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Essential to sensory processing in the human visual system is natural illumination, which can vary considerably
not only across space but also along the day depending on the atmospheric conditions and the sun’s position in the
sky. In this work, edges derived from the three postreceptoral Luminance, Red–Green, and Blue–Yellow signals
were computed from hyperspectral images of natural scenes rendered with daylights of Correlated Color Tem-
peratures (CCTs) from 2735 to 25,889 K; for low CCT, the same analysis was performed using Planckian illumi-
nants up to 800 K. It was found that average luminance and chromatic edge contrasts were maximal for low
correlated color temperatures and almost constants above 10,000 K. The magnitude of these contrast changes
was, however, only about 2% across the tested daylights. Results suggest that the postreceptoral opponent
and nonopponent color vision mechanisms produce almost constant responses for color edge detection under
natural illumination. © 2012 Optical Society of America

OCIS Codes: 330.1720, 330.1690.

1. INTRODUCTION
Object colors depend on both the spectral reflectance of the
surfaces and the spectral power distribution (SPD) of the light
impinging on them. It has been argued that our human visual
system is adapted to natural stimuli to code and process effi-
ciently the visual inputs it receives [1]. An example of that ef-
ficient sensory processing is how color vision has evolved in
response to natural image regularities, which include the col-
or and luminance distributions across images, the power spec-
tra of natural images, among others [2]. Essential to that
sensory processing is natural illumination, which can vary
considerably not only across space but also throughout the
day, depending on the atmospheric conditions and on the
sun’s position in the sky [3–5]. Optimization in natural image
processing usually consists of first-order statistics (just look-
ing at a single image pixel), second-order statistics (capturing
relations and regularities over pairs of image pixels in the im-
age), or higher-order statistics (referring to any kind of trans-
formation or analysis involving more than two pixels) [6]. All
of these statistical models applied to natural images assume
that one of the major roles of human vision is to represent
visual information in an optimal way, i.e., to eliminate redun-
dant information.

The distribution of luminance, color, and local contrast in
natural scenes has been quantitatively and qualitatively de-
scribed comprehensively (for a review, see [7]). Correlations
among receptoral cone responses are usually found by virtue
of the close overlap in the cones’ spectral sensitivities. But the
three postreceptoral responses, here referred to as Red–
Green (RG), Blue–Yellow (BY), and Luminance (Lum) chan-
nels, decorrelate the cone signals to remove information in the
cone outputs that is redundant. Higher-order representations
and structures (e.g., edges and contours) have similar math-
ematical properties and sometimes redundancy can be a reli-
able indicator of material boundaries [8]. Some authors have

recently evaluated contrast and color edge statistics to test
whether the aforementioned statistical approaches also hold
at a second stage of color vision. Zhou and Mel [9] used dif-
ferent color images to compute edges along the RG, BY, and
Lum components of those images. They found that most edges
were defined by luminance contrast with color information
being redundant. More recently, Hansen and Gegenfurtner
[10] studied the correlation between luminance and color con-
trasts for edges in natural images and found that they were
almost independent of each other. However, if one ignores
the sign of contrast change across the edge in order to repre-
sent higher-order image structure, i.e., to determine whether
color and luminance edges tend to co-occur, color and lumi-
nance are not independent but positively correlated [8].
Although some authors have concluded from this that color
is redundant [9], this is not the case; for example, illumination
boundaries such as shading and shadows tend to be defined
by luminance not color contrast [8]. Thus, in scenes with
dense foliage, which tend to be replete with shadows and
shading, the detection of, for example, RG variations becomes
important for the detection of objects such as fruit [11–12].

The purpose of this work was to study how changes in day-
light illumination affect the edges in color images. Although
image gradients and their distributions have also been ana-
lyzed for natural images [10,13], limited data are available con-
cerning the chromatic edge contrast deviations across natural
illuminant changes. Edge colors were computed from differ-
ent hyperspectral images of natural scenes rendered with day-
lights of Correlated Color Temperatures (CCTs) from 2735 to
25,889 K and were analyzed for the Lum, RG, and BY signals.

