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The Bayesian inference approach to the inverse problem of spectral signal recovery has been extended to mixtures
of Gaussian probability distributions of a training dataset in order to increase the efficiency of estimating the spec-
tral signal from the response of a transformation system. Bayesian (BIC) and Akaike (AIC) information criteria were
assessed in order to provide the Gaussian mixture model (GMM) with the optimum number of clusters within the
spectral space. The spectra of 2600 solar illuminationsmeasured in Granada (Spain) were recovered over the range
of 360–830 nm from their corresponding tristimulus values using a linear model of basis functions, the Wiener
inverse (WI) method, and the Bayesian inverse approach extended to the GMM (BGMM). A model of Gaussian
mixtures for solar irradiance was deemed to be more appropriate than a single Gaussian distribution for repre-
senting the probability distribution of the solar spectral data. The results showed that the estimation performance
of the BGMM method was better than either the linear model or the WI method for the spectral approximation of
daylight from the three-dimensional tristimulus values. © 2012 Optical Society of America

OCIS codes: 330.1690, 330.1730, 100.3190, 000.5490.

1. INTRODUCTION
Recent decades have witnessed a growing interest in the ana-
lysis of spectral signals applied to spectral compression and
reconstruction. Thus, efficient spectral representation and
color communication, together with the spectral analysis of
solar illuminations and reflectance of colored samples, have
been the subject of extensive research [1–7]. Within this con-
text, the characteristics of the solar radiation spectrum in the
ultraviolet, visible, and near-infrared regions is of crucial con-
sideration in many disciplines, particularly in imaging, vision,
and color science [8]. The spectral analysis of daylight irradi-
ance under different atmospheric conditions has been an im-
portant subject in many applications of spectral daylight in
imaging science where the color signal is studied, or in as-
pects of meteorology where solar spectral irradiance over a
wide spectral range is investigated [9–13].

The vital need to be able to represent a large set of high-
dimensional spectral data is fulfilled by a variety of models
for spectral compression in a lower dimension of spectral
space. The reverse stage, known as spectral recovery, in-
volves decoding the compressed data in order to reconstruct
the spectral data. Spectral daylight recovery and designing
optimum sensors to estimate spectral irradiance, thus facili-
tating atmospheric research and applied meteorology, have
been the focus of intense study in recent decades. In 1964,
when Cohen [14] proposed a linear model depending on three
components for surface spectral reflectances, Judd et al. [15]
designed a three-dimensional linear model to fit the outdoor

spectral illumination. Following the development of linear
models for spectral-reflectance reconstruction [1,16–18],
many researchers turned their attention to the spectral recov-
ery of illuminant spectra using linear models of basis func-
tions extracted from the spectral-irradiance dataset. The
spectral reconstruction of natural daylight in the visible range
of the spectrum by a lower-dimensional linear combination of
the eigenvectors obtained from the natural spectral dataset
has been studied by Romero et al. and Hernández-Andrés et al.
[19,20]. In 2004, Hernández-Andrés et al. [21] measured a set
of 2600 daylight spectra in Granada (Spain) in order to study
linear models for daylight spectral recovery using the re-
sponses of just a few sensors. They concluded that a suitable
linear model can be accurately constructed with only five ba-
sis functions to recover outdoor daylight spectra within the
visible range of 380–780 nm. A simple way of spectral approx-
imation is based on a low-dimensional linear model of basis
functions, which was that used in the research conducted by
Slater and Healey [22] for daylight spectral reconstruction.
These authors were of the opinion that global spectral-
irradiance functions can be accurately fitted over the visible
range by using a three-dimensional linear model, while an
eight-dimensional linear model is required for accurate spec-
tral recovery over the wider range of 400–2200 nm [22,23].

