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In this paper, an algorithm is proposed to estimate the spectral power distribution of a light source at a pixel. The
first step of the algorithm is forming a two-dimensional illuminant invariant chromaticity space. In estimating the
illuminant spectrum, generalized inverse estimation and Wiener estimation methods were applied. The chroma-
ticity space was divided into small grids and a weight matrix was used to estimate the illuminant spectrum
illuminating the pixels that fall within a grid. The algorithm was tested using a different number of sensor re-
sponses to determine the optimum number of sensors for accurate colorimetric and spectral reproduction. To
investigate the performance of the algorithm realistically, the responses were multiplied with Gaussian noise
and then quantized to 10 bits. The algorithm was tested with standard and measured data. Based on the results
presented, the algorithm can be used with six sensors to obtain a colorimetrically good estimate of the illuminant
spectrum at a pixel. © 2011 Optical Society of America
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1. INTRODUCTION
The human visual system perceives color of an object largely
independent of viewing environment. However, image sensor
responses depend on the spectral reflectance of the object,
spectral power distribution of the surface, and the geometry
of the scene [1]. Consumer cameras use three sensors (red,
green, and blue) to capture a scene, and three sensors are ne-
cessary and sufficient for colorimetric reproduction [2]. More
than three imaging sensors are required to reproduce a scene
color representation or reflectance spectra that is sufficiently
accurate and independent of both the power spectrum of the
light source and imaging device [3].

In recent years, the interest in multispectral image repro-
duction has increasingly attracted researchers [4,5]. The rea-
sons for this increasing interest in spectral reproduction are
the advancement in electronic technology, including improve-
ment in processing power and memory, as well as new
applications, including electronic archival of art paintings, his-
torical documents, and artificial reillumination of a scene in
the film industry. In addition, trichromatic color reproduction
suffers from metamerism. For the above reasons, there is an
increasing interest in multispectral scene recording. Recently,
Ratnasingam et al. [6] investigated the advantages of using the
information beyond the visible region for chromaticity estima-
tion. However, using the information beyond the visible region
for spectral estimation is dependent on the application. Many
researchers concentrated on spectral reproduction with the
assumption of either known illuminant spectra or known re-
flectance spectra [7,3]. An algorithm is proposed in this paper
to estimate the spectral power distribution of a light source
illuminating a scene with no prior knowledge about the scene.

In the past, researchers have used several different meth-
ods for spectral estimation, including Wiener estimation [5,7],
generalized inverse estimation [7,3], smoothing estimate [7],
principle component analysis [2], singular value decomposi-

tion [8], and linear basis functions [9,10]. Maloney and
Wandell [11] proposed a method for estimating the reflectance
spectra using linear basis functions. In estimating the reflec-
tance spectra, they assumed that the spectral sensitivity of the
camera and the power spectral distribution of the illuminant
are known. Imai and Berns [4] proposed a method for estimat-
ing spectral reflectance using a three-sensor camera com-
bined with either absorption filters or multiple illuminants.
The estimation matrix is empirically determined using the
least squares analysis. The above discussed methods [4,11]
used linear basis functions to obtain a possible solution to
the reflectance spectrum for a given camera. In both of these
methods [4,11], the dimensionality of the reflectance model is
smaller than or equal to the number of different sensors in the
camera. Researchers have shown with their results that the
optimal number of sensors should match the dimensionality
of the reflectance model. As a three-sensor camera is used,
the number of linear basis functions is therefore three or less.
The required number of basis functions to obtain an accepta-
ble estimate of the spectra is entirely dependent on the type of
data sets applied in the test and the number of pigments that
were used in creating the reflectance data set [12,13]. To use
more basis functions in spectral estimation of any data set, Shi
and Healey [14] proposed an estimation approach that uses a
high-dimensional linear reflectance functions. Most of these
techniques assumed that the spectral sensitivities of the
imaging device were measured or mathematically derived
[4,14,15]. For practical use, it is important for being able to
estimate the spectra of either the surface reflectance or illu-
minant power spectrum with prior knowledge of neither the
light source used to illuminate the scene nor the spectral
reflectance of the object being imaged. In this paper, we pro-
pose an algorithm to estimate the illuminant power spectrum
at a pixel with no prior knowledge about the reflectance or
illuminant.
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A brief description of Ratnasingam and Collins’ [16]
algorithm and a typical illuminant invariant chromaticity
space are given in Section 2. A method for obtaining two-
dimensional illuminant invariant feature space and the pro-
posed algorithm are described in Section 3. Section 4 presents
the results of the algorithm and discussion on the obtained
results. Finally, conclusions are made in Section 5.