2. METHODS
A. Dataset
The analysis was based on hyperspectral images of nine
scenes representing landscapes and nonurban scenarios
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[14–15]. The scenes consisted of a mixture of rural scenes
from the Minho region of Portugal, containing, rocks, trees,
leaves, grass, and earth and from the cities of Porto and Braga,
Portugal (see Fig. 1). The estimated reflectance spectra (effec-
tive spectral reflectance) at each pixel were sampled in 10 nm
steps over 400–700 nm. All images were acquired under day-
light and, for the estimation of the spectral reflectances, the
illumination was assumed to be spatially uniform. Analysis of
the effects of shadows on the estimation of effective spectral
reflectances for surfaces under direct and indirect illumina-
tion can be found in [16], where it is demonstrated that, under
ideal conditions (that is, discarding the effects of the geome-
trical position of the sun), the estimations of the color signals
in shadows and directly illuminated conditions can be safely
done under the aforementioned assumptions.

The hyperspectral images were rendered under 108 SPDs of
daylights with CCTs from 2735 to 25,889 K (see Fig. 1). [If the
chromaticity of a light source is off the Planckian locus, the
CCT is used instead of color temperature to describe its ap-
pearance. Let us suppose that (x1, y1) is the chromaticity of an
off-locus light source. By definition, the CCT of (x1, y1) is the
temperature of the Planckian radiator whose chromaticity is
nearest to (x1, y1).] The illuminant set was comprised by two
different kinds of SPDs: a real dataset and a simulated dataset.
The real daylight SPDs were measured in Granada, Spain,
from sunrise to sunset under different atmospheric conditions
and covering a vast range of CCTs from 4800 up to 30,000 K
[3]. The simulated daylight SPDs were obtained with SBDART,
a software tool to compute plane-parallel radiative transfer
energy in clear and cloudy conditions within the Earth’s atmo-
sphere and at the surface [17] to cover CCTs below 4800 K.
The chromaticity coordinates of Granada daylight lie far
above the CIE locus at high CCTs (>9000 K), and a CCT of
5700 K best typifies this daylight.

B. Cones and Postreceptoral Responses
The color signal at each image pixel (product of the spectral
reflectance at a pixel by the SPD of the illumination) was
transformed to LMS cone values using the Smith and Pokorny
cone sensitivities [18] according to

L �
X700
λ�400

l�λ�r�λ�e�λ�Δλ;

M �
X700
λ�400

m�λ�r�λ�e�λ�Δλ;

S �
X700
λ�400

s�λ�r�λ�e�λ�Δλ; (1)

where λ is the wavelength, l, m, and s are the cone sensitiv-
ities, r is the spectral reflectance, and e the SPD of the
illuminant (all the spectral functions were sampled using
Δλ � 10 nm).

Next, each LMS image was transformed into a post-
receptoral signal, which was composed of one Lum and
two opponent, RG and BY, signals. Different definitions of col-
or-opponent responses can be found in the color vision litera-
ture, either based on biologically neural representations (e.g.,
[19]), statistical analysis of postreceptoral responses (e.g.,
[20–21], among others) or even in terms of cone contrast

(e.g., [22]). The following transformations of the LMS cone
excitations were used here [20]:

Lum � L�M;

RG � L −M;

BY � 2S − �L�M�. (2)

C. Edge Computation
The postreceptoral images were blurred using a Gaussian fil-
ter with a standard deviation of σ � 1, before performing edge
computations to avoid artifacts in the image data. Figure 2
shows an example of the color-opponent edge computation.

(a) 

(b) 

(c) 

Fig. 1. (Color online) (a) SPDs for daylights of correlated color tem-
peratures between 2735 and 25,889 K. (b) The CIE 1931 x, y chroma-
ticities of the daylight spectra (open circles) overlaid with the
Planckian locus (solid line). (c) Examples of the natural scenes that
are used for the experiment.
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The edges across the Lum, RG, and BY image planes were
detected using a Sobel operator [10]. Mathematically, the So-
bel operator uses a 3 × 3 filter to calculate approximations to
the first derivative in the horizontal h and vertical v directions
as

