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The apparent color of an object within a scene depends on the spectrum of the light illuminating the object.
However, recording an object’s color independent of the illuminant spectrum is important in many machine
vision applications. In this paper the performance of a blackbody-model-based color constancy algorithm that
requires four sensors with different spectral responses is investigated under daylight illumination. In this in-
vestigation sensor noise was modeled as Gaussian noise, and the responses were quantized using different
numbers of bits. A projection-based algorithm whose output is invariant to illuminant is investigated to im-
prove the results that are obtained. The performance of both of these algorithms is then improved by optimiz-
ing the spectral sensitivities of the four sensors using freely available CIE standard daylight spectra and a set
of lightness-normalized Munsell reflectance data. With the optimized sensors the performance of both algo-
rithms is shown to be comparable to the human visual system. However, results obtained with measured day-
light spectra show that the standard daylights may not be sufficiently representative of measured daylight for
optimization with the standard daylight to lead to a reliable set of optimum sensor characteristics. © 2010
Optical Society of America
OCIS codes: 330.0330, 330.1690, 330.1720, 330.1730.
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1. INTRODUCTION

In naturally illuminated scenes direct sunlight and
shadow can create a scene with a wide dynamic range
that can then lead to saturation and underexposure of
parts of a scene. These large variations in intensity to-
gether with changes in the spectral power distribution of
daylight can also cause unwanted variations in the appar-
ent color of the surfaces in a scene. It is these variations
in the recorded colors of surfaces that make it difficult to
use color as a reliable source of information when creating
machine vision systems. In contrast reliable chromaticity
information can be obtained from the sunlight or skylight
illuminated scenes using an algorithm based on the
blackbody model of the spectrum of the illuminant [1].
Marchant and Onyango [2] proposed an algorithm for
solving color constancy under daylight by taking ratios of
sensor responses. This algorithm is based on the assump-
tions that the power spectrum of daylight can be approxi-
mated by the blackbody model, and that the spectral
width of the image sensors is infinitely narrow. In addi-
tion, the large variation of intensity and power spectrum
of illuminant in a daylight scene can be easily separated
from the reflectance by taking the logarithm of the sensor
responses. In solving color constancy the advantage of us-
ing logarithmic responses was proposed in the Retinex al-
gorithm [3] and in Horn’s algorithm [4]. Based on the
blackbody assumption Finlayson and Hordley [5] pro-
posed an algorithm based on the logarithm of three sensor
responses to find a one-dimensional (1D) solution to the
color constancy problem. However, it was shown that
finding a 1D solution to the color constancy problem leads
to confusion of perceptually different colors [6]. Finlayson
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and Drew [7] applied this 1D color constancy algorithm to
four sensor responses to form an illuminant-independent
two-dimensional (2D) space [7]. Based on the blackbody
model Romero et al. [8] proposed an algorithm for color
constancy in scenes illuminated by natural light. Recent-
ly, Ratnasingam and Collins [1] proposed a model-based
algorithm that extracts two illuminant-independent fea-
tures that represent the surface reflectance using data
from four sensors. For mathematical convenience Ratnas-
ingam and Collins [1] assumed that the sensors respond
to only a single wavelength, and that the illuminant spec-
trum can be modeled by a blackbody spectrum. This
model-based algorithm estimates the illuminant effect on
one sensor response using the responses of two other sen-
sors to create an illumination-independent feature [1].
However, sensors with such extremely narrow spectral re-
sponses are both difficult to manufacture and would re-
quire long exposure times. Ratnasingam and Collins [1]
have shown that narrow spectral responses are not essen-
tial to the algorithm.

In this paper two methods of improving the quality of
illuminant-independent reflectance descriptors (referred
to as features) are investigated. In Section 2 the perfor-
mance of the model-based algorithm proposed by Ratnas-
ingam and Collins [1] is investigated for sensors with dif-
ferent spectral bandwidths and levels of both sensor noise
and quantization noise. A projection-based approach to
obtaining features that are independent of the illuminant
spectrum is then investigated as a method of improving
the quality of the features that can be obtained from the
responses of four sensors with different spectral re-
sponses. These spectral responses are modeled using a
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Gaussian function, and the response of each sensor is
simulated by numerically integrating the image equation
[1]. The resulting sensor responses are then used as the
data from which illuminant-independent features are ob-
tained, and the quality of these features is then assessed
by using them to distinguish between perceptually simi-
lar colors. Another approach to obtaining better results is
to optimize the spectral responses of the four different
types of sensors for this particular application. In particu-
lar it may be possible to extend the developing interest in
organic photodetectors integrated onto silicon substrates
[9] to use families of different organic chromophores [10]
to create cameras whose pixels have application-specific
spectral responses. In Section 3 the effect of optimizing
the wavelength at which the response of each sensor is
maximal is investigated using gradient descent with par-
ticular sets of reflectances and daylight spectra. The per-
formance of the optimized algorithms is investigated by
changing reflectances and illuminants in Sections 4 and
5, respectively.

