence on the illuminant means that each of
he Munsell reflectances creates a small cluster of re-
ponses in the feature space. The size of these clusters de-
ends on several factors including the width of the sensor
esponses, the amount of noise in the sensor responses,
nd the difference between the spectrum of the light
ource and that of a blackbody. To determine the spectral
andwidth of the sensors needed to obtain useful features
method was proposed to determine the significance of

he area occupied by each cluster [1].
The cluster of points formed by each of the Munsell test

eflectances when illuminating with CIE standard test
aylights form a non-uniform distribution of points
shown in Fig. 1). To account for this observed non-
niform distribution it is appropriate to characterize the
ize of each cluster of points using a distance metric that
akes into account this non-uniform spread of points.
herefore, the Mahalanobis distance was applied to deter-
ine a boundary that ideally encloses all points in each

luster of responses corresponding to the same Munsell
eflectance. For n-dimensional normally distributed data,
he Mahalanobis distance between the center of the dis-
ribution C and a point in the distribution P is defined as

DM
2 = �P − C���−1�P − C�, �5�

here � is the covariance matrix of the distribution. For a
air of surface reflectances representing colors separated
y a known distance in CIELab space the Mahalanobis
istance can be used to determine a boundary around
ach cluster. To determine the Mahalanobis distance
oundary of a particular reflectance pair the first step is
nding the center of each cluster of responses. Then the
ahalanobis distance from the center of the respective

lusters to the boundary was increased from a small value
ntil the boundaries formed by both members of a pair
ouched each other. To assess the dependency of the fea-
ure space on the illuminant the number of responses that
ell inside the respective boundary in the pair was then
ounted. This test was repeated on all the 100 pairs of re-
ectances in the test data set, and the percentage of
oints falling within the correct boundary was recorded.
The lightness component of a color and the brightness

omponent of an illuminant are inseparable [5,16]. In
atnasingam and Collins’ model-based algorithm [1] re-
oving the brightness component of the illuminant to

eal with potential variations in brightness also removes
he lightness component of a color. This is an advantage
ecause when changing the viewing illuminant of a color
urface the variation in luminance is large compared to
ts chrominance [17]. The model-based algorithm pre-
erves only the chromaticity descriptors of a surface. In
he previous paper [1] a thin plane of Munsell samples
ith CIELab L values between 47.8 and 50.2 was used in
enerating the test sets. However, in this paper, to more
ccurately assess the algorithm for chromaticity con-
tancy, the 1269 Munsell reflectance spectra were normal-
zed in such a way that all these samples have a lumi-
ance L value in CIELab color space of 50 units. This
ormalization ensured that the only differences in the col-
rs of all the reflectance spectra was in their chromaticity.
he particular value of L �L=50� was chosen because it is
he mid range of the ‘L’ axis, and it is also used in defining
he CIE standard color difference model (E94) [18]. In the
ew test sets applied in this paper the reflectance pairs
iffer only by their chromaticity. In CIELab space there
re several qualitative descriptors defined depending on
he application [11]. One example of a set of qualitative
escriptors is defined by Abrardo et al. [19], who describe
olors that differ by between 1.0 to 3.0 CIELab units as
ery good matches to each other and 3.0 to 6.0 CIELab
nits as good color matches to each other [19,20]. From
his normalized Munsell data set two sets of test reflec-
ances were chosen. Each of these test reflectance sets has
00 pairs of reflectances with pairwise distances of 2.99 to
.01 and 5.995 to 6.005 CIELab units, respectively.
The reflectance data and the daylight spectra were

ampled at 1 nm intervals, and the response of each sen-
or to the different reflectances was obtained by integrat-
ng the product of Munsell reflectance, the CIE standard
aylight spectra, and a Gaussian function representing
he spectral sensitivity of the sensors. For an image sen-
or with spectral sensitivity F��� imaging a scene with re-
ectance S��� the noisy response R is given by