2. ILLUMINANT INVARIANT
CHROMATICITY SPACE
An algorithm to extract two illuminant invariant chromaticity
features using four sensor responses at pixel level has been
proposed by Ratnasingam and Collins [16]. In deriving this al-
gorithm, they assumed that the power spectrum of an illumi-
nant can be approximated by a blackbody spectrum and the
imaging sensors sample the scene at a single wavelength.
Under these assumptions, it is possible to extract two illumi-
nant invariant features (F1 and F2) from the responses of the
four sensors using Eqs. (1) and (2) [16]:

F1 ¼ logðr2Þ − fα logðr1Þ þ ð1 − αÞ logðr3Þg; ð1Þ

F2 ¼ logðr3Þ − fγ logðr2Þ þ ð1 − γÞ logðr4Þg; ð2Þ

where r1, r2, r3, and r4 are the responses of the four image
sensors and α and γ are channel coefficients. The variations
caused by both the illuminant intensity and illuminant power
spectrum can be removed if the two channel coefficients sa-
tisfy Eqs. (3) and (4) [16]:

1
λ2

¼ α
λ1

þ 1 − α
λ3

; ð3Þ

1
λ3

¼ γ
λ2

þ 1 − γ
λ4

; ð4Þ

where λ1, λ2, λ3, and λ4 are the peak sensor positions.
Similar to other researchers [1,17], Ratnasingam and

Collins [16] also assumed that the sensors are infinitely nar-
row and the illuminant spectrum can be modeled by a black-
body illuminant. However, technologically, it is difficult to
make an image sensor that samples the scene at a single
wavelength. Equally importantly, sensors with a very narrow
spectral response will be starved of photons and hence have a
low sensitivity to incoming light. To study this model-based
algorithm [16] with real cameras, it is important to determine
the effect of using image sensors that respond to a signifi-
cantly wider range of wavelengths in the visible spectrum.
To study the effect of the spectral width on the performance
of the model-based algorithm, Ratnasingam and Collins [16]
used a Gaussian function to model the spectral sensitivity
of the sensors for different spectral widths. To investigate
the effect of using a nonblackbody illuminant, Ratnasingam
et al. [16,18] also tested the performance of the algorithm with
International Commission on Illumination (CIE) standard day-
light and measured daylight. Based on their investigation, the
important conclusion made was that the model-based algo-
rithm can be used to extract useful illuminant independent
chromaticity features with image sensors of FWHM of

80nm or less when illuminating with illuminants, including
daylight [16].

A typical feature space formed using the model-based algo-
rithm when applying the responses generated by evenly
spread four Gaussian sensors of FWHM of 60nm is shown
in Fig. 1. The peak sensor positions are 437.5, 512.5, 587.5,
and 667:5 nm. Munsell reflectances [19] and CIE standard day-
light spectra [20] were used in generating the required image
sensor responses. In Fig. 1, 206 Munsell reflectances (samples
with CIELab “L” value around 67) are projected when illumi-
nated by 20 spectra of CIE standard daylight illuminants. In
the illuminant set, the particular correlated color tempera-
tures (CCT) were chosen to represent the distribution of
CCT in the measured daylight [16,21,22]. Each cross shows
the color of a reflectance when illuminated by one of the il-
luminant spectrum. Close investigation of the space shows
that the clusters formed by each of the Munsell reflectances
are small in size and perceptually similar reflectances are lo-
cated as neighboring clusters. This suggests that, by using the
two-dimensional space, a rough estimate of the reflectance
can be made independent of the light source illuminating
the scene. This estimate could be used as the starting point
in estimating the illuminant spectrum.

