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In this paper, the results of an investigation of the possibility of extending “color constancy” to obtain illuminant-
invariant reflectance features from data in the near-ultraviolet (UV) and near-infrared (IR) wavelength regions are
reported. These features are obtained by extending a blackbody-model-based color constancy algorithm proposed
by Ratnasingam and Collins [J. Opt. Soc. Am. A 27, 286 (2010)] to these additional wavelengths. Ratnasingam and
Collins applied the model-based algorithm in the visible region to extract two illuminant-invariant features related
to the wavelength-dependent reflectance of a surface from the responses of four sensors. In this paper, this model-
based algorithm is extended to extract two illuminant-invariant reflectance features from the responses of sensors
that cover the visible and either the near-UV or near-IR wavelength. In this investigation, test reflectance data sets
are generated using the goodness–fitness coefficient (GFC). The appropriateness of the GFC for generating the test
data sets is demonstrated by comparing the results obtained with these data with those obtained from data sets
generated using the CIELab distance. Results based upon the GFC are then presented that suggest that the model-
based algorithm can extract useful features from data from the visible and near-IR wavelengths. Finally, results are
presented that show that, although the spectrum of daylight in the near UV is very different from a blackbody
spectrum, the algorithm can be modified to extract useful features from visible and near-UV wavelengths.
© 2011 Optical Society of America
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1. INTRODUCTION
The wavelength-dependent reflectance of an object is an im-
portant property that is used by the human visual system to
recognize objects independent of the viewing environment, in-
cluding variation in illuminating light. This is possible for the
human visual system because of its ability to perceive color
largely independent of the illuminant. In the past, researchers
have modeled the human visual system and proposed several
different approaches to obtain illuminant-invariant features
from a scene. Most of these approaches make assumptions
either about the scene or the illuminant or the image sensor
or a combination of all the factors. For example, von Kries
first proposed an adaptation model for the human visual sys-
tem known as the coefficient rule, which is widely applied for
solving color constancy [1,2]. However, this model assumes
that the image sensors have nonoverlapping narrowband
sensitivity functions [1]. A computational model has been pro-
posed by Land and McCann [3]. This model uses the logarithm
of sensor responses in processing for color constancy. A
blackbody model of illuminant assumption has been made
by Marchant and Onyango [4], and they proposed an approach
for obtaining illuminant-invariant features from a scene.
Finlayson and co-workers [5,6] proposed color constancy al-
gorithms based on the assumptions that the image sensors
sample the scene at a single wavelength, and the illuminant
power spectrum can be modeled by a blackbody spectrum.
Recently, Ratnasingam and Collins [7] proposed a relatively
simple blackbody-model-based algorithm for obtaining two il-
luminant-invariant features in the visible spectrum using four
sensor responses. This algorithm is also based on the assump-
tions that the image sensors are infinitely narrow, and the

power spectrum of an illuminant can be approximated using
a blackbody spectrum.

All of this previous work has focussed on the visible wave-
lengths. However, there are other applications, including
remote sensing of the soil types, minerals, terrestrial vegeta-
tion, man-made materials, snow cover fraction, and melting of
snow, for which the reflectance properties of surfaces outside
the visible region can be very useful. In these remote sensing
applications, the tone (the relative brightness of an area at dif-
ferent wavelengths) is used as the fundamental feature for dis-
tinguishing different targets [8]. Generally, in remote sensing
applications, the interpretation and identification of different
regions are performed manually [8]. An important capability
that is required before this process can be automated is to be
able to analyze multiple images of the same region taken at
different times. This can only be achieved if the impact of
the changes in the power spectral density of the daylight illu-
minant at different times can be minimized. These variations
could be removed by extracting illuminant-invariant reflec-
tance dependent features using the method proposed by
Ratnasingam and Collins [7]. This proposed algorithm has
been used to extract illuminant-invariant chromaticity fea-
tures using data from the visible region. In the current paper,
the possibility of extending this algorithm to extract illumi-
nant-invariant reflectance features from a wider wavelength
range is investigated.