Eh
k �

0
@−1 0 1
−2 0 2
−1 0 1

1
A � Ik; Ev

k � �Eh
k�T ; (3)

where k represents the Lum, RG, and BY components, Ik is the
source image for the kth component, Eh

k and Ev
k the two

images that at each point contain the horizontal and vertical
derivative approximations, and � and T denote convolution
and transpose, respectively. At each point in the image, the
resulting gradient approximations can be combined to a gra-
dient magnitude by averaging in order to obtain the final kth
edge image Ek estimation

Ek �
1
2
�Eh

k � Ev
k�. (4)

3. RESULTS
A. Influence of Illuminant Changes on the Chromatic
and Luminance Edges
To investigate the influence of daylight changes on the chro-
matic and luminance edges, we computed the average of edge
differences across pairs of illuminants. For each natural im-
age, all the possible combinations of edges detected under
two different daylights were computed for the Lum, RG,
and BY channels at a pixel. The average statistics quantify
how daylight changes influence edge detection and are shown
in Table 1. The edge differences were greater for a pair of ex-
treme daylight conditions (i.e., a hypothetical observer mov-
ing from a reddish ambient daylight around 2700 K to a bluish

ambient daylight around 30,000 K) than for a pair of daylights
with intermediate CCTs.

B. Examining Edge Contrasts across Changes in Daylight
Apart from the average statistics, another important measure
of image statistics is the marginal distribution of contrasts
(i.e., the probability distribution of the variables contained
in the subset of all contrast values). The importance of con-
trast in vision is suggested, for instance, by neurophysiologi-
cal findings, which reveal the lateral inhibition mediated by
neurons. Apart from that, also by psychophysical experiments
that show how perceived brightness of objects is mainly de-
termined by the surrounding context, i.e., the average local
contrast between the objects and the background [23]. We
computed the luminance and chromatic edge contrast for
the ith illuminant and jth scene as the ratio between the ab-
solute values of the gradient and the source image at a pixel
x as

Cx
i;j;k �

j∇Ex
i;j;kj

Ixi;j;k
; (5)

where k represents the Lum, RG, and BY color components.
For each image, the edge contrasts were averaged across all
image pixels to obtain the final average edge contrast as

Fig. 2. (Color online) Overview of the color-opponent edge computation. A hyperspectral image was rendered under each of the daylights and (left
column) the three L,M , and S cone planes were obtained; (middle column) the postreceptoral Lum, RG, and BY images were computed, and (right
column) edges were detected in each image. All the image planes are shown here in false color.

Table 1. Average Statistics for Edge Differences

Among All Possible Pairs of Illuminants

from 2,735 to 25,889 Ka

Lum RG BY

Min −5.6e − 07 3.1e − 07 −7.2e − 05
Max 7.1e − 05 3.9e − 05 5.5e − 07
Mean 4.3e − 05 2.6e − 05 −4.4e − 05
Median 4.3e − 05 2.9e − 05 −4.3e − 05

Standard deviation 1.7e − 05 1.0e − 05 1.7e − 05
aResults were averaged for all the pixels and natural scenes used.
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Ci;k �
1
9

X9
j�1

�
1
N

XN
x�1

Cx
i;j;k

�
; (6)

where N stands for the total amount of pixels in the jth scene.
According to the previous results, it is reasonable to as-

sume that, as daylight changes, the magnitude of the gradients
also changes. Figure 3 shows examples of the results for the
average magnitude of the contrast for three different day-
lights. The marginal distributions of gradients across daylights
show how the number of occurrences along the nonopponent
and opponent color mechanisms decreases as the edge
contrasts increases. This is similar to the results found by pre-
vious studies on a log scale [9,13]. There were no considerable
differences among the results obtained for the kth different
color vision mechanisms. It can be seen that the similarity
of the results holds at low contrast values where the distribu-
tion of edge contrasts falls almost linearly; however, for inter-
mediate and high contrast values (above 0.4 edge contrasts)
marginal distributions are observed to be more different.