The possibility of accurate spectral reproduction has been
investigated with different numbers of sensor responses. In
trichromatic reproduction, three sensor responses are used,
however, as mentioned in Section 1, trichromatic reproduc-
tion suffers frommetameric problem. The metameric problem
arises when a small number of sensor responses are used to
represent a reflectance. To investigate the required number of
image sensors to capture a scene to obtain an estimate of the
illuminant spectra that is a colorimetrically good match, dif-
ferent numbers of sensors that could be easily accommodated
in a consumer camera Bayer pattern has been investigated. As
consumer cameras have three sensors, first the possibility of
spectral reproduction with three sensors has been investi-
gated. The Bayer pattern has four sensors, so it is relatively
easy to accommodate four different sensors in a consumer
camera. Therefore, the possibility of using four sensors is in-
vestigated as well. It is also possible to make six and eight

Fig. 1. (Color online) Typical chromaticity space formed by the mod-
el-based algorithmwith unquantized responses of evenly spread Gaus-
sian sensors of FWHMof 60nm. In this space, 206 Munsell samples are
projected when illuminated by 20 spectra of CIE standard daylights.
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sensors by taking two blocks of Bayer pattern to form a single
pixel. Based on this discussion, three, four, six, and eight
sensors were used in this investigation. Table 1 lists the para-
meters of the image sensors used to calculate the responses.
In this initial investigation, the particular peak sensor posi-
tions were chosen in such a way that the sensitivity functions
are evenly spread across the entire visible spectrum (400 to
700 nm). This is important to capture the scene data equally
in all parts of the visible range [16]. Ratnasingam and Collins
[16] have shown that their model-based algorithm can extract
useful illuminant invariant features with an image sensor
width of 80nm or less. As the consumer cameras such as Sony
DXC930 cameras have sensor spectral width of approximately
80 nm, to investigate the proposed algorithm with feasible sen-
sor width, 80nm FWHMwas chosen. However, when the num-
ber of sensors increases, the overlap between sensitivity
functions increases, which leads to increases in noise effect
[16]. To avoid this significant overlap between sensitivity func-
tions, a 60nm FWHM Gaussian function was used when
applying eight sensors.

3. ALGORITHM
The first step of spectral estimation is forming a two-
dimensional illuminant invariant feature space. As can be seen
from Eqs. (1) and (2), forming two illuminant invariant
features using the method described by Ratnasingam and
Collins [16] requires a minimum of four different sensor re-
sponses. Therefore, to form a two-dimensional feature space
from three sensor responses, a different approach has been
described. Consider the basic image equation for an imaging
sensor with sensitivity function cðλÞ, sensor response rx;E is
given by [1]

rx;E ¼ a
−

x:n
−

xIx
Z

700nm

400nm
SxðλÞeðλÞcðλÞdλ; ð5Þ

where eðλÞ is the power spectrum of the illuminant and sðλÞ is
the reflectance spectrum of the object. The dot product a

−

x:n
−

x

models the geometry factor of a scene. Unit vectors a
−

x and n
−

x

represent the direction of light source and the direction of
surface normal, respectively. The term Ix is the power of the
incident light at point x on the scene. The integration is over
the visible range.

Equation (5) can be simplified by assuming that the spectral
sensitivity function can be approximated by a Dirac delta
function. The sifting property of the Dirac delta function
can then be applied to simplify Eq. (5), therefore, a sensor that
is effectively only sensitive to light at a single wavelength λi
becomes

rx;E ¼ a
−

x:n
−

xIxsxðλiÞeðλiÞ: ð6Þ

The different components of the above equation can be
separated by taking the logarithm to both sides:

logðrx;EÞ ¼ logfgIxg þ logfeðλiÞg þ logfsxðλiÞg; ð7Þ

where gð¼ a
−

x:n
−

xÞ is the geometry factor.
From Eq. (7), it can be seen that taking the logarithm dif-

ference between two sensor responses removes the geometry-
and illuminant intensity-dependent components. It is known
that, in daylight scenes, the intensity varies significantly com-
pared to the chromaticity of the illuminant. Therefore, taking
the features formed by the logarithm difference between two
sensor responses could be used to form two features with
three sensor responses. The equations for both features are

F1 ¼ r3 − r2; ð8Þ

F2 ¼ r3 − r1; ð9Þ

where r1, r2, and r3 are the image sensor responses. The sen-
sors are numbered starting from the shortest wavelength end.
In this investigation, evenly spread sensors in the visible spec-
trum (400 to 700nm) were used and the spectral sensitivity of
the sensors was modeled using the Gaussian function. Ac-
cording to Ratnasingam and Collins [16], there are four pos-
sible features that can be formed from six sensor responses.
From these features, two were chosen in such a way that the
color variation across the feature space is smooth and the
correlation between the features is the minimum. The particu-
lar sensor responses chosen in generating the features are
the sensor responses r1, r3, and r5 to form feature 1 and
r2, r4, and r6 to form feature 2 to obtain the two-dimensional
illuminant invariant space. Similarly, for the eight-sensor case,
sensors r1, r4, and r7 and sensors r2, r5, and r8 were used to
form the two illuminant invariant features. The illuminant in-
variant two-dimensional feature space was used to estimate
the illuminant power spectrum using a generalized inverse
estimate [7].