R = N�1,�2��
400 nm

700 nm

S���E���F���d�, �6�

here E��� is the power spectral distribution of the light
ource. N�1,�2� is a normal distribution with a mean
alue of one and a variance that determines the signal-to-
oise ratio (SNR) of the response.
For each sensor response the sensor noise �N�1,�2��

as simulated using 100 normally distributed random
umbers. The final step in the model was to represent the
ffects of using an analog-to-digital converter (ADC) to
onvert the sensor responses to digital quantities. In rep-
esenting the quantizer effect the first stage is to deter-
ine the maximum sensor response. A white standard re-
ectance and the CIE standard daylight illuminant
6500 K� were used to determine this maximum response.
s the optimization process shifts the peak position of
ach of the sensors the maximum sensor response was
alculated by shifting the sensor’s peak position in the
isible spectrum in 1 nm steps. This way the maximum
ensor response corresponding to different sensor spectral
andwidths was calculated. This maximum sensor re-
ponse was then divided by 2n, where n is the number of
its applied in the quantizer, and each sensor response
as then approximated to the nearest one of these quan-

ized levels. In this investigation 8 and 10 bits were ap-
lied to quantize the sensor responses.
When capturing an image of a scene with an image sen-

or some parts of the scene are well exposed and generate
he maximum sensor response, and some other parts of
he scene will be underexposed. To avoid either underex-
osure or overexposure of any of the modeled sensor re-
ponse the spectral power distribution of the daylight il-
uminant was scaled in such a way that the sensor
esponses are all near the middle of the ADC range. Fi-
ally, the features were obtained from the noisy sensor re-
ponses using the method described in Eqs. (1) and (2).

The model-based algorithm was tested with different
evels of sensor noise. The SNR of data available from any
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amera depends on several factors including the charge
torage capacity of the pixel, the noise introduced by the
eadout electronics, and the photon shot noise [21].
owler [21] modeled the expected variations of the SNR of
igital cameras and showed that good quality cameras
hat have pixels with a large charge storage capacity give
n SNR of larger than 30 dB for all the photocurrents
hat can be detected when a 10 bit ADC is used to repre-
ent the response from each pixel. Based on their visual
sychophysical experiments Xiao et al. [22] report that an
maging device should be able to achieve a SNR of 30 dB
r above across the whole dynamic range to render the
hoton noise invisible [22]. Imagers are available with
NRs larger than 40 dB [23]. We have therefore investi-
ated the performance of the model-based algorithm with
ensor noise of 30 dB and 40 dB. The sensor noise with
hese two SNR values was simulated by generating nor-
ally distributed random numbers (100 samples) with

tandard deviations of 3% and 1%, respectively.
The Mahalanobis distance boundary was drawn for

oth members of each test reflectance pair on the feature
pace using the method described above. Two typical Ma-
alanobis distance boundaries drawn around the re-
ponses from one pair of Munsell reflectances when they
re illuminated by 20 CIE standard daylight spectra and
ith 100 samples of noise that represent 40 dB Gaussian
oise are shown in Fig. 2. The number of points falling
ithin the correct boundary was counted for all pairs of

eflectances in a test set, and the percentage of points
hat fell within the correct boundary was recorded. Figure

shows the test results of the model-based algorithm
hen applying the responses generated by evenly spread

ensors with different FWHM �20 nm to 200 nm�. In this
est the 3- and 6-unit Munsell test data sets were illumi-
ated with CIE standard daylight spectra. As expected
he performance of the algorithm degrades when the
oise level is increased. This is because as the noise level

ncreases the variability in the responses increases as
ell, and this variability leads to increases in the size of

he clusters, and more points fall outside the correct Ma-
alanobis distance boundary. Therefore the performance
f the algorithm drops with decreasing SNR. The other
bservation is that the overall performance of the algo-

ig. 2. Typical Mahalanobis distance boundaries for a pair of
unsell samples when illuminated with 20 spectra of CIE stan-

ard daylights. Noise was simulated by generating 100 values of
andom numbers that represent Gaussian noise of 40 dB.
ithm drops with the sensor width. The reason is that as
he width increases the overlap between the adjacent sen-
itivity function increases. This increase in overlap be-
ween spectral sensitivities leads to an increase in corre-
ation between the sensor responses and results in a
egradation in performance.
The model-based algorithm relies on the blackbody
odel of the illuminant spectrum in calculating the cor-

ect channel coefficients to discount the illuminant effect
rom the sensor responses. The performance of this algo-
ithm might be improved by adapting the algorithm to es-
imate illuminant effects with real illuminants instead of
sing the blackbody model. To estimate the illuminant ef-
ect on the sensor responses an approach proposed by Fin-
ayson and Drew [7] was applied. This algorithm was also
eveloped using the assumptions that the power spectral
istribution of the illuminant can be approximated by a
lackbody spectrum, and the image sensors respond to a
ingle wavelength. In Finlayson and Drew’s [7] approach
he ratios of sensor responses were taken to remove any
ependency on the illuminant intensity and scene geom-
try. These normalized responses are then projected in
he direction of illuminant-induced variation on the sen-
or responses. This projection results in a 2D space that is
pproximately independent of illuminant. In finding the
irection of illuminant-induced variations the CIE stan-
ard illuminants were used instead of blackbody illumi-
ants as used by Finlayson and Drew [7]. As this algo-
ithm normalizes the lightness component of a color the
D space formed by this approach also represents the
hromaticity of a color.