2. PERFORMANCE EVALUATION

A simple method of extracting chromaticity features from
logarithmic sensors with four different spectral responses
was described recently by Ratnasingam and Collins [1].
In the derivation of this method it was assumed that the
spectral width of each sensor is infinitely narrow, and the
illuminant spectrum can be approximated by a blackbody
spectrum. If these assumptions are valid then it is pos-
sible to create two illuminant independent features (F;
and F'y) from the responses of four sensors using the equa-
tions

Fy=log(Ry) - {alog(Ry) + (1 - a)log(R3)}, 1)

Fy=1log(R3) - {ylog(Ry) + (1 - y)log(R,)}, (2)

where Rq, Ry, R3, and Ry are the sensor responses, and «
and v are two coefficients that will be referred to as chan-
nel coefficients. If N1, A9, A3, and A4 are the wavelengths at
which the four sensors have their maximum responses
then the variations in both the illuminant intensity and
power spectrum can be removed if the two channel coeffi-
cients satisfy the following two equations [1]:
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In the previous investigation of the feature space
formed by F; and Fy [1], the reflectance data used were
those Munsell reflectances that correspond to colors taken
from a thin plane in the CIELab color space, and the rela-
tive spread of each of the reflectance samples on the fea-
ture space was assessed using a Mahalanobis distance
metric. The sensitivity functions of the sensors were mod-
eled using Gaussian functions with a sensible choice of
parameters to cover the entire visible spectrum evenly.
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Previously Ratnasingam and Collins investigated the
feature space formed by F; and Fy using CIE standard
daylight spectra with correlated color temperatures
(CCTs) between 5000 K and 9000 K. However, measure-
ments of actual daylight spectral power distributions
[11,12] show that the CCT of measured daylight can occa-
sionally fall outside this range. Therefore, in this study
the algorithm’s performance with the entire CCT range
defined by the International Commission on Illumination
(CIE) was used. In particular a set of spectra of CIE stan-
dard daylight was chosen with CCTs varying between
4000 K and 25000 K [13]. The particular CCTs used could
be chosen so that they are spaced evenly along the mired
scale (given by 10% K-1) [14]. However our overall aim is
to differentiate surfaces illuminated by daylight. The
CCTs used have therefore been chosen to have a similar
distribution of CCTs as the actual measured daylight
[11,12]. This set of 20 daylight spectra is referred to as the
CIE standard test daylights in the rest of this paper.

In the initial study of the model-based algorithm [1] the
features were obtained from the responses of evenly
spread Gaussian sensors in the visible spectrum (400
nm to 700 nm) with spectral peak positions 437.5 nm,
512.5 nm, 587.5 nm, and 662.5 nm (FWHM 80 nm). Fig-
ure 1 shows the illuminant-independent feature space
formed with the features (F; and Fy) obtained from this
sensor combination. In generating the sensor responses
for this feature space 204 Munsell reflectances [15] with
similar relative lightness were illuminated by the 20
spectra of CIE standard test daylights. In Fig. 1 the color
of each reflectance is used to represent the points in the
space that correspond to the surface. The figure shows
that, in typical spaces such as the one shown in this fig-
ure, color in the space varies smoothly across the space.
However, there is a small gap in the upper right hand cor-
ner of the feature space, and on one side of this gap dis-
similar colors appear as neighbors. These features occur
in all the feature spaces that we have observed and arise
because of the metamer problem that occurs whenever
the responses of a small number of detectors are used to
distinguish between different reflectance spectra.

0.6
0.5
04
0.3
0.2
0.1
0
-0.1
-0.2

-0'%.5 0 0.5 1

Fy

Fig. 1. (Color online) Chromaticity space formed by the model-
based algorithm with unquantized responses of evenly spread
Gaussian sensors of FWHM of 80 nm. In this space 204 Munsell
samples are projected when illuminated by 20 spectra of CIE
standard test daylights.
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A closer inspection of the feature space shows that the
residual dependence on the illuminant means that each of
the Munsell reflectances creates a small cluster of re-
sponses in the feature space. The size of these clusters de-
pends on several factors including the width of the sensor
responses, the amount of noise in the sensor responses,
and the difference between the spectrum of the light
source and that of a blackbody. To determine the spectral
bandwidth of the sensors needed to obtain useful features
a method was proposed to determine the significance of
the area occupied by each cluster [1].