In the past, researchers have used several different meth-
ods for spectral estimation. The performance of these meth-
ods in estimating the spectrum is comparable [23]. Among
those methods, the generalized inverse estimate is less com-
plex and therefore requires less processing power. Consider
the discrete form of image Eq. (5) for an image sensor

r ¼
X700
i¼400

Igsieici: ð10Þ

For a set of p image sensors sampling the scene at q different
wavelengths, the matrix form of the image equation can be
given by

R ¼ IgCSE; ð11Þ

where R is the px1 vector of sensor responses, C is a pxq
matrix of a set of spectral sensitivities, S is the qxq diagonal
matrix of reflectance spectra, and E is a qx1 vector of illumi-
nant power spectrum. For abbreviation, let WI ¼ IgCS, the
estimated power spectrum of an illuminant can be given by
the generalized inverse estimate [7]:

Table 1. Parameters of the Gaussian

Sensitivity Functions

Number
of Sensors FWHM (nm)

Peak Sensor
Positions (nm)

3 80 450, 550, 650
4 80 437, 512, 587, 637
6 80 425, 475, 525, 575, 625, 675
8 60 419, 456, 494, 531, 569, 606, 644, 681
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Ê ¼ W−1
I R ¼ WT

I ðWIWT
I Þ−1R: ð12Þ

Applying this equation to estimate the illuminant power spec-
trum with no prior knowledge about the scene (i.e., reflec-
tance being imaged) resulted in a very poor estimate. To
obtain a better estimate of the illuminant power spectrum, the
two-dimensional illuminant invariant feature space described
in Section 2 was used. In Eq. (12), for a given camera, the
weight matrix ðWIÞ is dependent on the reflectance spectra
of the surface being imaged. A close investigation of the two-
dimensional feature space (see Fig. 1) shows a smooth per-
ceptual variation across the space. To take advantage of the
illuminant invariant feature space in estimating the illuminant
spectrum, the feature space was divided into uniform rectan-
gular grids (50 × 50) in such a way that the reflectances that
fall within a grid are perceptually similar. The matrix WI was
calculated for each of these grids using the training reflec-
tance set and illuminant spectra. In the test phase for a parti-
cular test illuminant and test reflectance, the two illuminant
invariant features were projected onto the two-dimensional
feature space, and the corresponding WI matrix, calculated
for that particular grid during training, was used to estimate
the power spectrum of the illuminant that was used to illumi-
nate the test reflectance.

For comparison of the estimation methods, the Wiener es-
timation method was also applied instead of generalized in-
verse estimation. The same procedure described above was
followed to estimate the illuminant power spectrum using
the Wiener estimation method. The Wiener estimation can
be given by [7,8]

Ê ¼ EssWT
wðWwEssWT

wÞ−1R; ð13Þ

where Ess is the autocorrelation matrix of the illuminant
power spectrum and Ww is the weight matrix for Wiener
estimation.

4. RESULTS AND DISCUSSION
To obtain conclusions independent of the data set, the perfor-
mance of the algorithm was investigated with commonly used
Munsell reflectances [19], Floral reflectances [24], CIE stan-
dard daylight [20], and measured daylight [21]. From each
of these reflectance data, a set of 20 reflectance spectra were
randomly chosen as a training set and another 20 set for test-
ing the algorithm. From the CIE standard daylight, 20 spectra
were chosen for training and another 20 spectra were chosen
for testing the algorithm. In both of these CIE standard day-
light sets, particular CCT values (between 4000 and 25; 000K)
were chosen in such a way that the distribution of the CCT is
similar to the measured daylight [16,21,22]. From the mea-
sured daylight, 20 spectra were chosen from the first year
(1996) and another 20 were chosen from the second year
(1997) measurements for testing the algorithm. Both of these
measured daylight sets were chosen in such a way that they
were measured throughout the year at different times of day.
To investigate the algorithm accurately, all the data was
sampled at 1 nm intervals. The sensitivity of image sensors
were modeled by evenly spread Gaussian functions. The im-
age sensor responses were calculated by numerically integrat-
ing the basic image Eq. (5). As it has been shown that the CIE
standard daylight is not a good representative model for the

measured daylight [18], the weight matrix W was calculated
separately for CIE standard daylight and measured daylight.