Section 2 briefly describes the blackbody-model-based al-
gorithm and the assessment method adapted from Ratnasin-
gam and Collins [7]. The spectral variation of the measured
daylight in Granada, Spain, is illustrated in Section 3. Genera-
tion of a test data set in different wavelength ranges and the
metric used to generate the data set are discussed in Section 4.
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Section 5 illustrates the results and discussion on the results.
Finally, conclusions are made in Section 6.

2. EXTRACTION OF ILLUMINANT-
INVARIANT REFLECTANCE FEATURES
The blackbody-model-based algorithm proposed by Ratnasin-
gam and Collins [7] can be used to extract two illuminant-
invariant reflectance-dependent features from four sensor
responses. Similar to other researchers [4,5], for mathematical
simplicity, Ratnasingam and Collins [7] assumed that the
power spectral density of an illuminant can be modeled by
a blackbody spectrum and that the imaging sensors each sam-
ple the scene at a different single wavelength. Based on these
two assumptions, Ratnasingam and Collins [7] derived two il-
luminant-invariant features (F1 and F2),

F1 ¼ logðR2Þ − fα logðR1Þ þ ð1 − αÞ logðR3Þg; ð1Þ

F2 ¼ logðR3Þ − fγ logðR2Þ þ ð1 − γÞ logðR4Þg; ð2Þ
from four image sensor responses (R1, R2, R3, and R4), where
α and γ are the channel coefficients. Variations in the image
sensor responses caused by the illuminant intensity and illu-
minant spectral power distribution can be removed if the
two channel coefficients (α and γ) satisfy the following
equations [7]:

1
λ2

¼ α
λ1

þ 1 − α
λ3

; ð3Þ

1
λ3

¼ γ
λ2

þ 1 − γ
λ4

; ð4Þ

where λ1, λ2, λ3, and λ4 are the wavelengths at which the
sensor’s response is maximal.

The assumption that the sensors respond at a single wave-
length is technologically difficult to achieve with real sensors.
In addition, sensors with a very narrow spectral sensitivity will
be starved of photons, and this will result in low sensitivity
and require a long integration time. These problems mean that
it is important to investigate the performance of the model-
based algorithm [7] with data from sensors that respond to
significant wavelength ranges. To investigate this effect,
Ratnasingam and Collins [7] modeled the sensors’ spectral
sensitivity functions using Gaussian functions of different
full-widths at half-maximum (FWHMs) and concluded that
the algorithm can be used to extract useful illuminant-
invariant features with image sensors of 80nm FWHM or less.
Because cameras such as the Sony DXC930 exist with three
sensors that are sensitive to wavelengths in a range of ∼80nm
spectral width, we are particularly interested in investigating
the performance of the algorithm with sensors that respond to
wavelength ranges of around 80nm in width. Ratnasingam
and co-workers [7,9] later concluded that the algorithm can
be used to extract illuminant-invariant features from scenes
illuminated by daylight.

Similar to Ratnasingam and Collins [7], to obtain realistic
results, sensor noise and quantization noise have been in-
cluded in this study. Winkler and Susstrunk’s [10] empirical
results show that imagers are available with a signal-to-noise
ratio (SNR) larger than 40dB. Based on this evidence, the

model-based algorithm was investigated with simulated sen-
sor responses that have an SNR of 40dB. In the simulations,
this SNR was achieved by multiplying each ideal sensor re-
sponse by 100 random numbers sampled from a Gaussian dis-
tribution that has a mean value of 1 and a standard deviation
of 1%. Each of the 100 noisy responses was then quantized to
10 bits [7].

