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In this work, we evaluate the conditionally positive definite logarithmic kernel in kernel-based estimation of re-
flectance spectra. Reflectance spectra are estimated from responses of a 12-channel multispectral imaging system.
We demonstrate the performance of the logarithmic kernel in comparison with the linear and Gaussian kernel
using simulated and measured camera responses for the Pantone and HKS color charts. Especially, we focus
on the estimation model evaluations in case the selection of model parameters is optimized using a cross-
validation technique. In experiments, it was found that the Gaussian and logarithmic kernel outperformed the
linear kernel in almost all evaluation cases (training set size, response channel number) for both sets. Furthermore,
the spectral and color estimation accuracies of the Gaussian and logarithmic kernel were found to be similar in
several evaluation cases for real and simulated responses. However, results suggest that for a relatively small train-
ing set size, the accuracy of the logarithmic kernel can be markedly lower when compared to the Gaussian kernel.
Further it was found from our data that the parameter of the logarithmic kernel could be fixed, which simplified
the use of this kernel when compared with the Gaussian kernel. © 2014 Optical Society of America

OCIS codes: (150.0150) Machine vision; (100.3010) Image reconstruction techniques; (100.3190) Inverse
problems; (110.4234) Multispectral and hyperspectral imaging; (330.1710) Color, measurement.
http://dx.doi.org/10.1364/JOSAA.31.000541

1. INTRODUCTION
Kernel methods for pattern recognition or machine learning
tasks have proven to be powerful [1–3]. In this work, we
concentrate on the problem of spectral reflectance estimation
of image data, using kernel-based regression. The data varia-
bles are camera responses of an image scene, captured by a
multispectral imaging system and corresponding spectral
reflectance data. The aim of the regression is to determine
their relation, using a set of training data. Once the regression
model is constructed, spectral reflectances can be estimated
from camera responses.

It has been shown that regularized regression is useful for
reflectance estimation. Especially, a kernel-based (ridge)
regression has been demonstrated to provide improvement
in accuracy over traditional regularized regression models
[4–7]. Valid kernel functions are positive definite (further:
PD) or, with additional constraints imposed on the regression
model, kernel functions that are conditionally positive definite
(further: CPD). Some instances of PD functions are the linear
or the Gaussian kernel, and from the CPD class the thin plate
spline kernel [5,8].

In this paper, the so-called logarithmic kernel [9] (a member
of the CPD class) is to our knowledge for the first time intro-
duced for spectral reflectance estimation, and compared with
the linear and the Gaussian kernel functions. The logarithmic
kernel function has been used previously in SVM based image
recognition [9].

In our experiments, we use the Pantone and HKS reflec-
tance datasets and measured as well as simulated camera

response data. The performance of the three kernel functions
is demonstrated with a varying number of training samples
and sensor spectral channels. In addition, the performance
of the logarithmic kernel is also evaluated in case the kernel
is used via fixed parameter.

This article is structured as follows: after introducing the
notation in Section 2, Section 3 revises the spectral reflec-
tance estimation problem and the kernel-based regression.
Further, all kernel functions compared in this work are
summarized, and the CPD logarithmic kernel function is intro-
duced. The experiments are explained in Section 4. The re-
sults and discussion follow in Section 5, and finally the
most relevant conclusions are summarized in Section 6.

2. NOTATION
In what follows, a column vector is denoted by a boldface
letter such as x � �x1;…; xn�T ∈ Rn. Matrices are denoted
by capital letters, such as A.

3. THEORY
A. Image Acquisition Model
For image formation of the multispectral imaging system, we
assume the general discrete image transfer function:

x � Wr� b; (1)

where x ∈ Rn denotes a camera response sample, W is the
n ×mmatrix that combines the effect of spectral responsivities
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of the camera system and scene illumination, and r ∈ Rm is a
spectral reflectance vector. The vector b ∈ Rn accounts for
noise or nonlinearities present in the acquisition process. In
our work, we assume fixed-measurement geometry and that
the scene illumination is uniform over the field of view of
the camera.

B. Kernel Ridge Regression Applied To Spectral
Estimation
Spectral estimation can be considered as the problem of find-
ing a function that best approximates a set of training data
with respect to some loss function. In spectral reflectance
estimation, the training dataset S consists of l camera
responses X � fx1;…; xlg ⊂ Rn, acquired by an n channel
multispectral imaging system and corresponding known
spectral reflectance vectors R � fr1;…; rlg ⊂ Rm. Once this
function is found, spectral reflectance vectors of unknown
objects can be estimated from camera responses acquired
under the same viewing conditions.