The cluster of points formed by each of the Munsell test
reflectances when illuminating with CIE standard test
daylights form a non-uniform distribution of points
(shown in Fig. 1). To account for this observed non-
uniform distribution it is appropriate to characterize the
size of each cluster of points using a distance metric that
takes into account this non-uniform spread of points.
Therefore, the Mahalanobis distance was applied to deter-
mine a boundary that ideally encloses all points in each
cluster of responses corresponding to the same Munsell
reflectance. For n-dimensional normally distributed data,
the Mahalanobis distance between the center of the dis-
tribution C and a point in the distribution P is defined as

D% =(P-C)3Y(P-0), (5)

where X is the covariance matrix of the distribution. For a
pair of surface reflectances representing colors separated
by a known distance in CIELab space the Mahalanobis
distance can be used to determine a boundary around
each cluster. To determine the Mahalanobis distance
boundary of a particular reflectance pair the first step is
finding the center of each cluster of responses. Then the
Mahalanobis distance from the center of the respective
clusters to the boundary was increased from a small value
until the boundaries formed by both members of a pair
touched each other. To assess the dependency of the fea-
ture space on the illuminant the number of responses that
fell inside the respective boundary in the pair was then
counted. This test was repeated on all the 100 pairs of re-
flectances in the test data set, and the percentage of
points falling within the correct boundary was recorded.
The lightness component of a color and the brightness
component of an illuminant are inseparable [5,16]. In
Ratnasingam and Collins’ model-based algorithm [1] re-
moving the brightness component of the illuminant to
deal with potential variations in brightness also removes
the lightness component of a color. This is an advantage
because when changing the viewing illuminant of a color
surface the variation in luminance is large compared to
its chrominance [17]. The model-based algorithm pre-
serves only the chromaticity descriptors of a surface. In
the previous paper [1] a thin plane of Munsell samples
with CIELab L values between 47.8 and 50.2 was used in
generating the test sets. However, in this paper, to more
accurately assess the algorithm for chromaticity con-
stancy, the 1269 Munsell reflectance spectra were normal-
ized in such a way that all these samples have a lumi-
nance L value in CIELab color space of 50 units. This
normalization ensured that the only differences in the col-
ors of all the reflectance spectra was in their chromaticity.
The particular value of L (L=50) was chosen because it is
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the mid range of the ‘L’ axis, and it is also used in defining
the CIE standard color difference model (E94) [18]. In the
new test sets applied in this paper the reflectance pairs
differ only by their chromaticity. In CIELab space there
are several qualitative descriptors defined depending on
the application [11]. One example of a set of qualitative
descriptors is defined by Abrardo et al. [19], who describe
colors that differ by between 1.0 to 3.0 CIELab units as
very good matches to each other and 3.0 to 6.0 CIELab
units as good color matches to each other [19,20]. From
this normalized Munsell data set two sets of test reflec-
tances were chosen. Each of these test reflectance sets has
100 pairs of reflectances with pairwise distances of 2.99 to
3.01 and 5.995 to 6.005 CIELab units, respectively.

The reflectance data and the daylight spectra were
sampled at 1 nm intervals, and the response of each sen-
sor to the different reflectances was obtained by integrat-
ing the product of Munsell reflectance, the CIE standard
daylight spectra, and a Gaussian function representing
the spectral sensitivity of the sensors. For an image sen-
sor with spectral sensitivity F(\) imaging a scene with re-
flectance S(\) the noisy response R is given by

700 nm
R=N(1,0%) SNEMNF(\)dN, (6)

400 nm

where E(\) is the power spectral distribution of the light
source. N(1,02) is a normal distribution with a mean
value of one and a variance that determines the signal-to-
noise ratio (SNR) of the response.