Ratnasingam and Collins [7] have shown that the two-
dimensional feature space formed from the two extracted fea-
tures shows a smooth variation of “color” across the feature
space. However, due to noise and imperfect cancellation of
the changes in the illuminant spectrum, each surface creates
a small cluster of points in this space. To investigate the effect
of these clusters, Ratnasingam and Collins [7] proposed an as-
sessment method based upon the Mahalanobis distance mea-
sure. This method is based upon pairs of clusters formed by
two reflectances when illuminated by a training illuminant set.
The first step in this assessment method is to calculate the
Mahalanobis distances between the centers of each cluster
(C1 and C2) and the midpoint (P) of the line connecting these
two points. If Dm1 is the Mahalanobis distance of P from C1

and Dm2 is the Mahalanobis distance between P and C2, then

D2
m1 ¼ ðP − C1Þ0Σ−1

1 ðP − C1Þ; ð5Þ

D2
m2 ¼ ðP − C2Þ0Σ−1

2 ðP − C2Þ; ð6Þ
where Σ−1

1 and Σ−1
2 are the inverse covariance matrices of

clusters 1 and 2, respectively.
These distances are then used to determine boundaries

around the two clusters that can be used to determine cluster
membership. If these boundaries are drawn using Dm1 and
Dm2, then, as shown in Fig. 1(a), there can be overlap between
the clusters. To avoid any overlap between Mahalanobis dis-
tance boundaries formed by a pair of reflectances and to re-
duce the complexity of finding the correct boundary for this
study, the Mahalanobis distance boundary has been obtained
using 90% of Dm1 and Dm2. Inspection of each of the resulting
cluster boundaries showed that the boundaries drawn with
90% of Dm1 and Dm2, see a typical boundary in Fig. 1(b), are
nonoverlapping and will slightly underestimate the ability to
correctly assign a point to the correct cluster. Once the bound-
aries are determined, a second set of illuminants (the test set)
was used to illuminate the same reflectance pair and project
the extracted noisy features onto the 2D space. The separabil-
ity of this pair is then determined by counting the number of
points that fall inside the correct boundary. This procedure
was repeated for all the pairs in the reflectance set, and the
percentage of separability was calculated.

In assessing the performance of the algorithm, Munsell [11],
floral [12], and measured daylight [13] have been used. The
measured daylight spectra are available for wavelengths be-
tween 300 and 1100 nm [13]. As described by Ratnasingam
and Collins [7], two sets of 146 spectra have been chosen from
these measured daylight spectra. The first set of spectra were
obtained by taking the spectra measured during the first day
of each month of 1996, and the second set was generated by
taking the daylight measured in the first day of each month
of 1997. The sensor sensitivity functions of the image sen-
sors were modeled by Gaussian functions. To ensure that
data from all wavelengths are used in calculating the
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illuminant-invariant features, the wavelengths at which the
four Gaussian functions peak were spread evenly over the
wavelength range of interest. The separability results were
then obtained with the FWHM of the Gaussian sensitivity func-
tions varying from 20 to 200nm.

3. CORRELATED COLOR TEMPERATURE
VARIATION OF DAYLIGHT AND
APPROXIMATION OF THE BLACKBODY
MODEL BEYOND THE VISIBLE REGION
Outdoor scenes are illuminated by daylight, and a variety of
effects means that the power spectral density of daylight
changes. These changes in the power spectral density of day-
light have been studied by measuring 2600 spectra over a per-
iod of two years under different weather conditions [13]. The
possible effect of these changes in power spectral density on
the apparent color of a surface can be appreciated by inspect-
ing a few of these spectra in Fig. 2. The large shift in power to
shorter wavelengths, shown in this figure as the correlated
color temperature (CCT) of the daylight increases, can cause
large changes in the apparent color of an object. These
changes make it difficult to recognize objects based upon
color information alone, and the aim of all color constancy
algorithms is to minimize the effects of these changes.

The model-based algorithm relies on the assumption that
the power spectrum of an illuminant can be modeled by a
blackbody illuminant. Therefore, it is important to investigate
whether the blackbody illuminant can be used to approximate
the illuminant power spectrum when increasing the wave-
length range of interest beyond the visible region. Figure 3
shows the power spectra of the blackbody illuminant and
the measured daylight for the CCT value of 6557K. From this
typical figure, it can be seen that the blackbody illuminant ap-
proximates the power spectral density of daylight better in the
near-infrared (IR) and visible regions of the spectrum than in
the near-ultraviolet (UV) region. Therefore, the model-based
algorithm is expected to give a better performance when ap-
plied to data from the visible and near-IR regions than when
applied to data from the near-UV region.