Following [4,5,8], our optimization problem is to find the
N ×m matrix F such that we minimize

argmin
F

�Xl

i�1

‖ri − FTΦ�xi�‖2 � λ‖F‖2F

�
; �2�

where Φ∶Rn → F is a feature mapping from camera response
space to a feature space F of dimension N , ‖F‖F �
�Pm

i�1

PN
j�1 jFijj2�1∕2 denotes the Frobenius norm, and λ is

a regularization parameter. The regularization term is added
to avoid numerical instability and overfitting to training data.

The feature mapping Φ�x� � �ϕ1�x�;…;ϕN �x��T is often
nonlinear and can be infinite dimensional. Assuming that
the feature mapping Φ�x� is induced by a PD kernel [1] and
using the corresponding kernel representation (kernel trick),
the minimization problem above is equivalent to finding a
matrix A such that

argmin
A

�Xl

i�1

‖ri − ATk�xi�‖2 � λTr�ATKA�
�
; �3�

where A � �α1;…;αm�l×m is a matrix of weight vectors α ∈ Rl,
Tr�·� denotes matrix trace, K � �k�xi; xj��l×l is the kernel ma-
trix of training data, and k�xi� � �k�x1; xi�;…; k�xl; xi��T ∈ Rl

is a vector containing the kernel evaluations between the
camera response training set and sample xi.

By differentiating Eq. (3) with respect to A and setting the
resulting function equal to zero we obtain

�K � λIl�A � RT; (4)

where Il is the identity matrix of size l × l, and R �
�r1;…; rl�m×l contains training reflectances. The solution to
the minimization is A � �K � λIl�−1RT . Reflectance ~r can
now be estimated from camera response x as

~r � ATk�x� � R�K � λIl�−1k�x�: (5)

C. PD Kernels in Ridge Regression
Positive definiteness of a function is defined as [10] (p. 67): let
X be a closed and bounded subset of Rn. A function k is called

positive definite if
Pl

i;j�1 αiαjk�xi; xj� ≥ 0, for all l ∈ N, xi,
xj ∈ X , and αi, αj ∈ R.

Positive definite kernel functions considered in this work
are the linear and Gaussian kernels. These kernels are
probably the most widely used kernel functions in spectral
estimation [4,5,7]. The linear kernel function [1] is in fact a
homogeneous polynomial kernel of degree d � 1, defined as

k�xi; xj� � �xTi xj�d; with d � 1; (6)

where xi, xj ∈ Rn. The isotropic Gaussian kernel [1,3–5] is
defined as

k�xi; xj� � exp
�
−

‖xi − xj‖2

2σ2

�
; (7)

where xi, xj ∈ Rn and σ > 0.
Heikkinen et al. discussed that the selection of too small

values for σ (corresponding to a small effective area of the
kernel) can lead to over-fitting of the training data and there-
fore a risk of poor generalization. A too large selected value σ
can lead to oversimplification [5].

D. CPD Kernels in Ridge Regression
There exists a larger class of kernel functions that can be
used within the framework of kernel ridge regression, given
that certain constraints can be imposed on the regression
model. These functions are CPD kernel functions, and they
are defined as follows [1] (p. 49): let X be a closed and
bounded subset of Rn. A function k is called CPD ifP

l
i;j�1 αiαjk�xi; xj� ≥ 0, for all l ∈ N, xi, xj ∈ X , and αi, αj ∈

R with
Pl

i�1 αi � 0.
For CPD kernels and d-conditionally positive kernels, a

semi-parametric model of ridge regression is formulated intro-
ducing a polynomial expansion of feature vectors in Eq. (3)
[1,8]. In the case of the logarithmic kernel, the semi-
parametric model is formed by adding only a constant term
to the model. The related minimization problem is

arg min
fA;ag

�Xl

i�1

‖ri −ATk�xi�− a‖2� λTr�ATKA�
�

s:t: 1TA� 0T

(8)

where A � �α1;…;αm�l×m and k�xi� ∈ Rl are the same as in
the PD case (Eq. 3). The vector corresponding to the
additional constant term is a � �a1;…; am�T and 1 and 0

are the all-one and all-zero column vectors of length l and m,
respectively.