The problem of the performance of spectral recovery is
more pressing when the responses of only a few sensors are
available in practice for recovery over a broad spectral range,
which is to say that the lower-dimensional sensor response
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mathematically constrains the linear model from making
use of more basis functions and thus the spectral range for
accurate spectral reconstruction is constricted to a narrow
range of the spectrum. Hence, the accurate recovery of a
broader spectral range represented by more eigenvectors de-
pends directly on the number of sensors, which should be
equal to the number of basis functions in a linear spectral-
recovery model. The Wiener inverse (WI) model as the
probabilistic formulation of spectral recovery combines a

priori information about the spectral data with the informa-
tion obtained from measuring sensor signals. Thus, the model
benefits from an a priori probability distribution of the
training spectral dataset, which is often taken to follow a
single Gaussian distribution. Regrettably, the spectral data
can hardly follow a single Gaussian probability distribution.
Taking only a single Gaussian density into account signifi-
cantly compromises the accuracy of the estimation, and so
a single Gaussian approximation is sometimes inadequate
for characterizing the probability distribution of many real-
world spectral datasets. Nevertheless, a mixture of Gaussian
densities is a popular representation of non-Gaussian distribu-
tions. Thus, in order to improve the performance of the in-
verse model, a mixture of Gaussian distributions, known as
the Gaussian mixture model (GMM), can be used as a priori

information of the input spectral data.
In this paper, we describe a method of spectral recovery

based on an extension of the Bayesian inverse approach to
GMM. The method is used to approximate spectrally 2600
global spectral irradiances measured in Granada, Spain. The
optimum number of Gaussian clusters of the training spectral-
irradiance data is measured by evaluating the Bayesian (BIC)
and Akaike (AIC) information criteria. The colorimetric and
spectral performances of the proposed method are compared
with the results obtained from a linear model and the WI
approach for spectral reconstruction of spectral daylight.

2. THEORETICAL BACKGROUND
The linear transformation of the n-dimensional spectrum, r, to
the p-dimensional response, c, can be formulated by

c � AT r� ϵ; (1)

where A is the n × p transformation matrix and ϵ is the signal-
independent additive noise of the system. The backward mod-
el of estimating spectrum r from the response c of the system
in Eq. (1) is known as spectral reconstruction, which has re-
cently been the subject of considerable investigation [24–31].

The basic backward model of estimating spectrum r from
the response vector c can be created by a linear model of p
basis functions, uj , extracted from the spectral dataset,
Rn≔frigmi�1, in the following way:

r̂ � Sc� �I − SAT �μr; (2)

where μr is the mean vector of r ∈ Rn, and for a noiseless
transformation system, S � U�ATU�−1, in which the columns
of the n × p matrix, U, are the basis functions, uj [31].

Another way of spectral estimation is based on the
Bayesian inference approach to the inverse problem of spec-
tral recovery. The WI model, resulting from the Bayesian
theorem, is widely used for spectral estimation and analysis
in color and imaging applications [32–36]. Let us consider

the Bayes’ theorem for estimating the posterior probability
density function p�rjc�, as follows:

p�rjc� � p�cjr�p�r�
p�c� ; (3)

in which p�cjr� and p�r� are the likelihood and prior probabil-
ity density functions, respectively [37]. Assuming that prior
probability, p�r�, follows a single Gaussian distribution,
r ∼N �μr;Σr�, as does noise, ϵ ∼N �μϵ;Σϵ�, then the posterior
probability distribution, p�rjc� � N �μrjc;Σrjc�, can be esti-
mated, in which

μrjc � Ξ�c − μϵ − ATμr� � μr; (4)

Σrjc � Σr −ΞATΣr; (5)

and Ξ � ΣrA�ATΣrA�Σϵ�−1 is the Wiener estimation ma-
trix. The mean vector and covariance matrix are represented
by μ and Σ, respectively. The mean vector, μrjc, of Eq. (4) can
be taken as the most probable estimation of r given response c
[37,38]. Both the linear model of Eq. (2) and the minimum-
mean-square-error (MMSE) estimation of the WI approach,
Eq. (4), are widely used in color science and imaging technol-
ogy for spectral recovery and image restoration [2,24,39–42],
yet the spectral performance of reconstruction methods based
on the linear model andWI depends very much on the spectral
characteristics of the primary dataset through the spectral
range over which they were measured.