For each sensor response the sensor noise (N(1,0%))
was simulated using 100 normally distributed random
numbers. The final step in the model was to represent the
effects of using an analog-to-digital converter (ADC) to
convert the sensor responses to digital quantities. In rep-
resenting the quantizer effect the first stage is to deter-
mine the maximum sensor response. A white standard re-
flectance and the CIE standard daylight illuminant
(6500 K) were used to determine this maximum response.
As the optimization process shifts the peak position of
each of the sensors the maximum sensor response was
calculated by shifting the sensor’s peak position in the
visible spectrum in 1 nm steps. This way the maximum
sensor response corresponding to different sensor spectral
bandwidths was calculated. This maximum sensor re-
sponse was then divided by 2", where n is the number of
bits applied in the quantizer, and each sensor response
was then approximated to the nearest one of these quan-
tized levels. In this investigation 8 and 10 bits were ap-
plied to quantize the sensor responses.

When capturing an image of a scene with an image sen-
sor some parts of the scene are well exposed and generate
the maximum sensor response, and some other parts of
the scene will be underexposed. To avoid either underex-
posure or overexposure of any of the modeled sensor re-
sponse the spectral power distribution of the daylight il-
luminant was scaled in such a way that the sensor
responses are all near the middle of the ADC range. Fi-
nally, the features were obtained from the noisy sensor re-
sponses using the method described in Egs. (1) and (2).

The model-based algorithm was tested with different
levels of sensor noise. The SNR of data available from any



Ratnasingam et al.

camera depends on several factors including the charge
storage capacity of the pixel, the noise introduced by the
readout electronics, and the photon shot noise [21].
Fowler [21] modeled the expected variations of the SNR of
digital cameras and showed that good quality cameras
that have pixels with a large charge storage capacity give
an SNR of larger than 30 dB for all the photocurrents
that can be detected when a 10 bit ADC is used to repre-
sent the response from each pixel. Based on their visual
psychophysical experiments Xiao et al. [22] report that an
imaging device should be able to achieve a SNR of 30 dB
or above across the whole dynamic range to render the
photon noise invisible [22]. Imagers are available with
SNRs larger than 40 dB [23]. We have therefore investi-
gated the performance of the model-based algorithm with
sensor noise of 30 dB and 40 dB. The sensor noise with
these two SNR values was simulated by generating nor-
mally distributed random numbers (100 samples) with
standard deviations of 3% and 1%, respectively.

The Mahalanobis distance boundary was drawn for
both members of each test reflectance pair on the feature
space using the method described above. Two typical Ma-
halanobis distance boundaries drawn around the re-
sponses from one pair of Munsell reflectances when they
are illuminated by 20 CIE standard daylight spectra and
with 100 samples of noise that represent 40 dB Gaussian
noise are shown in Fig. 2. The number of points falling
within the correct boundary was counted for all pairs of
reflectances in a test set, and the percentage of points
that fell within the correct boundary was recorded. Figure
3 shows the test results of the model-based algorithm
when applying the responses generated by evenly spread
sensors with different FWHM (20 nm to 200 nm). In this
test the 3- and 6-unit Munsell test data sets were illumi-
nated with CIE standard daylight spectra. As expected
the performance of the algorithm degrades when the
noise level is increased. This is because as the noise level
increases the variability in the responses increases as
well, and this variability leads to increases in the size of
the clusters, and more points fall outside the correct Ma-
halanobis distance boundary. Therefore the performance
of the algorithm drops with decreasing SNR. The other
observation is that the overall performance of the algo-
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Fig. 2. Typical Mahalanobis distance boundaries for a pair of
Munsell samples when illuminated with 20 spectra of CIE stan-
dard daylights. Noise was simulated by generating 100 values of
random numbers that represent Gaussian noise of 40 dB.
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Fig. 3. Results of the model-based algorithm when testing with
evenly spread sensor responses. Gaussian noise of 30 dB and
40 dB was applied to the sensor responses. The resulting linear
responses were quantized to 10 bits. Munsell 3- and 6-units test
sets were illuminated with the CIE standard test daylights.

rithm drops with the sensor width. The reason is that as
the width increases the overlap between the adjacent sen-
sitivity function increases. This increase in overlap be-
tween spectral sensitivities leads to an increase in corre-
lation between the sensor responses and results in a
degradation in performance.