The block matrix notation corresponding to the minimiza-
tion problem in Eq. (8) is

�
K � λIl 1

1T 0

��
A
aT

�
�

�
RT

0T

�
; (9)

where matrix R and K are the same as in the PD case, R �
�r1;…; rl�m×l and K � �k�xi; xj��l×l. A reflectance, ~r, can now
be estimated from camera response x as
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~r � ATk�x� � a: (10)

In our experiments, we focused on evaluating the logarith-
mic kernel defined as

k�xi; xj� � − log�1� ‖xi − xj‖β�; with 0 < β ≤ 2; (11)

where xi, xj ∈ Rn.
The CPD-ness of the logarithmic kernel can be demon-

strated as follows: all kernels of form −‖xi − xj‖β are CPD,
if 0 ≤ β ≤ 2 [11] (p. 49). Further, − log�1 − k� is a CPD kernel,
if k∶ X × X↦�−∞; 0� is a CPD kernel [10], [11] (p. 50). It
follows that − log�1� ‖xi − xj‖β� is a CPD kernel
when 0 < β ≤ 2.

4. EXPERIMENTAL CONFIGURATION AND
EVALUATION
We designed a set of experiments to demonstrate the perfor-
mance of the logarithmic kernel in kernel ridge regression
spectral estimation. In this section, the acquisition system
and datasets used for our experiments are introduced. Fur-
ther, we illustrate the evaluation scheme that is the basis
for the experimental work.

A. Datasets and Acquisition System
The performance of kernel regression depends on the selec-
tion of the kernel function, training data, and the acquisition
system. We consider two spectral datasets, namely 1314 sam-
ples of a coated Pantone color chart and 91 full-tone samples
of a coated HKS color chart. The corresponding inks for these
spot colors are widely used in the offset printing industry. The
color gamut spanned by these datasets is illustrated in Fig. 1,
with CIE-L*a*b* coordinates calculated for the CIE-1964 10°
standard observer and CIE-D65 illumination. It can be ob-
served that both datasets span a similar area in the color
space, but some lighter samples of the HKS set are beyond
the gamut boundaries of the Pantone set. The spectral data
was measured with an X-Rite Spectro-Eye spectrophotometer
and is sampled from 380 to 730 nm in 10 nm steps.

The multispectral acquisition system considered here con-
sists of the prototype 12-channel line-scan camera truePIXA
and a prototype LED illumination system, both developed

by Chromasens GmbH [12]. The camera sensor used in the
truePIXA system is in fact a high-resolution RGB line-scan
sensor with four lenses that are mounted in series in front
of the camera. The four lenses have a common field-of-view
from which the final multichannel image is constructed. Each
lens has a distinct color filter attached, which, in combination
with the RGB filter in front of the sensor and the transmittance
of the lens, modulate the effective responsivity of the system.
The RGB channel of the sensor in combination with the four
filters allow acquisition of 12 camera responses at once. The
acquisition principle is illustrated schematically in Fig. 2, and
spectral curves of the camera system’s effective responsivity
are illustrated in Fig. 3. The measurement geometry of the sys-
tem is close to 45/0, with some deviation of the observation
angle due to the image projection of corresponding spatial
locations of the measurement surface over the four lenses
on different sensor locations.

The short exposure times required for acquisition with the
line-scan system allow an over-sampling of the target and cor-
responding temporal averaging. This temporal pixel-wise
averaging of replicated measurements increases the signal-
to-noise ratio of the measurement with the square root of
the number of averaged measurements, given the noise is a
random signal with zero mean [13]. Further, the temporal

Fig. 1. CIE-L*a*b* coordinates for the Pantone (blue circle markers) and HKS dataset (red diamond markers).

Fig. 2. Schematic illustration of the working principle of the
12-channel line-scan camera truePIXA. The RGB channel of the line
sensor in combination with the four filters allow acquisition of
12 camera responses per image pixel at once.

Eckhard et al. Vol. 31, No. 3 / March 2014 / J. Opt. Soc. Am. A 543



averaged camera responses are spatially averaged over an
area that corresponds roughly to that of the aperture of the
spectrophotometer used for reflectance measurements.

In real capture systems, both noise and nonlinearities inher-
ent to the acquisition process influence the estimation quality.
In this work, we perform our analysis using measured data
and simulated data. The simulated case can be considered
to correspond to ideal noise-free conditions. Accordingly,
simulated camera responses were calculated using the linear
model in Eq. (1) with b � 0.