Besides marginal distributions of contrasts, we also looked
at average edge contrast across the daylight range. Figure 4
illustrates the chromatic and luminance edge contrast
changes across illuminants for the three color vision mechan-
isms. The figure shows two different variations of the average
edge contrasts common to the Lum, RG, and BY color vision
systems: on one hand, for relative low daylight, CCT edge con-
trasts markedly changed and decreased up to 9000 K; on the
other hand, for high daylight CCT above 10,000 K, the edge
contrasts were almost constant for the three mechanisms.
But the magnitude of the contrast change varied only around
2% from the maximum edge contrast across all the daylights
studied; the change was only of 1% for the RG channel and
close to 3% for the Lum channel. Results suggest that the op-
ponent and nonopponent color vision mechanisms tend to
lead constant responses for color edge detection under natur-
al illumination, with the RG system being much more stable
and efficient at such task.

So, are the maximum edge contrast values for the three
channels a global maximum across natural illumination?
The answer should be yes, if we consider only daylight.
But what can we predict for illuminants with CCT below
the daylight CCTs? Although we cannot simulate real day-
lights with CCTs below 2700 K, we performed the same anal-
ysis but using 10 SPDs of Plankian illuminants with CCTs
running from 800 up to 2600 K (i.e., clearly below the natural
limit for daylights). Figure 5 shows the average chromatic and
luminance edge contrasts obtained when the hyperspectral
images were rendered under those nonnatural illuminations.
The magnitude of the contrast rate change was around 2.5% on
average, slightly greater than the one obtained for the natural
daylights, and the general trend was also almost the same; the
Lum and BY systems were again more unstable under illumi-
nant changes for edge detection.

C. Edge Contrasts for Adapted Receptoral Responses
Color constancy is usually defined as a stable color perception
under different illumination conditions [24]. Among the vari-
ety of cues to color constancy and the several forms it can
manifest are the context and image statistics. Correlations be-
tween Lum and “redness” within the retinal image can be
exploited as a cue to the chromatic properties of illuminants

and this for color constancy [25]. If one of the major roles of
the human visual system is to compensate for the illuminant
changes (i.e., color constancy), how are edges processed by
the color vision mechanisms to correct for the effects of
natural illumination changes? To answer this question, cone

Fig. 3. (Color online) Example of the distributions of edge contrasts
along the (a) nonopponent and (b)–(c) opponent color mechanisms
for three daylights of different CCTs.
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responses expressed by Eq. (1) should take into account adap-
tation. In the previous sections, we ignored any kind of adap-
tation-based cone excitations before the opponent responses
and edge detection were evaluated.

Thus, to illustrate how natural illuminant changes influence
the edge detection after adaptation, we also used a modified
version of the previously used principal axes based on the fol-
lowing adapted receptoral responses [20]:

LR � log L − log L;

MR � log M − log M;

SR � log S − log S; (7)

where log L, log M , and log S are log pixel cone excitations
and the upper bars represent the average of the corresponding
log values for each image. Thus the three postreceptoral re-
sponses to each pixel will be

LumR � LR �MR

RGR � LR −MR

BYR � 2SR − �LR �MR�; (8)

where LumR, RGR, and BYR are now the modified version of
the color vision mechanisms represented by Eq. (2). The log
version of the postreceptoral Lum, RG, and BY responses
clearly takes into account local cone light adaptation. The
logarithmic transformation will improve the coordinate spa-
tial representation of cone responses and capture the fact that
cone adaptation is local and as a result can produce spurious
color signals. It can also take into account visual psychophys-
ics because it is well known that uniform logarithmic changes
in stimulus intensity tend to be equally detectable.

Following on from these transformations the edge detec-
tion and edge contrast were computed through Eqs. (3–6). Re-
sults suggest that edge contrast changes were apparently
more stable with changes in daylight, except for some illumi-
nations, as Fig. 6 shows. There were still slight deviations for
low CCTs due to the logarithmic and differences calculations
involved in Eq. (7) and the dark areas appearing in several of
the hyperspectral images used. Thus, we cannot conclude that
those modified color vision mechanisms were more optimally
adapted to compensate for daylight changes in color edge de-
tection than the unadapted postreceptoral systems used pre-
viously. What is clear again is that there is no optimal daylight
CCTs to account for chromatic and luminance edge contrasts.