To assess the performance of the algorithm quantitatively,
it is required to use a metric that measures the spectral match
between the actual and the estimated spectra. A well-known
measure that has been widely used to measure the accuracy
of the spectra is the goodness-fitting coefficient (GFC) [25].
As a colorimetric interpretation of GFC it is generally defined
as follows: GFC > 0:999 is very good match, GFC ≥ 0:99 is
a good match, and a GFC around 0.99 is a satisfactory
reproduction [2].

To investigate the colorimetric performance of an algo-
rithm, two uniform color spaces (CIELab and CIELuv) have
been defined by the CIE. Generally, in assessing the color
match between two self-luminous objects CIELuv color space
is used [26]. As the CIELuv space is a perceptually uniform
space, the perceptual difference can be related to the geo-
metric distance in the space. In CIELuv color space, three
to five Euclidean distance is often taken as just noticeable dif-
ference [21]. Abrardo et al. [27] classified that the difference of
0–1 as limit of perception, 1–3 as very goodmatch, 3–6 as good
match, 6–10 as sufficient match, and more than 10 as insuffi-
cient quality. In the CIELuv space, L ¼ 100 is bright white and
L ¼ 0 is absolute black. In calculating the color difference be-
tween the actual and the estimated spectra, both were scaled
in such a way that the L coordinate of both spectra is 50 units.
This L ¼ 50 plane was used as the reference plane in defining
the CIE standard perceptual color difference model [3].

Figures 2–5 show typical results when applying the general-
ized inverse estimation and the Wiener estimation to obtain an
estimate of the illuminant spectrum with different numbers of
sensor responses. These figures show the spectrum of CIE
standard daylight D65 and the estimated spectrum using
the proposed algorithm using both estimation methods. In
these initial simulations, noise was not included in the sensor
responses. As can be seen when the number of input sensor
responses increases, a better estimate of the spectra was ob-
tained. Close investigation of Fig. 2 shows that using three
sensor responses does not give a good estimate of the spec-
trum. However, using four sensor responses (see Fig. 3) re-
sults in an estimate that approximates the overall shape of
the illuminant power spectrum. As the number of input sensor
responses increases, the estimated spectrum approximates
the local structures in the illuminant spectra caused by the
atmospheric attenuation (see Fig. 5). Comparing the estimates
obtained using both estimation methods, the generalized in-
verse estimation gives a better estimate for a small number
of sensors (up to six sensors, see Figs. 2–4). However, Wiener
estimation gives a better estimate with a larger number of sen-
sors (see Fig. 5). Particularly, the Wiener estimation method
estimates the wiggles caused by the atmospheric animation
when using eight image sensor responses.

The proposed algorithm was tested with standard (Munsell,
CIE daylight) and measured (floral and measured daylight)
test data sets. Based on the above discussion, two measures
(GFC and CIELuv color difference) were used to determine
the goodness of the estimated spectra. For both measures,
the mean value and the standard deviation were calculated.
Test results of the algorithm using generalized inverse estima-
tion and the Wiener estimation when applying unquantized
sensor responses with zero Gaussian noise are listed in
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Tables 2 and 3 respectively. From the results listed in Tables 2
and 3, it can be seen that the algorithm gives a good estimate
of the illuminant spectrum when tested with six and eight im-
age sensor responses. Particularly, the proposed algorithm
gives a colorimetrically very good estimation when applying
eight sensor responses. As the number of input image sensor
responses increases, the performance also improves. The rea-
son for this performance improvement is the increase in avail-
able information about the scene. However, the improvement
in performance of the algorithm is relatively small when in-
creasing the number of sensors from six to eight. The reason
could be that six sensors are good enough to obtain a color-
imetrically good match. It can also be seen that, as the number
of sensors increases, the standard deviation of both GFC and
colorimetric distance reduces. A noticeable observation is
that, in both estimation methods, the performance of the algo-
rithm that could be achieved with real-world measured day-
light is slightly under estimated by CIE standard daylight.
Comparing the performance obtained with both estimation
methods, it can be seen that the inverse estimation method
gives a better performance compared to the Wiener estima-
tion with few sensor responses (three or four sensors). How-
ever, when increasing the number of sensor responses (eight
sensor responses), the Wiener estimation method gives better
performance compared to the inverse estimation method. It
can also be seen that both the measures (GFC and CIELuv

distance) show a slight difference. As far as the relative shape
of the spectrum is concerned, GFC is a more appropriate mea-
sure. To overcome the brightness variation between the spec-
tra when calculating the CIELuv distance, the spectra were
scaled in such a way that both spectra have the same L co-
ordinate (L ¼ 50).