B. Evaluation Scheme and Implementation Details
We used tenfold cross validation [11] for optimizing and evalu-
ating the models. This means that in each of 10 rounds of
evaluation, a subset of 10% of the initially shuffled data is used
for testing, and the rest for training the system. This process
allows using the entire dataset for testing the spectral estima-
tion, while keeping training and test data separated. Further,
we implemented our evaluation scheme such that free param-
eters are selected based on average RMSE minimization and
tenfold cross-validation: in each evaluation fold, the available
training data is further partitioned and processed in a tenfold
manner to find the optimal parameter as the one minimizing
the average RMSE over all folds with the chosen parameter
grid. A proper selection of the model parameters in kernel
ridge regression is a key factor for obtaining a satisfactory
estimation performance.

In the case of kernel ridge regression estimation, parameters
are the regularization term λ and others depending on the type
of kernel function. For the Gaussian kernel [Eq. (7)], we have σ
controlling the width of the Gaussian and, for the logarithmic
kernel [Eq. (11)], the power term β in the logarithmic function.

So, in each fold, an optimal parameter has to be selected
from either a 1D or 2D parameter search space. We adjusted
the parameter grid such that throughout all experiments,
optimal parameters were never selected to be on the edge
of the parameter grid (unless the edge of the grid corresponds
to the parameter range limit, as is the case with β � 2 for the
logarithmic kernel). We used the Gaussian kernel parameter σ
in the range [10−4, 50], the logarithmic kernel parameter β in
the range [0.1,2], and the regularization parameter λ in the
range [10−13, 0.5]. We evaluated several sampling positions

for these parameters to get information about the differences
between the performance of the chosen optimization grids. It
was found that these differences were small. The experimen-
tal results are calculated using 34 sampling points for σ, 14
sampling points for β, and 13 sampling points for λ.

Camera responses are normalized to the range [0,1] by di-
viding each camera response channel-wise by the maximal
camera response value over the entire dataset. Training reflec-
tances are centered by subtracting the mean, prior to estima-
tion. Consequently, the mean of the training reflectances has
to be added to the recovered spectra after estimation. Our
implementation of kernel ridge regression with the logarith-
mic kernel function can be accessed through the web page
of the first author’s institution [14].

We evaluated estimation performance in terms of spectral
as well as color difference metrics. As discussed previously by
several authors, there is not any metric that is conclusively
superior to others for all purposes [15,16].

The RMSE is defined for an estimated spectrum, ~r, and its
measured counterpart, r, as

RMSE �
�����������������������
1
m

‖r − ~r‖2
r

: (12)

Further, dp is the Pearson distance, also known as the
complemented GFC (goodness of fit coefficient) [16,17],
and defined as

dp � 1 −
rT ~r

‖r‖‖~r‖
: (13)

The formulation of color differences aims at predicting the
magnitude of the perceived color difference between two
color stimuli [18]. In this study, we followed the latest recom-
mendations of the International Commission on Illumination
(CIE) and used ΔE00 color difference formula in CIE L*a*b*
color space [19]. We computed CIE L*a*b* coordinates of
reflectance spectra, assuming the CIE-1964 10° standard
observer and CIE-D65 standard illuminant. The white point
was set to the perfect reflecting diffuser {vector with values
equal to 1, [20] (p. 48)}.

5. RESULTS
The following subsections summarize results and findings
related to training set size, number of spectral sensor
channels, and kernel parametrization.

A. Selection of Model Parameters
We have analyzed the RMSE surfaces over the parameter
search grid for logarithmic and Gaussian kernel function
and our experimental data.

The selection of the regularization parameter λ depends on
the type of data as well as the number of sensor spectral chan-
nels in the acquisition system and has to be optimized for all
kernel functions compared in this work. For the Gaussian ker-
nel, we identified from our data that the selection of σ
influences the choice of λ and vice versa. Figure 4 illustrates
one typical instance of the RMSE surface over the parameter
grid, as can be found from one fold of cross-validation with
Pantone data and the 12 channel system for the Gaussian
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Fig. 3. Illustration of the system responsivities [sensor spectral
responsivity plus illumination in arbitrary units (AU)]. Blue corre-
sponds to the three-channel system, blue+green to the six-channel,
blue+green+red to the 12 channel system used for experiments in
Section 5.E.
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kernel function. As explained previously, one fold of evalu-
ation includes 10 folds of parameter optimization, so the
resulting RMSE is a mean value over these folds. From
the figure, the interdependence of the two parameters can be
observed.