4. GENERAL DISCUSSION
We have presented an analysis on how natural illumination
influences the detection of color edges in natural scenes.
Average statistics for edge differences among all possible pair
of daylight illuminations suggest that, as daylight changes,
chromatic and luminance edges also change, but only by a
few percent. Spatial and temporal edges changes in natural
illumination, with no differences among the postreceptoral re-
sponses to those changes. The average chromatic and lumi-
nance edge contrasts also change as daylight changes and
the effect seems to be particularly relevant only for some col-
or temperatures below 10,000 K where edge contrasts change
abruptly but not dramatically. The edge contrast change was
only 2% on average of the maximum contrast obtained at the
lowest CCT. Considering the vast range of daylight CCTs anal-
yzed, the edge contrast change rate is probably not visually

Fig. 4. (Color online) Normalized edge contrasts for the Lum, RG,
and BY color mechanisms and natural daylights with correlated color
temperatures ranging from 2735 to 25,889 K.

Fig. 5. (Color online) Normalized edge contrasts for the Lum, RG,
and BY color mechanisms and Planckian illuminations with correlated
color temperatures ranging from 800 to 2700 K.

Fig. 6. (Color online) Normalized edge contrasts obtained using
adapted receptoral responses to derive the Lum, RG, and BY color
mechanisms for different natural daylights.
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relevant. This fact raises the question of how coding of
luminance, color, and contrast is performed in the human
visual system. Neurons in the visual cortex are expected to
be tuned simultaneously to both chromatic and luminance
contrasts. But this does not mean that color is made re-
dundant by considering change relations rather than point
intensities [10].

Previous work (e.g., [12]) found that the BY opponent chan-
nel varies with changes in daylight more acutely than the RG
opponent response. The latter was almost constant across
sunlight during a day but the BY response varies more than
40% from the minimum to the maximum activation at sunset,
which means around 27% of contrast activation (i.e., contrast
derived from the relationship between the difference of max-
imum and minimum values and the sum of both values from
Fig. 4(b) in [12]). Even computing detection scores of fruits
and foliage at different times of a day, the BY opponent system
changes markedly at least for primates. As suggested by Lovell
et al. [12], primates cannot take advantage of the separation of
L and M cones, and thus the BY system is much more con-
founded by the natural illumination than the RG one. On
the contrary, we found that color edge contrast changes
change so little in comparison with the contrast activation
for fruit and leaves detection. Our results suggest that there
can be tasks (e.g., color edge detection) for which both oppo-
nent RG and BY systems are of “same quality,” even under
dramatic daylight changes.

In addition to removing redundant information from the im-
age, the receptoral and postreceptoral mechanisms adapt to
natural illumination by stabilizing perceived color under dif-
ferent spectral light sources. What will be the implications
if other non-log-transformed cone contrasts are used? A num-
ber of studies approach this problem by using definitions of
RG and BY that either normalize the cone responses on a
pixel-by-pixel basis [21,26], or by using log-transformed cone
responses [20,27]. One could, for example, have used non-
log-transformed cone contrasts, e.g., L∕Lm-M∕Mm for the
RG response, with Lm andMm being the mean cone responses
across the scene. The problem with this metric is that it does
not account for the fact that cone adaptation is local and as a
result can produce spurious color signals.

It should point out that our edge contrast definition does
not take into account some properties of the human visual sys-
tem. One limitation of our analysis is the influence of the neur-
al noise in the edge contrast computation. The noiseless
assumption followed in this work could be unnatural and
should be discussed further. On one hand, we avoided consid-
eration of noise in the study as an undue complication to our
treatment. Throughout the computations, we assumed that
the measures were taken in high photopic luminance levels
along a day avoiding twilight. There are some works expres-
sing that, at high intensities, the visual physical limit is domi-
nated not by the quantum nature of light but by inefficiency in
neural processing [28]. But these errors would not be notice-
able in our study. On the other hand, to reliably estimate noise
levels, it is necessary to assume a more physiological ap-
proach for the data and a particular accurate receptoral inte-
gration time. Thus, visual judgments based on the selected
cone signals will be reliable only under conditions of high
photoreceptor signal-to-noise ratios or with considerable spa-
tiotemporal averaging.
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