To investigate the performance of the proposed algorithm
more realistically, the input to the algorithm was mixed with
sensor noise and quantization noise. To take into account the
additive and multiplicative noise in a system, quantization
noise was modeled as additive noise (not dependent on the
magnitude of the sensor response). Sensor noise is generally
modeled as a multiplicative noise [10,28]. Based on this evi-
dence, sensor noise was modeled as multiplicative noise.
The performance of the proposed algorithm was tested with
different levels of sensor noise. The signal-to-noise ratio
(SNR) of the data available from a camera depends on several
factors, including photon shot noise, the charge storage capa-
city of the pixel, and the noise introduced by the readout elec-
tronics. Winkler and Susstrunk’s [29] empirical results show
that imagers are available with an SNR larger than 40dB.
Based on this evidence, the performance of the proposed al-
gorithm was investigated with a SNR of 40 dB. The sensor
noise was simulated by generating normally distributed ran-
dom numbers (100 samples) with a mean value of 1 and stan-
dard deviations of 1%. The final step in the simulation was to

Fig. 2. (a) Generalized inverse estimation, (b) Wiener estimation. Actual and estimated illuminant spectra when using three sensor responses.
Both spectra are normalized at 550nm. The CIELuv difference and GFC of the two spectra shown in (a) are 7.04 units and 0.9818 and 8.105 units and
0.9723 for that shown in (b), respectively.

Fig. 3. (a) Generalized inverse estimation, (b) Wiener estimation. Actual and estimated illuminant spectra when using four sensor responses. Both
spectra are normalized at 550nm. The CIELuv difference and GFC of the two spectra shown in (a) are 2.35 units and 0.9946 and 6.926 units and
0.9862 for that shown in (b), respectively.
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represent the effects of using a quantizer to represent the im-
age sensor responses to digital quantities. The effect of quan-
tization was simulated as described by Ratnasingam and
Collins [16]. As cameras are available with a 10 bits analog-
to-digital converter, in this investigation, sensor responses
quantized to 10 bits were used as inputs to the algorithm.

From the results presented in Tables 2–5, it can be seen that
the overall performance of the algorithm degrades when the

noise level increases. The reason is that, as the noise level in-
creases, the variation in the sensor responses increases. This
increase in variation leads the responses to fall in the wrong
grid and results in an incorrect estimation of the illuminant
power spectrum. In this study, a sensible choice of sensors
was used to investigate the performance of the algorithm.
However, the performance of the algorithm could be
improved by optimizing the sensitivity functions (peak sensor

Fig. 4. (a) Generalized inverse estimation, (b) Wiener estimation. Actual and estimated illuminant spectra when using six sensor responses. Both
spectra are normalized at 550nm. The CIELuv difference and GFC of the two spectra shown in (a) are 0.987 units and 0.9968 and 2.235 units and
0.9935 for that shown in (b), respectively.

Fig. 5. (a) Generalized inverse estimation, (b) Wiener estimation. Actual and estimated illuminant spectra when using eight sensor responses.
Both spectra are normalized at 550nm. The CIELuv difference and GFC of the two spectra shown in (a) are 0.702 units and 0.9965 and 0.4749 units
and 0.9961 for that shown in (b), respectively.