Figure 5 illustrates the RMSE surface over parameter space
for the logarithmic kernel, corresponding to the same setting
as used for Fig. 4. The β parameter of the logarithmic kernel
behaves very differently from σ of the Gaussian kernel, as the
selection of β does not seem to influence the selection of λ for
our data. This is an interesting observation regarding the log-
arithmic kernel, as it allows us to perform parameter selection
sequentially for each parameter. For the Gaussian kernel func-
tion, this is not the case.

Further, we identified that β � 2 led to the lowest estima-
tion errors for both evaluated datasets, simulated or measured
data, a different number of sensor spectral channels as well as
a varying number of training samples. For example, we illus-
trate the RMSE surfaces over parameter space for a for vary-
ing number of training samples (200, 400, 600, 800) in Fig. 6.
The optimal parameters for this example were found to be
(β1…4 � 2, λ1…4 � 10−4). From these results, it seems that
the shape of the RMSE surface is in a wide area invariant
to the number of training samples. A range where this does

not apply is when β � 2, for which the selection of λ
influences the corresponding RMSE differently depending
on the number of training samples.

Using β � 2 is the special case of Eq. (11), which directly
incorporates the negative squared distance kernel. Fixing the
β parameter reduces the parametrization of kernel ridge
regression to a optimization problem in a 1D search space
(only λ has to be optimized).

B. Influence of the Number of Training Samples
Throughout our experimental work related to kernel ridge
regression, we identified a strong dependence of the number
of samples used for training and the estimation performance.
Obviously, a too small number of training samples leads to
poor estimation quality because the trained model does not
generalize well for any other than the training data. Further,
it is not only the amount of samples that influences the system
performance, but also the type of data used for training. In this
subsection, we limit our analysis to a discussion about the
amount of samples used for training in the case of the loga-
rithmic, Gaussian, and linear kernel. To analyze this factor,
we compared a tenfold cross-validation spectral estimation
performance for different numbers of training samples of
the shuffled Pantone dataset. Varying dataset sizes considered
here were from 50 to 100 samples in steps of 10 and from 200
to 1314 samples in steps of 100. The optimal parameter was
again selected by average RMSE minimization over 10 folds
using the parameter ranges described in Section 4.B.

The results of this experiment for the case of noiseless si-
mulated camera responses show that the estimation perfor-
mance (here, RMSE) as a function of training samples, l,
behaves differently depending on the choice of the kernel
function. The logarithmic kernel shows the strongest depend-
ence on the number of training samples, especially for small l,
showing a clear decrease in performance as compared with
the Gaussian and linear kernels. At approximately 530 sam-
ples, the linear and logarithmic kernel share similar estimation
performance. With a larger l, the logarithmic kernel ap-
proaches the estimation performance of the Gaussian kernel.
Figure 7 illustrates these results graphically.

Also for measured camera responses of the Pantone data-
set, fewer training samples result in lower RMSE. Unlike in the
simulated data case, the relation of RMSE and the number of
training samples for the logarithmic, linear, and the Gaussian
kernel is found to be quite similar in shape. Only for the linear
kernel, the RMSE is higher than that of the logarithmic and
Gaussian kernel for every number of training samples evalu-
ated. This result is illustrated in Fig. 8. The dissimilarity found
in the results for these two conditions indicates strong
differences between measured and simulated data.

C. Estimation Performance with Measured Sensor
Responses from the 12-Channel System
We have compared the spectral and colorimetric estimation
results obtained with the logarithmic, Gaussian, and linear
kernel for the Pantone and the HKS data of the 12-channel
acquisition system. Numerical results are illustrated in
Table 1.

For Pantone data, it can be observed that the mean colori-
metric estimation quality is similar to that of the Gaussian
kernel function (ΔE00 � 0.33), the mean spectral quality in

Fig. 4. Illustration of the mean RMSE (over 10 folds of parameter
optimization) over the parameter search space for Pantone 12C mea-
sured camera response data and the Gaussian kernel. The optimal
parameter selection is illustrated by a green square. The parameter
search space has been cropped for illustration purposes.