3. EXTENSION OF THE BAYESIAN INVERSE
APPROACH TO THE GAUSSIAN MIXTURE
MODEL
The probability distribution of prior information in the
Bayesian inference model is important to the optimum perfor-
mance of Bayesian-based methods. In practical applications
of spectral signals or images, considering a single Gaussian
model is rarely realistic [37]. In color applications the spectral
analysis of reflecting specimens investigated by Attewell and
Baddeley [43] provides sufficient evidence for the fact that re-
flectance spectra are better described by beta-distribution or a
mixture of Gaussian distributions than a single normal distri-
bution. Although many real-world stochastic systems exhibit
non-Gaussian probability behavior, Gaussian mixture-density
estimation can be adequately used to represent non-Gaussian
systems. In 2002 Murakami et al. [44] proposed an appealing
nonlinear approach for spectral recovery based on the GMM
that could be considered for spectral reconstruction from the
system response.

The GMM, as a very common representation of the den-
sity functions p�r� for the stochastic vector, r, can be
represented by

p�r� �
XL
j�1

ωjN �r; μj ;Σj�; (6)

in which ωj are nonnegative weighting coefficients withP
jωj � 1 and N �r; μj ;Σj� is the Gaussian density of the

jth cluster with mean vector μj and covariance matrix
Σj . Taking into account the prior distribution, p�r�, the poste-
rior distribution, p�rjc�, can be expressed by Eq. (7) (see
Appendix A),
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p�rjc� �
XL
j�1

ω�
j N �r; μ�j ;Σ�

j �; (7)

in which Σ�
j , μ

�
j , and ω�

j are defined in Eqs. (A10), (A11), and
(A15) respectively.

A. Estimation of the Recovered Signal
If the spectral signal r follows a single Gaussian distribution,
then L � 1, and the MMSE estimate of r from the response
vector c is the mean vector, μrjc, of Eq. (4), which minimizes
Ef‖r − r̂‖2g. Similarly, the following GMM-based estimation
may be proposed for the recovered spectrum:

r̂ �
XL
j�1

ω�
j μ

�
j : (8)

Maximum a posteriori (MAP) estimation of r given re-
sponse vector c,

r̂MAP � argmax
r

fp�rjc�g

� argmax
r

�XL
j�1

ω�
j N �r; μ�j ;Σ�

j �
�
; (9)

can be created by maximizing the posterior distribution of
Eq. (7). Unfortunately, a closed-form analytical solution to
Eq. (9) is not generally available. Nonetheless, the GMM-based
MAP estimator of r given c for Eq. (7) can be approximately
estimated by multivariate Taylor-series expansion of Gaussian
component p�j �r� � N �r; μ�j ;Σ�

j � as explained in Appendix B.
Therefore the MAP estimator of r given c can be approximated
by Eq. (10) using multivariate Taylor-series expansion of
Gaussian probability density function p�j �r� around vector ~μ,

r̂MAP�−

�XL
j�1

ω�
j ∇

2p�j � ~μ�
�−1XL

j�1

ω�
j f∇p�j � ~μ�− ~μ∇2p�j � ~μ�g. (10)

In Eq. (10), ~μ is a vector around which the MAP estimator r̂MAP

is approximated. Thus we can take

~μ � argmax
m∈M

fp�mjc�g; (11)

in whichM � fμ�1 ; μ�2 ;…; μ�L;
P

L
j�1 ω

�
j μ

�
j g, as the closest vector

to the actual MAP estimator r̂MAP.

4. EXPERIMENTAL
A set of 2600 daylight spectra collected in Granada (Spain)
[13] were used for spectral recovery. Figure 1 shows the
CIE 1931 chromaticity coordinates of 2600 natural-daylight
spectra overlaid with the CIE daylight and Planckian loci.