Table 2. Test Results of the Algorithm Using Generalized Inverse Estimation

When Applying Zero Noise and Unquantized Image Sensor Responses
a

Munsell (CIE) Floral (CIE) Munsell (Measured) Floral (Measured)

Number of
Sensors

CIELuv Distance
(σCIELuv)

GFC
(σGFC)

CIELuv Distance
(σCIELuv)

GFC
(σGFC)

CIELuv Distance
(σCIELuv)

GFC
(σGFC)

CIELuv Distance
(σCIELuv)

GFC
(σGFC)

3 12.06 (0.71) 0.9679 (0.0020) 12.16 (0.88) 0.9542
(0.0022)

6.910 (0.20) 0.9818
ð2:2e–4Þ

9.267 (0.43) 0.9715
ð4:1e–4Þ

4 7.980 (0.88) 0.9845 (0.0021) 11.266 (0.96) 0.9664
(0.0036)

4.201 (0.099) 0.9941
ð2:5e–4Þ

6.691 (0.94) 0.9802
(0.0015)

6 4.371 (0.33) 0.9957 ð2:7e − 4Þ 6.561 (1.6) 0.9767
(0.0043)

2.676 (0.093) 0.9976
ð8:5e–5Þ

3.713 (0.10) 0.9899
ð9:9e–5Þ

8 3.321 (0.17) 0.996 ð1:3e − 4Þ 4.012 (0.85) 0.9824
(0.0019)

2.124 (0.057) 0.9976
ð6:2e–5Þ

3.6281 (0.69) 0.9892
(0.002)

aMean Euclidean distance in the CIELuv space between the actual and the estimated spectra, standard deviation ðσCIELuvÞ, mean GFC, and standard deviation of GFC
ðσGFCÞ are listed. In this test, Munsell floral test reflectances were illuminated by CIE standard and measured test daylights.
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positions and spectral width) of the imaging sensors for a
different number of sensors separately. Optimization of the
sensitivity functions and investigating the performance of
the algorithm with indoor illuminants will be our future work.
Based on the results presented in this paper, it can be con-
cluded that the algorithm can be used with six or more sensor
responses with a 10 bits quantizer and 40dB SNR to obtain a
colorimetrically good estimate of the illuminant spectrum at
the pixel level.

5. CONCLUSIONS
An algorithm has been proposed to estimate the power spec-
trum of a light source at the pixel level. As the algorithm es-
timates the illuminant power spectrum at a pixel, it can be
used in scenes illuminated by nonuniform illuminants. The al-
gorithm starts with forming a two-dimensional illuminant in-
variant chromaticity feature space. This feature space was
made into small grids in such a way that the reflectances that
fall within a grid are colorimetrically similar. A weight matrix

Table 3. Test Results of the Algorithm Using Wiener Estimation

When Applying Zero Noise and Unquantized Image Sensor Responses
a

Munsell (CIE) Floral (CIE) Munsell (Measured) Floral (Measured)

Number of
Sensors

CIELuv Distance
(σCIELuv)

GFC
(σGFC)

CIELuv Distance
(σCIELuv)

GFC
(σGFC)

CIELuv Distance
(σCIELuv)

GFC
(σGFC)

CIELuv Distance
(σCIELuv)

GFC
(σGFC)

3 13.4 (0.68) 0.9573
(0.0020)

17.1 (1.0) 0.9441
(0.0031)

13.3 (0.61) 0.9587
(0.0011)

13.2 (0.59) 0.9600
(0.0013)

4 12.9 (1.0) 0.9667
(0.0026)

14.0 (1.8) 0.9528
(0.0071)

6.91 (0.22) 0.9883
ð1:2e–4Þ

8.78 (1.2) 0.9772
(0.0021)

6 5.52 (0.28) 0.9862
ð9:5e–4Þ

7.19 (1.7) 0.9776
(0.0048)

3.54 (0.097) 0.9946
ð1:3e–4Þ

2.90 (0.65) 0.9888
(0.0014)

8 3.27 (0.15) 0.9943
ð3:9e–4Þ

3.38 (1.9) 0.9845
(0.0063)

1.99 (0.055) 0.9971
ð6:1e–5Þ

1.20 (0.11) 0.9917
ð8:4e–5Þ

aMean Euclidean distance in CIELuv space between the actual and the estimated spectra, standard deviation ðσCIELuvÞ, mean GFC, and standard deviation of GFC
ðσGFCÞ are listed. In this test, Munsell floral test reflectances were illuminated by CIE standard and measured test daylights.