Fig. 5. Illustration of the mean RMSE (over 10 folds of parameter
optimization) over the parameter search space for Pantone 12C mea-
sured camera response data and the logarithmic kernel. The optimal
parameter selection is illustrated by a green square. The parameter
search space has been cropped for illustration purposes.
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terms of dp leads to similar results (dp � 0.0004), and the
RMSE is slightly worse in case of the logarithmic kernel
(RMSE � 0.0054 for logarithmic and RMSE � 0.0050 for
Gaussian). The linear kernel function results are the worst,
both spectrally and colorimetrically. The logarithmic kernel re-
sults in a slightly lower standard deviation for ΔE00 and dp as
compared with the Gaussian kernel. For RMSE, the Gaussian
kernel has a slightly lower standarddeviation. The linear kernel
has the highest standard deviations for all metrics. The maxi-
mumΔE00 anddp error is lowest for the logarithmickernel. The
maximum RMSE is lowest for the linear kernel.

When it comes to HKS data, the Gaussian (ΔE00 � 0.67),
log�ΔE00 � 0.73�, and the linear (ΔE00 � 0.75) kernel have
a relatively close average color difference value. Spectrally,
when considering mean dp, the Gaussian kernel performs best
(dp � 0.0006). In terms of the mean RMSE, the linear kernel
results in the smallest error (RMSE � 0.0092).

Overall, the mean estimation quality is approximately by a
factor of 2 worse for the HKS data as compared with Pantone
in case of the logarithmic and Gaussian kernel (in ΔE00 and
RMSE). One reason for the overall worse results of HKS com-
pared to Pantone data is the low number of training samples.
We have shown similar trends in the case of measured
Pantone data for the Gaussian and the logarithmic kernel
in Subsection 5.B.

In Fig. 9, we illustrate an instance of estimated and mea-
sured spectral reflectances from the Pantone dataset obtained
with the logarithmic kernel. As reference, results obtained
from the linear and Gaussian kernel are also illustrated.
Figure 9 (left) corresponds to the sample for which the lowest
RMSE was obtained (RMSE � 0.0006). It can be seen that the
estimated reflectance by the Gaussian kernel is only slightly
worse (RMSE � 0.0009), but in case of the linear kernel much
worse (RMSE � 0.0036). In Fig. 9 (middle), we illustrate the
sample corresponding to highest RMSE for the logarithmic
kernel. Here it can be observed that the estimated reflectances
for the logarithmic, Gaussian, and linear kernel are quite sim-
ilar but consistently deviate from the measured reflectance. It
was identified that for this particular sample, measured cam-
era responses and reflectance data do not correspond. The
sample with the second highest RMSE for the logarithmic ker-
nel (RMSE � 0.0457) is illustrated in Fig. 9 (right). For this
sample, the linear kernel performs best (RMSE � 0.0138), fol-
lowed by the Gaussian kernel (RMSE � 0.0332).

D. Estimation Performance with Simulated Sensor
Responses from the 12-Channel System
A similar setting as in the previous subsection was used for the
evaluation of simulated data. Namely, we compare results

Fig. 6. Illustration of the mean RMSE (over 10 folds of parameter optimization) over the parameter search space for Pantone 12C measured
camera response data and varying number of training samples for the logarithmic kernel. The optimal parameters (indicated as a green square)
are β1…4 � 2 and λ1…4 � 10−4.

Fig. 7. Analysis of the influence of the number of training samples on
the estimation performance (RMSE) for the logarithmic, Gaussian,
and linear kernel function. Camera responses were simulated noise-
less for the Pantone dataset.

Fig. 8. Analysis of the influence of the number of training samples on
the estimation performance (RMSE) for the logarithmic, Gaussian,
and linear kernel function andmeasured camera responses of the Pan-
tone dataset.
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obtained with the logarithmic, Gaussian, and linear kernel for
Pantone and HKS data of the 12-channel acquisition system
using noiseless simulated camera response data. The numeri-
cal results are illustrated in Table 2.

For Pantone data and comparison of the logarithmic kernel
performance, the following results are found: the logarithmic
and Gaussian kernel have the same mean ΔE00 and dp error
(ΔE00 � 0.01, dp � 0.0001), the RMSE is lower in case of the
Gaussian kernel. The linear kernel performs worst on average.

The results for the HKS dataset are different from the
Pantone data. Here, the logarithmic kernel performs consid-
erably worse than the Gaussian kernel, which gives the best,
and the linear kernel with intermediate results. This finding
applies to the mean, standard deviation, maximum, and the
95th percentile of the spectral and colorimetric error mea-
sures. It seems that the poor performance of the logarithmic
kernel is due to the relatively small training set used.

For the comparison of measured and simulated data results
(Tables 1 and 2), we concentrate on the Pantone dataset,
which does not inherit the limitation of the number of training
samples. Overall, a large discrepancy can be identified for all
kernel functions.