A. Clustering with Gaussian Mixtures
To fit a set of Gaussian mixtures to the training dataset as a

priori information for the BGMM, the 2600 solar spectral ir-
radiances must be classified to extract a given number of clus-
ters from the training spectral data. The clusters can be
assigned by classifying the training data using K -means clus-
tering [45] and Gaussian mixture modeling [46,47]. In this re-
search, the GMM was used to cluster the training dataset by

fitting the mixture models to the primary spectral data using
the expectation maximization algorithm [48]. To find the op-
timum number of clusters for spectral illumination, BIC and
AIC [49] were measured for the GMM with different numbers
of clusters of the training spectral dataset. Equations (12) and
(13) represent the AIC [50] and BIC [51] criteria, respectively:

AIC � −2 ln L� 2K; (12)

BIC � −2 ln L� K ln N; (13)

in which L is the likelihood function, K is the number of para-
meters of the model, and N is the number of data points.
These calculations allow us to determine the appropriate
number of Gaussian mixtures.

Figure 2 represents the AIC and BIC criteria for different
numbers of clusters L � 1;…; 8. When the number of clusters
increases from L � 1, corresponding to a single Gaussian
model, to L � 2, related to two Gaussian mixtures, both the
criteria decrease rapidly (Fig. 2). This confirms the superiority

Fig. 1. (Color online) The CIE 1931 chromaticity coordinates of 2600
natural-daylight spectra (open blue circles) overlaid with the CIE
daylight (red solid curve) and Planckian (blue solid curve with black
circles) loci.

Fig. 2. BIC and AIC of GMM with different numbers of clusters
L � 1;…; 8 created to represent the probability distribution of the pri-
mary spectral daylight illumination.
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of a GMM over the model represented by a single Gaussian
distribution. It can be seen in Fig. 2 that the AIC criterion does
not decrease significantly when the number of classes is more
than five. Furthermore, the BIC criterion reaches its minimum
value with a distribution of five Gaussian mixtures. Thus, a
GMMwith five optimum clusters (L � 5) was created to repre-
sent the probability distribution of the training spectral dataset.

Figure 3 shows the logarithm of probability density func-
tions for the CIE 1931 chromaticity coordinates of the 2600
natural-daylight spectra that were represented by the

optimum five Gaussian mixtures and a single Gaussian distri-
bution, respectively. The figure also shows the contour lines
for the two models separately.

Figure 4(a) represents the relative spectral power distribu-
tion of the centers μ�j , j � 1;…; 5 of the five Gaussian clusters,
together with their chromaticity coordinates. The correlated col-
or temperatures (CCT) of the five centers were equal to 5633,
6015, 6700, 7455, and 9003 K. As can be seen from the chroma-
ticity coordinates of the five centers of the clusters shown in
Fig. 4(b), the varying CCT centers are sparsely distributed with
different coordinates over the chromaticity diagram, resulting in
an appropriate clustering of the training spectral data.

B. Spectral Reconstruction of Daylight Illumination
The 2600 outdoor daylight spectra were recovered using Eq. (8)
from the corresponding CIE 1931 tristimulus values of the spec-
tral illuminations. Spectral recovery was undertaken using
three different methods: a linear approach from Eq. (2), the WI
method described by Eq. (4), and an extension of the Bayesian
inverse method to the GMM (BGMM) as expressed in Eq. (8).
The spectral performances of the recovery approaches were
assessed by the goodness-fitting coefficient (GFC)

GFC � hr; r̂i
hr; ri1 ∕2hr̂; r̂i1 ∕2 ; (14)

Fig. 3. (Color online) The log-pdf functions for the CIE 1931 chro-
maticity coordinates of 2600 natural-daylight spectra, the probability
distributions of which were illustrated separately by the five Gaussian
mixtures and a single Gaussian distribution. The contour lines for the
two models are also shown in the figure.

Fig. 4. (Color online) The spectra of the centers μ�j , j � 1;…; 5 of the five Gaussian clusters (a), and the corresponding chromaticity coordinates (b).