4. GENERATION OF THE TEST DATA SET
From Fig. 3 it can be seen that daylight contains significant
power at wavelengths longer than 300nm. The performance

of the model-based algorithm was investigated by applying
the sensor responses obtained from (i) the visible region alone
(400 to 700nm), (ii) visible and near-UV regions (300 to
700nm), and (iii) visible and near-IR regions (400 to 800nm).
Munsell data are available in the wavelength range of 380 to
800nm, and floral data are available in the wavelength range
of 300 to 700 nm. Therefore, Munsell data were used to study
the residual illuminant dependence of the features obtained
from the model-based algorithm in the wavelength ranges
of 400 to 700 and 400 to 800nm. Floral reflectance data were
used for the same study in the wavelength ranges of 300 to 700
and 400 to 700nm.

A key part of the assessment method is to create data sets
of pairs of reflectances with a known level of similarity. Pre-
viously, when assessing the features obtained in the visible
region of the spectrum, CIELab coordinates have been used
to characterize the level of similarity of the pairs of reflec-
tances. To extend the assessment to the features obtained
with data outside the visible region, another measure of simi-
larity is required. Because the model-based algorithm extracts
lightness normalized features that are dependent on the rela-
tive variation of the reflectance spectrum, an appropriate
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Fig. 1. Typical boundary of a reflectance pair from Munsell reflec-
tance test set: (a) boundaries go through the midpoint of the two clus-
ters’ mean points and (b) boundaries drawn with 90% of the
Mahalanobis distance (Dm1 and Dm2). The Gaussian sensor responses
were multiplied by 100 samples of 40dB noise. In the figures, a square
represents the points generated by one member of the reflectance
pair, and a cross represents the points generated by the other member
of the reflectance pair.

Fig. 2. Power spectra distribution of four of the measured daylight.
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Fig. 3. Power spectra of blackbody illuminant (6557K) and
measured daylight (6557K). Both spectra are normalized at 550nm.
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measure of the similarity of two reflectances is the goodness-
fitting coefficient (GFC) proposed by Romero et al. [14],
which is widely used to measure the similarity between
two spectra [14–17]. GFC is defined as follows:

GFC ¼

�
�
�
�
P

j
EEðλjÞERðλjÞ

�
�
�
�

�
�
�
�
P

j
½EEðλiÞ�2

�
�
�
�

1=2
�
�
�
�
P

j
½ERðλjÞ�2

�
�
�
�

1=2 ; ð7Þ

where EEðλÞ and ERðλÞ are the reflectance spectra of two sam-
ples being compared. Previously, a pair of reflectances with a
GFC > 0:995 has been defined as a colorimetrically good
match, while a GFC > 0:999 is an excellent match [13]. Based
on this criterion, two reflectance data sets were generated for
each wavelength range. Each of these test data sets contains
100 pairs of reflectance spectra. In the first set, each pair of
reflectances has a nominal GFC value of 0.995, while in the
second data set, the nominal GFC value is 0.999. To obtain
100 pairs of reflectances for each data set, the range of
GFC values used had to be changed slightly, and the particular
ranges of GFC used in generating the test reflectance data sets
from the Munsell and floral data sets are listed in Table 1.

To investigate the appropriateness of using the GFC to gen-
erate data sets for assessing the features obtained using the
model-based algorithm, two sets of reflectance data sets were
generated using the CIELab distance, according to the colori-
metric interpretation in the wavelength range of 400 to
700 nm. As described by Ratnasingam and Collins [7], the