Table 4. Test Results of the Algorithm Using Generalized Inverse Estimation

When Applying Different Numbers of Image Sensor Responses
a

Munsell (CIE) Floral (CIE) Munsell (Measured) Floral (Measured)

Number of
Sensors

CIELuv Distance
(σCIELuv)

GFC
(σGFC)

CIELuv Distance
(σCIELuv)

GFC
(σGFC)

CIELuv Distance
(σCIELuv)

GFC
(σGFC)

CIELuv Distance
(σCIELuv)

GFC
(σGFC)

3 12.20 (0.069) 0.9681
ð1:9e–4Þ

12.58 (0.088) 0.9537
ð2:2e–4Þ

7.842 (0.020) 0.9819
ð2:2e–5Þ

9.717 (0.035) 0.9704
ð4:7e–5Þ

4 7.082 (0.068) 0.9875
ð1:5e–4Þ

12.53 (0.10) 0.9650
ð3:6e–4Þ

4.803 (0.040) 0.9923
ð9:8e–5Þ

6.759 (0.068) 0.9830
ð1:24e–4Þ

6 4.750 (0.061) 0.9927
ð1:8e–4Þ

9.115 (0.14) 0.9739
ð3:3e–4Þ

2.937 (0.013) 0.9971
ð1:1e–5Þ

3.805 (0.036) 0.9890
ð1:02e–4Þ

8 3.464 (0.020) 0.9961
ð1:7e–5Þ

6.321 (0.13) 0.9765
ð3:4e–4Þ

2.371 (0.011) 0.9972
ð7:0e–6Þ

3.171 (0.075) 0.9890
ð2:2e–4Þ

aMean Euclidean distance in CIELuv space between the actual and the estimated spectra, standard deviation ðσCIELuvÞ, mean GFC, and standard deviation of GFC
ðσGFCÞ are listed. The sensor responses were multiplied with 40 dB Gaussian noise, and the resultant responses were quantized to 10 bits. In this test, Munsell floral test
reflectances were illuminated by CIE standard and measured test daylights.

Table 5. Test Results of the Algorithm Using Wiener Estimation

When Applying Different Numbers of Image Sensor Responses
a

Munsell (CIE) Floral (CIE) Munsell (Measured) Floral (Measured)

Number of
Sensors

CIELuv Distance
(σCIELuv)

GFC
(σGFC)

CIELuv Distance
(σCIELuv)

GFC
(σGFC)

CIELuv Distance
(σCIELuv)

GFC
(σGFC)

CIELuv Distance
(σCIELuv)

GFC
(σGFC)

3 13.5 (0.071) 0.9572
ð1:9e–4Þ

16.3 (0.096) 0.9456
ð3:1e–4Þ

12.2 (0.057) 0.9613
ð1:0e–4Þ

13.5 (0.057) 0.9603
ð1:1e–4Þ

4 11.4 (0.080) 0.9713
ð2:0e–4Þ

15.9 (0.17) 0.9498
ð6:1e–4Þ

7.17 (0.044) 0.9872
ð8:6e–5Þ

14.4 (0.20) 0.9587
ð5:7e–4Þ

6 5.08 (0.051) 0.9859
ð1:8e–4Þ

11.4 (0.16) 0.9687
ð3:9e–4Þ

3.39 (0.013) 0.9946
ð1:4e–5Þ

9.39 (0.15) 0.9746
ð3:5e–4Þ

8 3.44 (0.019) 0.9939
ð3:5e–5Þ

3.97 (0.23) 0.9812
ð6:9e–4Þ

2.29 (0.010) 0.9967
ð7:8e–6Þ

1.37 (0.016) 0.9913
ð1:4e–5Þ

aMean Euclidean distance in CIELuv space between the actual and the estimated spectra, standard deviation ðσCIELuvÞ, mean GFC, and standard deviation of GFC
ðσGFCÞ are listed. The sensor responses were multiplied with 40 dB Gaussian noise, and the resultant responses were quantized to 10 bits. In this test, Munsell floral test
reflectances were illuminated by CIE standard and measured test daylights.
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was calculated for each grid, and the generalized inverse
estimation and Wiener estimation methods were applied to
estimate the illuminant spectrum of the pixels that fall within
that grid. Goodness of the estimated illuminant power spec-
trum was evaluated with GFC and CIELuv color difference.
To evaluate the performance of the algorithm realistically,
sensor noise and the effect of quantization were taken into
account. The algorithm was tested with a different number
of sensor responses to find the optimum number of sensors
required to obtain a colorimetrically good estimate of the il-
luminant spectrum. Based on the results presented, it can be
concluded that six sensors are enough to obtain a colorime-
trically good estimate of the illuminant spectrum at a pixel
with sensor responses of 40dB and an SNR quantized
to 10 bits.
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