Table 1. Spectral and Colorimetric Performance of

Spectral Reconstruction Using the Linear Model, the

WI Approach, and the Bayesian Inverse Model

Extended to the GMM (BGMM)a

Method % Feasible r̂ Median Mean

Linear 86.04 (0.9997, 0.1689) (0.9985, 0.3220)
WI 85.69 (0.9998, 0.1688) (0.9988, 0.2959)
BGMM 99.97 (0.9999, 0.1423) (0.9990, 0.3069)
aThe table shows the percentage of feasible recovered spectra together with

the average and median of (GFC,ΔE�
uv) measured between spectrum r and the

feasible reconstructed r̂ for all the 2600 natural illuminations.
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where h⋅; ⋅i is the operator for the inner product of the two vec-
tors [20]. Furthermore, the colorimetric performance was mea-
sured by the CIELUV color difference formula, ΔE�

uv, in which
the coordinate of equal energy illuminant was taken as refer-
ence illumination.

The results of the spectral and colorimetric performances
of the spectral reconstruction using the linear, WI, and BGMM
models are set out in Table 1, in which the first value in the
parentheses corresponds to the GFC and the second toΔE�

uv.
Thus, the average and median of (GFC, ΔE�

uv) measured

Fig. 5. Spectral recovery of the six natural outdoor illuminations (solid curve) using the linear model (dashed curve), theWImethod (crossed curve), and
the BGMM (dotted curve), presented for the spectral illuminations with CCT equal to (a) 3680, (b) 4117, (c) 7657, (d) 15812, (e) 23303, and (f) 33354K.
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between spectrum r and the positive feasible reconstructed r̂
for all the 2600 natural illuminations are shown in Table 1.
The table also shows separately the percentage of feasible
positive recovered illumination spectra obtained from each
recovery method. Comparing the results of spectral recon-
struction obtained by the linear and WI approaches, it
may be deduced that both performed similarly. Furthermore,
the percentages of the feasible positive recovered spectra
obtained by both approaches are close to 86. The results
shown in this table reveal that the percentage of feasible
recovered spectra obtained by the BGMM is 99.7, which
is much higher than those achieved with the linear and WI
approaches. The spectral and colorimetric performances of
the BGMM spectral recovery method are also higher than
those obtained with the linear and WI methods. Therefore,
compared with the linear and WI methods, the BGMM can
be regarded as a suitable approach to spectral recovery be-
cause it is not only more accurate in terms of spectral esti-
mation but also provides a much higher percentage of
feasible recovered spectra.

The six typical outdoor illuminations with CCTs of 3680,
4117, 7657, 15812, 23303, and 33354 K were spectrally re-
covered from the corresponding tristimulus values using the
linear, WI, and BGMM approaches separately. The first
spectrum, with CCT 3680 K, is located furthest away from
the origin of the chromaticity diagram. The second selected
spectrum is the second furthest point, with CCT equal to
4117 K. The coordinates of the selected spectra with increas-
ing CCTs of 7657, 15812, and 23303 K approach the origin of
the chromaticity diagram in such a way that the last selected
spectrum, with CCT 33354 K, is the nearest coordinate to the
origin, as can be seen in Fig. 5, in which the solid curve is
spectrum r, while the dashed, crossed, and dotted curves
represent the spectral illumination recovered by the linear,
WI, and BGMM methods, respectively. It can be seen from
Fig. 5(a) that none of the estimation methods resulted in
a positive recovered spectrum, while in Fig. 5(b), only the
BGMM yielded a positive estimated spectrum. Nevertheless,
Fig. 5(c) shows that all the recovery approaches resulted in
feasible positive reconstructed spectra, although the higher
spectral performance of the BGMM is obvious in this figure.
Nevertheless, feasible positive recovered spectra were not
obtained in most cases of the illuminations recovered by
the linear and WI methods. Interestingly, the BGMM resulted
in positive recovered spectra in Figs. 5(b)–5(f). Further-
more, it can be seen in Fig. 5 that the spectral performance
of the BGMM is appropriately higher than the linear and WI
methods.