The model-based algorithm relies on the blackbody
model of the illuminant spectrum in calculating the cor-
rect channel coefficients to discount the illuminant effect
from the sensor responses. The performance of this algo-
rithm might be improved by adapting the algorithm to es-
timate illuminant effects with real illuminants instead of
using the blackbody model. To estimate the illuminant ef-
fect on the sensor responses an approach proposed by Fin-
layson and Drew [7] was applied. This algorithm was also
developed using the assumptions that the power spectral
distribution of the illuminant can be approximated by a
blackbody spectrum, and the image sensors respond to a
single wavelength. In Finlayson and Drew’s [7] approach
the ratios of sensor responses were taken to remove any
dependency on the illuminant intensity and scene geom-
etry. These normalized responses are then projected in
the direction of illuminant-induced variation on the sen-
sor responses. This projection results in a 2D space that is
approximately independent of illuminant. In finding the
direction of illuminant-induced variations the CIE stan-
dard illuminants were used instead of blackbody illumi-
nants as used by Finlayson and Drew [7]. As this algo-
rithm normalizes the lightness component of a color the
2D space formed by this approach also represents the
chromaticity of a color.

Finlayson and Drew’s algorithm [7] and the model-
based algorithm [1] were tested with Munsell reflectance
data and CIE standard daylight. The results obtained
with Gaussian sensors with peak spectral responses at
437.5 nm, 512.5 nm, 587.5 nm, and 662.5 nm when the
SNR of the data from the sensors is 40 dB are shown in
Fig. 4. Applying Finlayson and Drew’s [7] algorithm to re-
move the illuminant effect gives only a slight improve-
ment compared to the model-based algorithm. The perfor-
mance of both of these algorithms might be improved by



2202 J. Opt. Soc. Am. A/Vol. 27, No. 10/October 2010

60

'S
L=

Percentage of points within boundary

—O— proj, 3 units
20 - —HB—model,3units | ™\
—@— proj, 6 units
—il— model, 6 units,
% 40 6 8 100 120 150 200

Full width at half maximum (nm)

Fig. 4. Test results of model-based algorithm and Finlayson and
Drew’s [7] algorithm with evenly spread sensors. Gaussian noise
of 40 dB was applied to the sensor responses and the resulting
linear responses were quantized to 10 bits. Munsell data (3 and 6
units) were illuminated by the CIE standard test daylights.

optimizing the sensor characteristics applied to capture
the data required for the algorithms.

3. OPTIMIZATION

The sensor parameters of both the model-based and Fin-
layson and Drew’s [7] algorithms were optimized sepa-
rately in such a way that the ability to identify perceptu-
ally similar colors is improved. In the rest of the
discussion the optimized version of Finlayson and Drew’s
[7] approach is referred as a projection-based algorithm.
For this initial study the number of variables was limited
by assuming that the spectral bandwidth of all the sen-
sors was the same and the parameters of the algorithms
were optimized with different sensor spectral band-
widths. In optimizing the sensor parameters 100 pairs of
Munsell reflectance samples with members separated by
1 CIELab unit were illuminated by 20 spectra of CIE
standard daylight. Again this set of spectra was chosen so
that it had a distribution of CCTs similar to the measured
daylight. However, the individual CCTs of this set of spec-
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Fig. 5.
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tra (CIE standard training daylights) are different from
the CCTs of the test spectra. This set of CIE standard
training daylights was used to determine the number of
points that fall inside the correct boundaries using the
method described in Section 2. The inverse of this number
was then used as the error measure in the optimization
process. In particular if the gradient of this error measure
for a set of independent parameters p is VG(p) then the
new parameters

pn+1=pn_8VG(pn)’ (7

where ¢ is the parameter step size. If this change in pa-
rameters was found to increase the error measure then
the change in parameters must be too large. In these cir-
cumstances the step size was reduced by a factor of 0.9
until a set of parameters was found that reduced the error
measure. The gradient at this new set of parameters was
then calculated and a new set of parameters determined
until it was impossible to reduce the error measure.

For the model-based algorithm the two outer sensors’
peak positions and the channel coefficients were taken as
the independent parameters in this optimization. The two
inner sensor positions can be calculated from Egs. (3) and
(4). The outer sensor positions and the two channel coef-
ficients were taken as the independent parameters to
make sure that the sensitivity functions cover the entire
visible region and that both the neighboring sensors con-
tribute approximately equally in estimating the illumi-
nant effect on the inner sensors, respectively. For the
projection-based algorithm the four peak sensor positions
were taken as the independent parameters in the optimi-
zation. The optimization was performed separately by
normalizing the sensor responses by the responses gener-
ated by sensors 1 to 4 and for different spectral band-
widths of the Gaussian sensors interested between
20 nm to 200 nm. Two sets of sensible starting sensor po-
sitions were chosen for the investigation. The first is the
evenly spread sensors used to generate the chromaticity
space in Fig. 1 ; the second set is the equal-weight sensors
with peak positions at 437.5 nm, 493.5 nm, 565.5 nm, and
662.5 nm. For the model-based algorithm, for a given
sensor position the initial channel coefficients can be cal-
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Initial and optimized performance of the model-based and projection-based algorithm. Gaussian sensors were optimized with