The increase in estimation performance from one kernel
function to another can be up to 48% (comparing mean
ΔE00 between the linear and the logarithmic or the Gaussian
kernel for Pantone data in Table 1).

E. Influence of the Number of Sensor Responses
We divided the 12 channels into three different sets with three,
six, and 12 channels, respectively, in order to investigate the
influence of the number of sensor spectral channels in the es-
timation. The spectral responsivities of the resulting systems
are illustrated in Fig. 3. It has to be mentioned that the cor-
responding three- and six-channel systems are far from ideal
for the task of spectral recovery. However, using measured
data from the same system allows us to analyze the influence
of the number of channels on the estimation performance
of the logarithmic kernel without the potential effect of
differences that are introduced by using measured data from
different estimation systems, such as different noise and non-
linearity behaviors.

The numerical results of the comparison are illustrated in
Table 3. Pantone 12-channel measured data results have
already been presented in Table 1, but are unified in Table 3

Table 1. Spectral Estimation Results for Measured Data of the Pantone and HKS Dataset and the 12-Channel

Acquisition System, Logarithmic, Gaussian, and Linear Kernel

Logarithmic Kernel Gaussian Kernel Linear Kernel

Pantone Measure Mean Std Max p95 Mean Std Max p95 Mean Std Max p95

ΔE00 0.33 0.26 4.59 0.73 0.33 0.28 4.62 0.73 0.68 0.50 5.02 1.46
dp 0.0004 0.0011 0.0299 0.0016 0.0004 0.0015 0.0426 0.0016 0.0014 0.0048 0.0930 0.0044
RMSE 0.0054 0.0043 0.0984 0.0114 0.0050 0.0040 0.1001 0.0102 0.0086 0.0047 0.0974 0.0158

HKS Measured

ΔE00 0.73 0.74 4.56 2.22 0.67 0.58 3.25 2.10 0.75 0.55 3.34 1.73
dp 0.0014 0.0028 0.0152 0.0064 0.0006 0.0014 0.0096 0.0029 0.0012 0.0025 0.0207 0.0052
RMSE 0.0129 0.0189 0.1451 0.0393 0.0106 0.0073 0.0380 0.0258 0.0092 0.0106 0.0763 0.0262
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Fig. 9. Estimation results for the Pantone dataset and measured camera responses: sample reflectance with lowest (left) and highest (middle)
RMSE error for the logarithmic kernel and corresponding estimated spectra of the linear and Gaussian kernel. The plot on the right illustrates the
sample corresponding to the 2nd highest RMSE for the logarithmic kernel.

Eckhard et al. Vol. 31, No. 3 / March 2014 / J. Opt. Soc. Am. A 547



with the results of the three- and six-channel system to allow a
more clear illustration.

The general trend found in other experiments with 12 chan-
nels (i.e., the lower performance of the linear kernel in com-
parison with the Gaussian and logarithmic kernels) can also
be identified for six or three channels.

The logarithmic and Gaussian kernel, on the other hand,
perform quite similar. When considering color measurement
accuracy, the 12-channel as well as the six-channel case give
average ΔE00 errors for all three kernel functions smaller than
one unit, which is an error that is close to the just noticeable
difference. For the three-channel case and all three kernel
functions, the average ΔE00 errors are above one unit
(ΔE00 � 1.50 for the logarithmic kernel, ΔE00 � 1.49 for the
Gaussian kernel, and ΔE00 � 2.66 for the linear kernel). From
all metrics, it can be seen that the error increases less when
comparing 12 and six channels and more when comparing six
and three channels.

6. DISCUSSION AND CONCLUSION
In this work, we introduce the logarithmic kernel function to
kernel ridge regression. Specifically, we concentrate on the
problem of spectral estimation, in which spectral reflectance
values are to be estimated from few camera responses of a
multispectral image-acquisition system. The logarithmic
kernel belongs to the class of CPD kernel functions, which

require an additional parametric part to be included in the
regression model.

We considered two datasets (Pantone, 1314 samples; HKS,
91 samples) in our evaluations and a 12-channel multispectral
imaging system. The results based on measured camera re-
sponses for the Pantone dataset indicate that the logarithmic
kernel outperforms the linear kernel and leads to comparable
colorimetric and spectral estimation performance with the
Gaussian kernel. When considering the smaller HKS dataset,
the logarithmic kernel had the worst performance.