Finlayson and Drew’s algorithm [7] and the model-
ased algorithm [1] were tested with Munsell reflectance
ata and CIE standard daylight. The results obtained
ith Gaussian sensors with peak spectral responses at
37.5 nm, 512.5 nm, 587.5 nm, and 662.5 nm when the
NR of the data from the sensors is 40 dB are shown in
ig. 4. Applying Finlayson and Drew’s [7] algorithm to re-
ove the illuminant effect gives only a slight improve-
ent compared to the model-based algorithm. The perfor-
ance of both of these algorithms might be improved by

ig. 3. Results of the model-based algorithm when testing with
venly spread sensor responses. Gaussian noise of 30 dB and
0 dB was applied to the sensor responses. The resulting linear
esponses were quantized to 10 bits. Munsell 3- and 6-units test
ets were illuminated with the CIE standard test daylights.
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ptimizing the sensor characteristics applied to capture
he data required for the algorithms.

. OPTIMIZATION
he sensor parameters of both the model-based and Fin-

ayson and Drew’s [7] algorithms were optimized sepa-
ately in such a way that the ability to identify perceptu-
lly similar colors is improved. In the rest of the
iscussion the optimized version of Finlayson and Drew’s
7] approach is referred as a projection-based algorithm.
or this initial study the number of variables was limited
y assuming that the spectral bandwidth of all the sen-
ors was the same and the parameters of the algorithms
ere optimized with different sensor spectral band-
idths. In optimizing the sensor parameters 100 pairs of
unsell reflectance samples with members separated by
CIELab unit were illuminated by 20 spectra of CIE

tandard daylight. Again this set of spectra was chosen so
hat it had a distribution of CCTs similar to the measured
aylight. However, the individual CCTs of this set of spec-

ig. 5. Initial and optimized performance of the model-based a
unsell data (1 unit) and the CIE standard training daylights.

pplied in testing both algorithms. Gaussian noise of 40 dB was a
uantized to 10 bits. (a) Model-based algorithm. (b) Projection-ba

ig. 4. Test results of model-based algorithm and Finlayson and
rew’s [7] algorithm with evenly spread sensors. Gaussian noise
f 40 dB was applied to the sensor responses and the resulting
inear responses were quantized to 10 bits. Munsell data (3 and 6
nits) were illuminated by the CIE standard test daylights.
ra (CIE standard training daylights) are different from
he CCTs of the test spectra. This set of CIE standard
raining daylights was used to determine the number of
oints that fall inside the correct boundaries using the
ethod described in Section 2. The inverse of this number
as then used as the error measure in the optimization
rocess. In particular if the gradient of this error measure
or a set of independent parameters p is �G�p� then the
ew parameters

pn+1 = pn − � � G�pn�, �7�

here � is the parameter step size. If this change in pa-
ameters was found to increase the error measure then
he change in parameters must be too large. In these cir-
umstances the step size was reduced by a factor of 0.9
ntil a set of parameters was found that reduced the error
easure. The gradient at this new set of parameters was

hen calculated and a new set of parameters determined
ntil it was impossible to reduce the error measure.
For the model-based algorithm the two outer sensors’

eak positions and the channel coefficients were taken as
he independent parameters in this optimization. The two
nner sensor positions can be calculated from Eqs. (3) and
4). The outer sensor positions and the two channel coef-
cients were taken as the independent parameters to
ake sure that the sensitivity functions cover the entire

isible region and that both the neighboring sensors con-
ribute approximately equally in estimating the illumi-
ant effect on the inner sensors, respectively. For the
rojection-based algorithm the four peak sensor positions
ere taken as the independent parameters in the optimi-

ation. The optimization was performed separately by
ormalizing the sensor responses by the responses gener-
ted by sensors 1 to 4 and for different spectral band-
idths of the Gaussian sensors interested between
0 nm to 200 nm. Two sets of sensible starting sensor po-
itions were chosen for the investigation. The first is the
venly spread sensors used to generate the chromaticity
pace in Fig. 1 ; the second set is the equal-weight sensors
ith peak positions at 437.5 nm, 493.5 nm, 565.5 nm, and
62.5 nm. For the model–based algorithm, for a given
ensor position the initial channel coefficients can be cal-