Munsell data (1 unit) and the CIE standard training daylights. Munsell data (3 and 6 units) and the CIE standard test daylights are
applied in testing both algorithms. Gaussian noise of 40 dB was applied to the sensor responses and the resulting linear responses were
quantized to 10 bits. (a) Model-based algorithm. (b) Projection-based algorithm.
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Table 1. Optimized Parameters of the Model-Based

Algorithm
Sensor ID 1 2 3 4
Peak position (nm) 434.4 513.6 593.3 676.9

Channel coefficient a=0.425, y=0.444

Table 2. Optimized Parameters of the Projection-
Based Algorithm When Normalizing the Sensor
Responses by the Response of Sensor 3

Sensor ID 1 2 3 4
400.0 487.6 556.0 675.1
-0.3488 0.7706 -0.5332
0.8407 0.5087 0.1852

Peak position (nm)
Vector 1
Vector 2

culated from Egs. (3) and (4). For the projection-based al-
gorithm the unit vectors can be calculated by applying
eigen vector decomposition on the space formed by the ra-
tio of sensor responses (this was done in logarithmic
scale) generated by the 20 spectra of CIE standard day-
light and the 1-unit Munsell reflectance data set. Test re-
sults with initial and final parameters of model-based and
projection-based algorithm for 40 dB sensor noise are
shown in Fig. 5. It can be seen that the performance of the
algorithms has improved slightly when testing with Mun-
sell and CIE standard test daylights. The improvement in
performance when testing with 3-unit reflectance data is
larger than that obtained with the 6-unit data. This is
particularly true of the model-based algorithm. The rea-
son for this is probably that although both algorithms
have been derived assuming sensors that respond at a
single wavelength the model-based algorithm lacks the
flexibility to deal with the effects of breaking this assump-
tion that arise from the data-based projection operation in
the alternative algorithm. Consequently the performance
of the model-based algorithm is more dependent on sen-
sors with narrow spectral responses. However, sensors
with narrow spectral responses are difficult to manufac-
ture and, since they are starved of photons, they would re-
quire long exposure times. A possible limit to the narrow-
est spectral responses that might be both possible and
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practical is suggested by the Sony DXC930 camera, which
has three types of pixels sensors with spectral widths of
approximately 80 nm. Of all the different sets of opti-
mized sensors that have been obtained those with a
FWHM of 80 nm are therefore particularly interesting.
Their parameters are therefore listed in Tables 1 and 2,
and their responses are shown in Fig. 6. The parameters
listed in Tables 1 and 2 were obtained when starting the
optimization with evenly spread sensors. For the
projection-based algorithm typical optimized sensors
listed in Table 2 were obtained when normalizing the sen-
sor responses by the response of sensor 3. An important
conclusion from the parameters such as those in Tables 1
and 2 is that the spectral responses of optimum sensor
sets can be quite different. In view of the considerable in-
vestment needed to develop a sensor with a particular
peak spectral response it is important to ensure that the
correct spectral responses are specified.

4. ROBUSTNESS OF THE CONCLUSIONS TO
THE CHANGE IN REFLECTANCE DATA

In Section 3 the performance of the projection-based and
model-based algorithms was investigated with the Mun-
sell reflectance data set. However, this data set is believed
to be generated with a limited number of basis functions
[24]. Therefore the performance of the algorithms was in-
vestigated with real-world measured reflectances. The re-
flectances used are flower reflectances measured around
the world [25]. These 2211 measured reflectances were
normalized as described in Section 2. From these normal-
ized reflectances two sets of 100 pairs of reflectances with
member separations from 2.998 to 3.002 and from 5.998
to 6.001 units in the CIELab color space were obtained.
Both of the algorithms were compared with evenly spread
sensors, and the results are shown in Fig. 7. Similar to
the results presented in Section 3 these results also show
that the improvement achieved by applying the projection
method is small.