In further analysis on the larger Pantone dataset, it was iden-
tified that the logarithmic kernel requires more training data to
perform similar or better than the linear or Gaussian kernel,
when simulated noiseless camera responses are considered.
Formeasured camera response data, logarithmic andGaussian
kernel performance is similar, whereas the linear kernel per-
forms worse for any number of training samples evaluated.

We believe that the influence of the number of training sam-
ples can explain the relatively poor performance of the loga-
rithmic kernel (compared to other kernels), which was found
for the HKS set when noiseless simulated camera responses
were considered. However, the results for measured camera
response data of the HKS set were close to the results
obtained with the Gaussian kernel.

For the data considered in this work, it was identified that
the parametrization of the logarithmic kernel can be simpli-
fied, as the power term β of the logarithmic kernel did not

Table 2. Spectral Estimation Results for Simulated Data of the Pantone and HKS Dataset and 12-Channel

Acquisition System, Logarithmic, Gaussian, and Linear Kernel

Logarithmic Kernel Gaussian Kernel Linear Kernel

Pantone Simulated Mean Std Max p95 Mean Std Max p95 Mean Std Max p95

ΔE00 0.01 0.01 0.14 0.04 0.01 0.01 0.19 0.04 0.03 0.03 0.26 0.08
dp 0.0001 0.0001 0.0016 0.0001 0.0001 0.0001 0.0018 0.0001 0.0002 0.0008 0.0158 0.0008
RMSE 0.0017 0.0019 0.0192 0.0052 0.0009 0.0011 0.0233 0.0022 0.0033 0.0021 0.0169 0.0073

HKS Simulated

ΔE00 0.28 0.43 3.62 0.84 0.03 0.03 0.17 0.08 0.06 0.05 0.36 0.15
dp 0.0005 0.0014 0.0113 0.0023 0.0001 0.0003 0.0025 0.0004 0.0004 0.0011 0.0097 0.0016
RMSE 0.0074 0.0091 0.0579 0.0205 0.0030 0.0033 0.0172 0.0093 0.0049 0.0046 0.0328 0.0148

Table 3. Comparison of the Number of Channels for Measured Data of the Pantone Dataset, the Logarithmic,

Gaussian, and Linear Kernel

Logarithmic Kernel Gaussian Kernel Linear Kernel

12-Channel Measured Mean Std Max p95 Mean Std Max p95 Mean Std Max p95

ΔE00 0.33 0.26 4.59 0.73 0.33 0.28 4.62 0.73 0.68 0.50 5.02 1.46
dp 0.0004 0.0011 0.0299 0.0016 0.0004 0.0015 0.0426 0.0016 0.0014 0.0048 0.0930 0.0044
RMSE 0.0054 0.0043 0.0984 0.0114 0.0050 0.0040 0.1001 0.0102 0.0086 0.0047 0.0974 0.0158

6-Channel Measured

ΔE00 0.43 0.33 4.96 0.96 0.44 0.35 5.81 0.99 0.72 0.53 5.11 1.74
dp 0.0006 0.0015 0.0222 0.0031 0.0006 0.0014 0.0218 0.0030 0.0029 0.0060 0.0988 0.0124
RMSE 0.0068 0.0049 0.0975 0.0148 0.0065 0.0048 0.0988 0.0136 0.0146 0.0081 0.1003 0.0304

3-Channel Measured

ΔE00 1.50 1.34 12.10 4.29 1.49 1.33 12.22 4.26 2.66 2.41 23.69 7.12
dp 0.0055 0.0115 0.1552 0.0196 0.0054 0.0114 0.1581 0.0200 0.0173 0.0354 0.3098 0.0845
RMSE 0.0223 0.0183 0.1119 0.0626 0.0223 0.0182 0.1141 0.0612 0.0365 0.0234 0.1618 0.0836
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influence the selection of the regularization parameter λ of the
regression. This allows us to search for the optimal parameter
sequentially rather than in grid search for all combinations of
parameters in the parameter search space. For our data, we
found that β � 2 had the best performance.

We also investigated the influence of the number of sensor
spectral channels of the acquisition system on the estimation
performance. In comparison were three, six, and 12 channels
and measured camera response data of the Pantone set. We
observed that the logarithmic and Gaussian kernel perfor-
mance is very close and compared to the linear kernel, which
is significantly higher for any number of channels. Further, the
colorimetric performance of the 12-or 6-channel system seems
to be suitable for color measurements, whereas the three-
channel system could be considered for applications where
less color precision is required.
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