5. CONCLUSION
The extension of the Bayesian inverse approach to the
GMM was proposed to recover the spectral signal more ef-
ficiently from the response of a transformation system.
Thus, a numerical experiment was undertaken to perform
the spectral reconstruction of 2600 natural-daylight spectra
measured in Granada (Spain) using a linear approach, the
WI method, and the Bayesian inverse approach extended to
Gaussian mixtures. BIC and AIC measured for different
numbers of clusters of the outdoor spectral illuminations
showed that a model based on Gaussian mixtures repre-
sented the probability distribution of the training dataset

rather more closely than a single Gaussian distribution.
The recovery performances of daylight spectral reconstruc-
tion of the linear and Wiener approaches were similar, re-
sulting in about 86% feasible positive recovered spectra.
The BGMM spectral-recovery method, on the other hand,
resulted in 99.97% feasible positive recovered spectra,
the spectral and colorimetric performances of which were
convincingly more appropriate than those of the linear and
WI models for spectral recovery. Finally, it should be
pointed out that the technique described here of extending
the Bayesian inverse approach to the GMM can be used for
spectral signal estimation in many applications of imaging
science and spectral signal processing.

APPENDIX A
Suppose that a priori the probability density function of
spectrum r is given by the GMM

p�r� �
XL
j�1

ωj��2π�njΣjj�−1 ∕2 exp�Γj�; (A1)

in which

Γj � −
1
2
�r − μj�TΣ−1

j �r − μj� (A2)

and ωj are nonnegative weighting coefficients withP
jωj � 1. Considering the noisy system of Eq. (1) with

noise ϵ ∼N �μϵ;Σϵ�, the likelihood function, p�cjr�, can be
written as

p�cjr� � ��2π�pjΣϵj�−1 ∕2 exp�ϒ�; (A3)

where

ϒ � −
1
2
�c − �AT r� μϵ��TΣ−1

ϵ �c − �AT r� μϵ��: (A4)

Given the noisy system of Eq. (1) and the probability density
functions p�r� for the spectrum r, and p�ϵ� for noise ϵ, the
probability density function p�c� can be created by the
following:

p�c� �
XL
j�1

ωj��2π�pjKjj�−1 ∕2 exp�Φj�; (A5)

in which Kj � ATΣjA�Σϵ and

Φj � −
1
2
�c − κj�TK−1

j �c − κj�; (A6)

where κj � ATμj � μϵ. By incorporating p�r�, p�cjr�, and p�c�
from Eqs. (A1), (A3), and (A5), respectively, into Eq. (3), we
get the following:
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p�rjc� � ��2π�pjΣϵj�−1 ∕2 exp�ϒ�PL
j�1 ωj��2π�njΣjj�−1 ∕2 exp�Γj�PL

j�1 ωj��2π�pjKjj�−1 ∕2 exp�Φj�

� ��2π�pjΣϵj�−1 ∕2
P

L
j�1 ωj��2π�njΣjj�−1 ∕2 exp�Φj� exp�ϒ� Γj −Φj�PL
j�1 ωj��2π�pjKjj�−1 ∕2 exp�Φj�

. (A7)

In Eq. (A7), Γ�
j � ϒ� Γj −Φj can be written by taking into

account Eqs (A2), (A4), and (A6) as follows:

Γ�
j � −

1
2
�c − �AT r� μϵ��TΣ−1

ϵ �c − �AT r� μϵ��

−
1
2
�r − μj�TΣ−1

j �r − μj� �
1
2
�c − κj�TK−1

j �c − κj�; (A8)

which can be rewritten as

Γ�
j � −

1
2
�r − μ�j �TΣ�−1

j �r − μ�j �; (A9)

where

Σ�
j � �Σ−1

j � AΣ−1
ϵ AT �−1; (A10)

μ�j � Σ�
j �Σ−1

j μj � AΣ−1
ϵ c − AΣ−1

ϵ μϵ�: (A11)

Using a generalized form of Sylvester’s determinant theorem
[52], it can be shown that

��2π�pjΣϵj�−1∕2��2π�njΣjj�−1∕2
��2π�pjKjj�−1∕2

���2π�nj�Σ−1
j �AΣ−1

ϵ AT �−1j�−1∕2

���2π�njΣ�
j j�−1∕2: (A12)

Equation (A7) can be rewritten using Eq. (A12) as

p�rjc��
PL

j�1ωj��2π�pjKjj�−1∕2��2π�njΣ�
j j�−1∕2exp�Φj�exp�Γ�

j �P
L
j�1ωj��2π�pjKjj�−1∕2exp�Φj�

;