jection-based algorithm. Gaussian sensors were optimized with
ll data (3 and 6 units) and the CIE standard test daylights are
to the sensor responses and the resulting linear responses were

gorithm.
nd pro
Munse
pplied
sed al
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ulated from Eqs. (3) and (4). For the projection-based al-
orithm the unit vectors can be calculated by applying
igen vector decomposition on the space formed by the ra-
io of sensor responses (this was done in logarithmic
cale) generated by the 20 spectra of CIE standard day-
ight and the 1-unit Munsell reflectance data set. Test re-
ults with initial and final parameters of model-based and
rojection-based algorithm for 40 dB sensor noise are
hown in Fig. 5. It can be seen that the performance of the
lgorithms has improved slightly when testing with Mun-
ell and CIE standard test daylights. The improvement in
erformance when testing with 3-unit reflectance data is
arger than that obtained with the 6-unit data. This is
articularly true of the model-based algorithm. The rea-
on for this is probably that although both algorithms
ave been derived assuming sensors that respond at a
ingle wavelength the model-based algorithm lacks the
exibility to deal with the effects of breaking this assump-
ion that arise from the data-based projection operation in
he alternative algorithm. Consequently the performance
f the model-based algorithm is more dependent on sen-
ors with narrow spectral responses. However, sensors
ith narrow spectral responses are difficult to manufac-

ure and, since they are starved of photons, they would re-
uire long exposure times. A possible limit to the narrow-
st spectral responses that might be both possible and

able 1. Optimized Parameters of the Model-Based
Algorithm

Sensor ID 1 2 3 4
Peak position (nm) 434.4 513.6 593.3 676.9
Channel coefficient �=0.425, �=0.444

Table 2. Optimized Parameters of the Projection-
Based Algorithm When Normalizing the Sensor

Responses by the Response of Sensor 3

Sensor ID 1 2 3 4
Peak position (nm) 400.0 487.6 556.0 675.1

Vector 1 −0.3488 0.7706 −0.5332
Vector 2 0.8407 0.5087 0.1852

ig. 6. Sensitivity functions of optimized Gaussian sensors for
izing the Gaussian sensors Munsell data (1 unit) and the CIE
ractical is suggested by the Sony DXC930 camera, which
as three types of pixels sensors with spectral widths of
pproximately 80 nm. Of all the different sets of opti-
ized sensors that have been obtained those with a
WHM of 80 nm are therefore particularly interesting.
heir parameters are therefore listed in Tables 1 and 2,
nd their responses are shown in Fig. 6. The parameters
isted in Tables 1 and 2 were obtained when starting the
ptimization with evenly spread sensors. For the
rojection-based algorithm typical optimized sensors
isted in Table 2 were obtained when normalizing the sen-
or responses by the response of sensor 3. An important
onclusion from the parameters such as those in Tables 1
nd 2 is that the spectral responses of optimum sensor
ets can be quite different. In view of the considerable in-
estment needed to develop a sensor with a particular
eak spectral response it is important to ensure that the
orrect spectral responses are specified.

. ROBUSTNESS OF THE CONCLUSIONS TO
HE CHANGE IN REFLECTANCE DATA

n Section 3 the performance of the projection-based and
odel-based algorithms was investigated with the Mun-

ell reflectance data set. However, this data set is believed
o be generated with a limited number of basis functions
24]. Therefore the performance of the algorithms was in-
estigated with real-world measured reflectances. The re-
ectances used are flower reflectances measured around
he world [25]. These 2211 measured reflectances were
ormalized as described in Section 2. From these normal-

zed reflectances two sets of 100 pairs of reflectances with
ember separations from 2.998 to 3.002 and from 5.998

o 6.001 units in the CIELab color space were obtained.
oth of the algorithms were compared with evenly spread
ensors, and the results are shown in Fig. 7. Similar to
he results presented in Section 3 these results also show
hat the improvement achieved by applying the projection
ethod is small.
As both the algorithms were optimized with Munsell

ata and CIE standard daylight illuminant the algo-
ithms were tested with floral data to ensure that the pro-
ess used to find the optimum sensor combination has not
verfit the sensor responses to the Munsell data. The re-

del-based algorithm and (b) projection-based algorithm. In opti-
rd training daylights are applied.
(a) mo
standa
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ults in Fig. 8 show that the optimization has found a sen-
or combination that also improves the performance of
he algorithm with measured reflectances, and the results
or both algorithms suggest that the optimization has not
verfit to the Munsell data set. More importantly, these
esults suggest that using projection to extract features
rom the responses of optimized sensors leads to an im-
rovement in the quality of the features. However, a com-
arison between the results obtained with the different
eflectance data sets, Fig. 9, shows that the similarity be-
ween the Munsell and floral data set is not good enough
or the Munsell to accurately predict the performance
ith floral data.