Munsell reflectance spectra were normalized in such a way
that the L value is 50 units and two sets of 100 pairs of reflec-
tances with member separation of 2.99 to 3.01 (three-unit data
set) and 5.995 to 6.005 (six-unit data set). Similarly, two sets of
100 pairs of reflectances were chosen from the floral data set
in such a way that the member separation between the pairs is
2.998 to 3.002 units and 5.998 to 6.001 units in the CIELab
space. Results obtained using the reflectance data sets se-
lected using either the GFC or the CIELab distance are shown
in Fig. 4. These results show that there can be a significant
difference between the results obtained with the data sets gen-
erated using GFC and the CIELab distance. However, in our
investigation, we are interested in the overall trends in the re-
sults rather than the details of the results, which must depend
upon the data set selected and the final application. For this
study, the important conclusion from Fig. 4 is that the results
obtained using data generated using the GFC show trends si-
milar to the results obtained using data generated using the
CIELab distance. Therefore, the GFC can be reliably used
in assessing the usefulness of features obtained using the
model-based algorithm when the sensors respond to wave-
lengths outside the visible region.

5. RESULTS AND DISCUSSION
To determine the usefulness of the features obtained from
data in the visible and near IR, the model-based algorithm
was tested for separability of reflectance samples that are si-
milar in reflectance spectra by illuminating with 146 spectra of
measured daylight in different wavelength ranges. For each of

Table 1. Goodness-Fitness Coefficient Range of the Munsell and Floral Test Reflectance Data Sets for Different

Wavelength Ranges

Wavelength Range Nominal GFC Value of the Data Set GFC Range of Munsell Test Set GFC Range of Floral Test Set

400 to 700nm 0.995 0.995 to 0.995013 0.995 to 0.995014
0.999 0.999 to 0.999015 0.999 to 0.999019

400 to 800nm 0.995 0.995 to 0.995009 —

0.999 0.999 to 0.999015 —

300 to 700nm 0.995 — 0.995 to 0.99498
0.999 — 0.999 to 0.999134
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Fig. 4. Performance of the model-based algorithm when applying the reflectance data sets generated using GFC and CIELab distance: (a) Munsell
and (b) floral. The algorithm was investigated by applying the data in the wavelength range of 400 to 700nm.
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these wavelength ranges, Gaussian sensitivity functions were
placed in such a way that the sensitivity functions are evenly
spread in the wavelength range of interest. The particular
channel coefficients used in different wavelength ranges
are listed in Table 2.

Figure 5 shows the performance of the model-based algo-
rithm when tested with visible data alone and with visible and
near-IR data together. Close investigation of the results ob-
tained with both reflectance data sets shows a slight differ-
ence in performance improvement with both data sets.
Particularly, a larger performance improvement was obtained
when tested with a harder data set (GFC value of 0.999). Gen-
erally, when the performance of a system reaches above 75%,
any further improvement requires a relatively larger effort.
Therefore, the data set with a GFC of 0.995 shows a smaller
improvement compared to the performance improvement ob-
tained using a GFC of 0.999 reflectance data set. Noticeably,
the reflectance data set with the GFC of 0.999 shows a signif-
icant performance improvement for the image sensor spectral
width of 20nm, while the reflectance data set with the GFC of
0.995 shows an insignificant improvement for a sensor width
of 20nm FWHM. This could be because when the sensors be-
come narrow, the sensitivity functions do not cover the entire
wavelength region with a significant sensitivity. Therefore, the
sensor responses do not capture the entire differences be-
tween the reflectance pairs, and this leads to the difference
in performance improvement between the two data sets with
20 nm FWHM sensors. The most important conclusion from
the results in Fig. 6 is that the inclusion of data from the near
IR has not degraded the results that have been obtained. This
shows that, as expected, the model-based feature extraction
method works well in the near IR, because the blackbody

model approximates the daylight spectrum relatively well in
the near-IR region. These results also suggest that including
the near-IR data can make it easier to distinguish very similar
reflectances. This is possibly because the wider wavelength
range allows the sensor responses to be spread out so that
overlap between the sensor responses is reduced. This will
result in a lower correlation between the adjacent sensor re-
sponses, and this reduced correlation is known to improve the
quality of the features that are obtained [7].