(A13)

to create the following form of GMM for the posterior distri-
bution p�rjc�:

p�rjc� �
XL
j�1

ω�
j ��2π�njΣ�

j j�−1 ∕2 exp�Γ�
j �; (A14)

in which ω�
j are the nonnegative weights

ω�
j � ωj��2π�pjKjj�−1 ∕2 exp�Φj�PL

j�1 ωj��2π�pjKjj�−1 ∕2 exp�Φj�

� ωjN �c; κj ;Kj�P
L
j�1 ωjN �c; κj ;Kj�

(A15)

with
P

jω
�
j � 1.

Furthermore, using the Sherman–Morison–Woodbury for-
mula in matrix algebra [53], Eqs. (A10) and (A11) can be

rewritten respectively as follows (see also Eqs. (145)–(147)
in [54]):

Σ�
j � Σj − SjATΣj ; (A16)

μ�j � Sj�c − μϵ − ATμj� � μj ; (A17)

in which

Sj � ΣjA�ATΣjA�Σϵ�−1 � ΣjAK−1
j : (A18)

APPENDIX B
Multivariate Taylor-series expansion of the Gaussian
probability distribution p�x� around vector ~μ can be written
as

p�x� �
XR
k�0

1
k!
��x − ~μ�⊙∇�kp�x�jx�~μ � OR; (B1)

in which ∇ is the gradient with respect to x, OR is the remain-
der term, and ⊙ is the matrix operator for two matrices with
the same dimensions, which is an elementwise matrix multi-
plication and a subsequent summation of all matrix elements
[55]. Considering Eq. (B1), multivariate Taylor-series expan-
sion of the jth Gaussian distribution p�j �r� � N �r; μ�j ;Σ�

j �
around vector ~μ can be approximated by

p�j �r� � p�j � ~μ�� �r− ~μ�T∇p�j � ~μ��
1
2!
�r− ~μ�T∇2p�j � ~μ��r− ~μ�

� 1
3!
f��r− ~μ��r− ~μ�T �⊗ �r− ~μ�g⊙∇3p�j � ~μ��…; (B2)

in which ⊗ is the Kronecker product operator. In Eq. (B2),
the first-order derivative is

∇p�j �x� � −Σ�−1
j �x − μ�j �p�j �x�; (B3)

the second-order derivative or Hessian matrix H�x� is

∇2p�j �x� � Hj�x� � −Σ�−1
j ��x − μ�j ��∇p�j �x��T � p�j �x��; (B4)

and third-order derivative is given by

∇3p�j �x� � −Hj�x� ⊗ �Σ�−1
j �x − μ�j �� − ∇p�j �x�

⊗ Σ�−1
j − vec�Σ�−1

j ��∇p�j �x��T ; (B5)

where vec�⋅� denotes an operator that vectorizes a matrix
by stacking its columns [54–56]. Thus, the second-order
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multivariate Taylor-series approximation of Eq. (A14) around
vector ~μ is

p�rjc� �
XL
j�1

ω�
j

�
p�j � ~μ� � �r − ~μ�T∇p�j � ~μ�

� 1
2
�r − ~μ�T∇2p�j � ~μ��r − ~μ�

�
: (B6)

The MAP estimate of r given c is obtained by maximizing
p�rjc�, which can be achieved by setting the derivative of
p�rjc� with respect to r equal to zero:

∂p�rjc�
∂r

� 0: (B7)

By incorporating the approximate Eq. (B6) for p�rjc� and
Eq. (B7), and considering the principles of differentiation
of matrix functions [54,56], we can write

∂p�rjc�
∂r

�
XL
j�1

ω�
j f∇p�j � ~μ� �Hj� ~μ��r − ~μ�g � 0: (B8)

Solving Eq. (B8) for r, we obtain

r̂MAP � −

�XL
j�1

ω�
j Hj� ~μ�

�−1 XL
j�1

ω�
j f∇p�j � ~μ� − ~μHj� ~μ�g; (B9)

which is approximately the MAP estimator of r given c.
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