. ROBUSTNESS TO THE CHANGE IN
LLUMINANT
n Sections 3 and 4 the performances of the model-based
nd the projection-based algorithms have been investi-
ated with CIE standard daylight illuminants. However,
he CIE standard daylight model was developed with
hree basis vectors. These basis vectors were generated
sing daylight measurements taken in three places

ig. 7. Performance of model-based and projection-based algo-
ithms with evenly spread sensors. In this test floral reflectances
ere illuminated by the CIE standard test daylights. Gaussian
oise of 40 dB was applied to the sensor responses and the re-
ulting linear responses were quantized to 10 bits. (a) Model-
ased algorithm. (b) Projection-based algorithm.

ig. 8. Initial and optimized performance of the model-based and
ell data (1 unit) and the CIE standard training daylights are ap
re applied in testing both algorithms. Gaussian noise of 40 dB w
uantized to 10 bits.
Ottawa, Canada; Rochester, New York, USA, and Middle-
ex, England). It is known that the daylight spectra vary
ith location, time of day, time of year, and weather con-
itions. Figure 10 shows the spectrum of CIE standard
aylight �6500 K� and three of the measured daylight
pectra with CCTs close to 6500 K [11]. From this figure it
an be seen that even though the CIE standard daylight
pectrum models the overall shape of the measured spec-
ra, it does not represent the fine details caused by atmo-
pheric absorption. This atmospheric absorption varies
ith weather conditions and the elevation of the Sun, and

his elevation of the Sun varies with time and location on
he Earth [18]. To ensure that any conclusions are inde-
endent of the data, the performance of the model-based
nd the projection-based algorithms was tested with mea-
ured daylight. In the test 146 daylight spectra measured
n a day in the first week of each month in 1997 was ap-
lied [11]. The measurements were taken between 5:30
m and 7:30 pm under different types of weather condi-
ions in Granada, Spain. Test results of both algorithms
ith evenly spread sensors are shown in Fig. 11. These

esults show that both of the algorithms are comparable

tion-based algorithms. In optimizing the Gaussian sensors Mun-
Floral data (3 and 6 units) and the CIE standard test daylights
lied to the sensor responses. The resulting linear responses were

ig. 9. Test results of the projection-based algorithm with opti-
ized sensor responses. Gaussian sensors were optimized with
unsell data (1 unit) and the CIE standard training daylights.
he CIE standard test daylights were applied in illuminating the
eflectances. Gaussian noise of 40 dB was applied to the sensor
esponses and the resulting linear responses were quantized to
0 bits.
projec
plied.
as app
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n performance with evenly spread sensors. These results
nd the previous results suggest that the performance im-
rovement achieved by applying the projection-based ap-
roach is small.
As the model-based and projection-based algorithms

ere optimized with CIE standard daylight both algo-
ithms were tested with measured daylight. Figure 12 il-
ustrates the performance of both algorithms with initial
nd optimized sensor responses when applying Munsell
eflectance and measured daylight spectra. These results
how that the optimization of both algorithms has not al-
ays improved the performance of the algorithms when

ested with Munsell reflectances and measured daylight
pectra. This suggests that the CIE standard daylight
ight not be a good representative data set for measured

aylight at a particular location.
The performance of the projection-based algorithm was

ompared with CIE standard daylight and measured day-
ight. Figure 13 illustrates the performance of the algo-
ithm with Munsell reflectances illuminated by CIE stan-
ard daylight and measured daylight. It can be seen that
here is a significant performance drop when changing
he illuminant from CIE standard daylight to the mea-
ured daylight. The reason could be that the CIE stan-
ard daylight model was developed using the daylight
easurements taken in three places, and the measured