As both the algorithms were optimized with Munsell
data and CIE standard daylight illuminant the algo-
rithms were tested with floral data to ensure that the pro-
cess used to find the optimum sensor combination has not
overfit the sensor responses to the Munsell data. The re-

Sensitivity

o
»

0.2
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Fig. 6. Sensitivity functions of optimized Gaussian sensors for (a) model-based algorithm and (b) projection-based algorithm. In opti-
mizing the Gaussian sensors Munsell data (1 unit) and the CIE standard training daylights are applied.
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Fig. 7. Performance of model-based and projection-based algo-
rithms with evenly spread sensors. In this test floral reflectances
were illuminated by the CIE standard test daylights. Gaussian
noise of 40 dB was applied to the sensor responses and the re-
sulting linear responses were quantized to 10 bits. (a) Model-
based algorithm. (b) Projection-based algorithm.

sults in Fig. 8 show that the optimization has found a sen-
sor combination that also improves the performance of
the algorithm with measured reflectances, and the results
for both algorithms suggest that the optimization has not
overfit to the Munsell data set. More importantly, these
results suggest that using projection to extract features
from the responses of optimized sensors leads to an im-
provement in the quality of the features. However, a com-
parison between the results obtained with the different
reflectance data sets, Fig. 9, shows that the similarity be-
tween the Munsell and floral data set is not good enough
for the Munsell to accurately predict the performance
with floral data.

5. ROBUSTNESS TO THE CHANGE IN
ILLUMINANT

In Sections 3 and 4 the performances of the model-based
and the projection-based algorithms have been investi-
gated with CIE standard daylight illuminants. However,
the CIE standard daylight model was developed with
three basis vectors. These basis vectors were generated
using daylight measurements taken in three places
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Fig. 9. Test results of the projection-based algorithm with opti-
mized sensor responses. Gaussian sensors were optimized with
Munsell data (1 unit) and the CIE standard training daylights.
The CIE standard test daylights were applied in illuminating the
reflectances. Gaussian noise of 40 dB was applied to the sensor
responses and the resulting linear responses were quantized to
10 bits.

(Ottawa, Canada; Rochester, New York, USA, and Middle-
sex, England). It is known that the daylight spectra vary
with location, time of day, time of year, and weather con-
ditions. Figure 10 shows the spectrum of CIE standard
daylight (6500 K) and three of the measured daylight
spectra with CCTs close to 6500 K [11]. From this figure it
can be seen that even though the CIE standard daylight
spectrum models the overall shape of the measured spec-
tra, it does not represent the fine details caused by atmo-
spheric absorption. This atmospheric absorption varies
with weather conditions and the elevation of the Sun, and
this elevation of the Sun varies with time and location on
the Earth [18]. To ensure that any conclusions are inde-
pendent of the data, the performance of the model-based
and the projection-based algorithms was tested with mea-
sured daylight. In the test 146 daylight spectra measured
on a day in the first week of each month in 1997 was ap-
plied [11]. The measurements were taken between 5:30
am and 7:30 pm under different types of weather condi-
tions in Granada, Spain. Test results of both algorithms
with evenly spread sensors are shown in Fig. 11. These
results show that both of the algorithms are comparable
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Fig. 8. Initial and optimized performance of the model-based and projection-based algorithms. In optimizing the Gaussian sensors Mun-
sell data (1 unit) and the CIE standard training daylights are applied. Floral data (3 and 6 units) and the CIE standard test daylights
are applied in testing both algorithms. Gaussian noise of 40 dB was applied to the sensor responses. The resulting linear responses were

quantized to 10 bits.
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Fig. 10. Spectra of CIE (6500 K) and measured daylight with
correlated color temperature 6508 K, 6481 K, and 6519 K.

in performance with evenly spread sensors. These results
and the previous results suggest that the performance im-
provement achieved by applying the projection-based ap-
proach is small.

As the model-based and projection-based algorithms
were optimized with CIE standard daylight both algo-
rithms were tested with measured daylight. Figure 12 il-
lustrates the performance of both algorithms with initial
and optimized sensor responses when applying Munsell
reflectance and measured daylight spectra. These results
show that the optimization of both algorithms has not al-
ways improved the performance of the algorithms when
tested with Munsell reflectances and measured daylight
spectra. This suggests that the CIE standard daylight
might not be a good representative data set for measured
daylight at a particular location.