Figure 6 shows the results obtained using data from the visi-
ble region alone (400 to 700 nm) and visible and near-UV data
together (300 to 700nm). In this investigation, floral data sets
were illuminated by 146 spectra of measured daylight. The re-
sults obtained, shown in Fig. 6, suggest that for narrowband
sensors (FWHM < 75 nm), the separability of the data set with
a GFC of 0.999 is improved when near-UV data are used.
However, for wider sensors and these data set and the data
set with a GFC of 0.995, the separability of pairs of reflec-
tances has been reduced when data from the near UV are
included.

The observed reduction in separability shown in Fig. 6
could occur because in the near UV, the power spectral dis-
tribution of daylight deviates significantly from the blackbody
spectrum (see Fig. 3). Specifically, the measured daylight
spectrum is significantly below the blackbody spectrum in
the near-UV region. Therefore, assigning a larger value [larger
than the value calculated using Eq. (3)] for the channel coeffi-
cient associated with the sensor that responds in the near-UV
region might improve the features of 300 to 700nm. To inves-
tigate this possibility, the channel coefficient alpha was varied
in steps of 0.1 between 0 and 1 for each sensor width. The
results obtained showed that the separability of the data
was improved by increasing the value of alpha. For sensors
with a FWHM larger than 120nm, an alpha value of 0.7 gives
the best results; however, the difference between the perfor-
mance obtained for an alpha value of 0.7 and 0.8 is negligible.
For sensors with a FWHM between 20 and 120nm, peak per-
formance was obtained for a channel coefficient of 0.8. This
suggests that the optimum value of alpha is 0.8 rather than the
calculated value of 0.389.
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Fig. 5. Separability test results with Munsell and measured daylight.
In this test, the model-based four-sensor algorithm was tested with
visible data alone and visible and near-IR data together.
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Table 2. Channel Coefficients of the Model-

Based Algorithm for Different Wavelength

Ranges Calculated Using Eqs. (3) and (4)

Wavelength Range (nm) Alpha Gamma

400 to 700 0.427 0.436
300 to 700 0.389 0.409
400 to 800 0.409 0.423
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Figure 7 shows a comparison between the results obtained
using the calculated and the optimum value of alpha. This
comparison shows that once the value of alpha is optimum,
better results are obtained. Now the results are similar to
the results in Fig. 5. Most importantly this shows that although
the spectrum in the near UV is quite different from that ex-
pected from a blackbody, the feature extraction algorithm that
was derived assuming a blackbody spectrum can be modified
to obtain features including data from the near UV.

6. CONCLUSIONS
A color constancy algorithm has been applied to obtain
illuminant-invariant reflectance features from different
wavelength ranges. This algorithm extracts two illuminant-
invariant features from four image sensor responses. The
algorithm has been proposed assuming that the power spectral
density of the illuminant is similar to that of a blackbody, and it
has been tested using measured daylight spectra for visible
wavelengths. The possibility of extending this algorithm to
other wavelengths has been investigated by applying data from
(i) the visible region alone, (ii) the visible and near-IR region,
and (iii) the visible and near-UV regions, respectively. Results
have been presented that show that stable illuminant-invariant
features canbeobtainedusingdata from thevisible andnear-IR
regions. Although the power spectral distribution of daylight in
the near UV is quite different from the blackbody spectrum,
only a slight modification to the algorithm can extract features
from data in the near UV. In conclusion, the model-based algo-
rithm can be used to obtain illuminant-invariant reflectance
features in the near-IR, visible, and near-UV regions. As the hu-
man visual system does not have significant sensitivity to the
near-UV and near-IR regions, these features cannot be used in
applications inwhich the ultimate goal is visualizing the output.
However, there are applications that use the data outside the

visible region and rely on tone/brightness to classify these data.
For these kinds of applications, including remote sensing, this
algorithm could be useful.
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Fig. 7. Performance of the model-based algorithm with floral and measured daylight when tested with visible data alone and visible and UV data
together with GFC values of (a) 0.995 and (b) 0.999. The performance of the algorithm with calculated coefficients (listed in Table 2) in the re-
spective wavelength ranges and also the performance of the algorithm with an alpha value of 0.8 (optimum alpha). In all three cases, the channel
coefficient gamma was kept the same as calculated (see Table 2).
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