lluminants applied in our investigation were measured

ig. 12. Initial and optimized performance of (a) model-based a
pectra. Gaussian sensors were optimized with Munsell data (1 u
ested with Munsell reflectance data (3, 6 units) and 146 spectra o
esponses and the resulting linear responses were quantized to 1

ig. 10. Spectra of CIE �6500 K� and measured daylight with
orrelated color temperature 6508 K, 6481 K, and 6519 K.
n Granada, Spain, under different types of weather con-
itions over a longer period of time (two years). As the
easurements used in the CIE standard model and our

est illuminants are taken from different parts of the
orld the CIE standard daylight might not adequately

epresent the measured daylight used in this paper. This
eads to the performance difference when changing the il-
uminants from CIE standard daylight to the measured
aylight. The results presented in Figs. 12 and 13 suggest
hat the CIE standard daylight model is not a good rep-
esentative spectra that could be used to optimize the sen-
or characteristics or to predict the exact performance of a
olor constancy algorithm.

. CONCLUSIONS
he performance of a blackbody-model-based algorithm

or color constancy under daylight illuminant was inves-
igated and compared with the performance obtained us-
ng an alternative algorithm proposed by Finlayson and
rew [7]. Both of these algorithms are based on the as-

umptions that four types of sensors are used that each
espond to a different single wavelength, and that the il-

ig. 11. Test results of model-based and projection-based algo-
ithms when testing with responses generated by evenly spread
ensor responses. Gaussian noise of 40 dB was applied to the
ensor responses and the resulting linear responses were quan-
ized to 10 bits. Munsell reflectances were illuminated by mea-
ured daylight.

projection-based algorithm with Munsell and measured daylight
d the CIE standard training daylights. Both the algorithms were
ured daylight. Gaussian noise of 40 dB was applied to the sensor

.

nd (b)
nit) an
f meas
0 bits
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uminant spectral power density can be approximated by
hat of a blackbody. Results that have been presented
how that either of the algorithms can be used to obtain
seful information even when each of the sensors re-
ponds to a relatively wide range of wavelengths and
here is significant overlap between the sensor responses.
he difference between the algorithms is that the model-
ased algorithm only requires the calculation of two coef-
cients, while the alternative algorithm requires a projec-
ion. While the coefficient calculation is very easy the best
rojection can only be calculated using the measured sen-
or responses to several colors under different illumi-
ants. Although this makes the projection algorithm less
onvenient for the user, the projection algorithm might be
xpected to give better results for real illuminant spectra
nd sensor responses. Somewhat surprisingly the results
hat have been obtained suggest that the performance of
he two algorithms when used to process noisy data from
sensible choice of sensors is almost identical. Using the
ore sophisticated algorithm to process the sensor data is

herefore not a reliable way to achieve better results.
An alternative approach to obtaining better results

rom a set of sensors is to exploit the flexibility offered by
amilies of different organic chromophores [10] to opti-
ize the spectral responses of the four different types of

ensors. The effect of optimizing the spectral responses of
he four sensors on the results that could be obtained us-
ng the two algorithms has been investigated using a
teepest descent algorithm. The optimization metric that
as chosen for this investigation was the separability of
erceptually similar colors. The data used during optimi-
ation were the freely available Munsell reflectance data
nd the CIE standard daylight spectra. As expected this
ptimization improved the separability of perceptually
imilar Munsell samples illuminated by CIE standard
aylight spectra, and the results obtained were compa-
able to those achieved by the human visual system. How-
ver, it was observed that the optimization did not always
mprove the performance of the model-based and
rojection-based algorithms when measured illuminant
pectra were used. This shows that optimizing the sensor

ig. 13. Test results of the projection-based algorithm with op-
imized sensors when illuminating the Munsell reflectance
amples with the CIE standard test daylight spectra and mea-
ured daylight spectra. Gaussian noise of 40 dB was applied to
he sensor responses and the resulting linear responses were
uantized to 10 bits.
arameters with CIE standard daylight does not neces-
arily result in an optimum set of sensors for real day-
ight. In addition, the results obtained with CIE standard
aylight are significantly better than those obtained with
easured daylight. These two observations suggest that

he CIE standard daylight spectra do not represent the
easured daylight spectra in enough detail for the CIE

tandard daylight spectra to be used to reliably optimize a
ystem designed to distinguish a quite subtle difference
etween two colors. Although the optimization could be
erformed using the data measured in Granada it is not
lear that the resulting system would perform well in dif-
erent locations. Before a set of optimum sensors can be
eliably defined, daylight spectra from different parts of
he world are required.
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