The performance of the projection-based algorithm was
compared with CIE standard daylight and measured day-
light. Figure 13 illustrates the performance of the algo-
rithm with Munsell reflectances illuminated by CIE stan-
dard daylight and measured daylight. It can be seen that
there is a significant performance drop when changing
the illuminant from CIE standard daylight to the mea-
sured daylight. The reason could be that the CIE stan-
dard daylight model was developed using the daylight
measurements taken in three places, and the measured
illuminants applied in our investigation were measured
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Fig. 11. Test results of model-based and projection-based algo-
rithms when testing with responses generated by evenly spread
sensor responses. Gaussian noise of 40 dB was applied to the
sensor responses and the resulting linear responses were quan-
tized to 10 bits. Munsell reflectances were illuminated by mea-
sured daylight.

in Granada, Spain, under different types of weather con-
ditions over a longer period of time (two years). As the
measurements used in the CIE standard model and our
test illuminants are taken from different parts of the
world the CIE standard daylight might not adequately
represent the measured daylight used in this paper. This
leads to the performance difference when changing the il-
luminants from CIE standard daylight to the measured
daylight. The results presented in Figs. 12 and 13 suggest
that the CIE standard daylight model is not a good rep-
resentative spectra that could be used to optimize the sen-
sor characteristics or to predict the exact performance of a
color constancy algorithm.

6. CONCLUSIONS

The performance of a blackbody-model-based algorithm
for color constancy under daylight illuminant was inves-
tigated and compared with the performance obtained us-
ing an alternative algorithm proposed by Finlayson and
Drew [7]. Both of these algorithms are based on the as-
sumptions that four types of sensors are used that each
respond to a different single wavelength, and that the il-
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Initial and optimized performance of (a) model-based and (b) projection-based algorithm with Munsell and measured daylight

spectra. Gaussian sensors were optimized with Munsell data (1 unit) and the CIE standard training daylights. Both the algorithms were
tested with Munsell reflectance data (3, 6 units) and 146 spectra of measured daylight. Gaussian noise of 40 dB was applied to the sensor
responses and the resulting linear responses were quantized to 10 bits.
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Fig. 13. Test results of the projection-based algorithm with op-
timized sensors when illuminating the Munsell reflectance
samples with the CIE standard test daylight spectra and mea-
sured daylight spectra. Gaussian noise of 40 dB was applied to
the sensor responses and the resulting linear responses were
quantized to 10 bits.

luminant spectral power density can be approximated by
that of a blackbody. Results that have been presented
show that either of the algorithms can be used to obtain
useful information even when each of the sensors re-
sponds to a relatively wide range of wavelengths and
there is significant overlap between the sensor responses.
The difference between the algorithms is that the model-
based algorithm only requires the calculation of two coef-
ficients, while the alternative algorithm requires a projec-
tion. While the coefficient calculation is very easy the best
projection can only be calculated using the measured sen-
sor responses to several colors under different illumi-
nants. Although this makes the projection algorithm less
convenient for the user, the projection algorithm might be
expected to give better results for real illuminant spectra
and sensor responses. Somewhat surprisingly the results
that have been obtained suggest that the performance of
the two algorithms when used to process noisy data from
a sensible choice of sensors is almost identical. Using the
more sophisticated algorithm to process the sensor data is
therefore not a reliable way to achieve better results.

An alternative approach to obtaining better results
from a set of sensors is to exploit the flexibility offered by
families of different organic chromophores [10] to opti-
mize the spectral responses of the four different types of
sensors. The effect of optimizing the spectral responses of
the four sensors on the results that could be obtained us-
ing the two algorithms has been investigated using a
steepest descent algorithm. The optimization metric that
was chosen for this investigation was the separability of
perceptually similar colors. The data used during optimi-
zation were the freely available Munsell reflectance data
and the CIE standard daylight spectra. As expected this
optimization improved the separability of perceptually
similar Munsell samples illuminated by CIE standard
daylight spectra, and the results obtained were compa-
rable to those achieved by the human visual system. How-
ever, it was observed that the optimization did not always
improve the performance of the model-based and
projection-based algorithms when measured illuminant
spectra were used. This shows that optimizing the sensor

Ratnasingam et al.

parameters with CIE standard daylight does not neces-
sarily result in an optimum set of sensors for real day-
light. In addition, the results obtained with CIE standard
daylight are significantly better than those obtained with
measured daylight. These two observations suggest that
the CIE standard daylight spectra do not represent the
measured daylight spectra in enough detail for the CIE
standard daylight spectra to be used to reliably optimize a
system designed to distinguish a quite subtle difference
between two colors. Although the optimization could be
performed using the data measured in Granada it is not
clear that the resulting system would perform well in dif-
ferent locations. Before a set of optimum sensors can be
reliably defined, daylight spectra from different parts of
the world are required.
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