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Abstract. It is known that for every selection of illumination spectra there is a coordinate system such that all
coordinate vectors of these illumination spectra are located in a cone. A natural set of transformations of this cone
are the Lorentz transformations. In this paper we investigate if sequences of illumination spectra can be described
by one-parameter subgroups of Lorentz-transformations. We present two methods to estimate the parameters of
such a curve from a set of coordinate points. We also use an optimization technique to approximate a given set of
points by a one-parameter curve with a minimum approximation error. In the experimental part of the paper we
investigate series of blackbody radiators and sequences of measured daylight spectra and show that one-parameter
curves provide good approximations for large sequences of illumination spectra.

1. Introduction

The description of properties of illumination spectra is
of interest in many applications (see the introduction
in [11] for an historical overview and applications). One
important application in machine vision is the problem
of color constancy. By assuming that the scene can be
observed under a continuously changing illumination,
the algorithm developed in [15] estimates the param-
eters describing the evolution of the changing illumi-
nation. The algorithm is based on the observation that
there is a coordinate system in which the projected co-
ordinates of the time-changing illumination spectra are
located in a cone, and the assumption that these param-
eters can be described by a one-parameter subgroup
operating on that cone.

In this paper we investigate the problem if relevant
sets of illumination spectra are located on curves de-
fined by one-parameter subgroups. This is an attempt
to understand the structure of spaces of illuminations.
The original motivation for these investigations came
from the machine vision application mentioned above,

but the results should be of general interest and we will
mention some applications at the end of the paper.
The paper is organized as follows: in Section 2 we
briefly summarize the framework of conical coordi-
nate systems of spectral spaces. These coordinate sys-
tems describe the chromatic properties of sequences
of illumination spectra by sequences of points on the
open unit disk. Some basic concepts of one-parameter
subgroups operating on the unit disk are given in
Section 3. Assuming that the input sequence of points
forms a one-parameter subgroup, we introduce two
group theoretical approaches (Sections 4.1 and 4.2 re-
spectively) to recover the parameters characterizing
the one-parameter subgroup. Relaxing this assump-
tion, an optimization technique is then introduced to
estimate a one-parameter curve describing the input
data. In our experiments, described in Section 5, we
investigate the properties of sets of blackbody spec-
tra and measured daylight spectra. For the blackbody
spectra we will show that there is a close relation be-
tween the one-parameter subgroup description and the
mired parametrization (blackbody spectra are usually
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characterized by the temperature of the correspond-
ing blackbody, the unit of the reciprocal scale is called
the mired and given by 10° K=1!). This is remarkable
since it shows that there is a structural similarity to the
mired representation (related to human color percep-
tion) but not to the temperature representation (derived
from physics).

For the measured daylight spectra we will show that
long stretches of the illumination spectra are located
near one-parameter curves. We also show that there is
a clear break when normal daylight changes to twi-
light. Both parts of these sequences can be described
by (different) one-parameter curves. For the normal
daylight spectra this is to be expected since daylight
spectra don’t change too much. The one-parameter
group description gives however also a good descrip-
tion of the spectra in the twilight sequences when chro-
matic changes are very large. Although we did not
derive an analytical relation between the spectral se-
quences and the one-parameter curves we found that
the one-parameter curves provided good approxima-
tions. A longer discussion of the results obtained and
a description of possible consequences and applica-
tions of these results is provided in the last section.
Here we only mention that the group theoretical struc-
ture of the model makes it possible to apply all the
tools from the Lie-theory of differential equations and
abstract harmonic analysis. Examples are systematical
and automatical constructions of all invariants under
all changes described by groups, color constancy and
tracking (see [15, 17, 21]). A summary of the basic
facts about how to analyse spectra in the Hilbert space
framework and a new derivation of the conical structure
of the spectral spaces are given in the appendix.

2. The Conical Structure of Spectral
Color Spaces

It is well known that illumination spectra can be de-
scribed by linear combinations of only few basis vec-
tors [9-11, 20, 24, 27, 32]. In many applications the
eigenvectors of the input correlation matrix are taken
as these basis vectors [4, 5, 14, 19, 22, 30, 32].

Denote in the following a spectral vector by s(A),
basis vectors by bi (1) and collect the coefficients in
the vector o, we thus have:

K
SO~ > orbi(h). (1)
k=0

Under the condition that one of the basis vector is
positive everywhere it can be shown that the vectors o
are located in a cone. A detailed description of the con-
ditions under which this conical coordinate space is
obtained are described in [15, 16] and the appendix.
There we also discuss the relation between the spectra
and their description by projection operators in detail.
For all the spectral databases we investigated in the
past we found that eigenvector-based systems (such as
those used in this paper) are conical. In the following
we will only use three basis vectors (K = 2). Higher
order approximations of the illumination spectra which
share the same conical properties are also possible but
the group theoretical methods to investigate these coor-
dinate vectors are more complicated. In the following
we will thus concentrate on coordinate vectors located
in the cone:

H = {(00, 01, 02) : 05 — o} — 05 > 0}.

Conical or pyramid-shaped coordinate spaces are of-
ten used in color related applications although their
conical structure is seldom emphasized. Examples are
polar coordinates in the (a, b) plane together with
non-negative L-coordinates in CIELAB and color sys-
tems of the HSV-type in image processing or computer
graphics. Even the common RGB space can be seen as
a pyramid if the diagonal in the RGB cube is used as
the axis. Color theories based on the conical structure
of color spaces were also developed in the framework
of Lorentz transformations and we will discuss them
briefly in the discussion part. All of these systems are
however related to human color perception. In the con-
text of this paper it is important to note that we are con-
sidering general collections of spectra and that each
collection carries its own coordinate system. We are
therefore not interested in the space of spectra as such
but only in a given set of spectra. In this paper we select
three such sets, the set of blackbody radiators and sets
of daylight spectra measurements. Other collections of
interest could be biologically relevant set of spectra
[2, 3] or spectra relevant for an industrial inspection
application.

Since the basis function by(}) is non-negative and
since the coefficient oy is the scalar product of the
spectrum and by() it follows that oy is related to
the intensity of the spectrum. The projected coeffi-
cients x = o01/0p and y = 02/0¢ define a point z on
the unit disk /. We write these coordinates as points in



the complex plane:

U=A{z:z=x+iy; |z] <1}. (2)
Since its location is independent of the intensity it can
be considered as chromaticity coordinate of s(A).

3. One Parameter Subgroups and SU(1,1)
Curves on the Unit Disk

In the following, we consider functions of the spectra
(that are independent of the intensity) as functions of
the complex variable z on the unit disk. The transfor-
mation from one spectrum to another can then be de-
scribed as the transformation from a point z to another
point w on this disk.

Special transformations of the disk are elements
of SU(1,1), which is the group of all mappings that
preserve the hyperbolic geometry (defined by the hy-
perbolic length and angle) of the Poincaré disk. For
more information about hyperbolic geometry the inter-
ested reader may consult one of the many textbooks
on the subject. For the basic facts needed in this paper
the brief overviews in [26] and [8] are sufficient. The
hyperbolic distance on the unit disk is given by:
lz — w

dp(z, w) = 2 % arctanh— <

;o z,2weld. (3)
|Zxw — 1|

The transformations preserving this geometry are
given by complex 2 x 2 matrices of the form:

SU(1,1)={M=[Z Z}; lal®> — |b)* = 1;
a,be(C}. 4)

An element M € SU(1,1) acts as the fractional trans-
formation on points z on the unit disk:

b
w=M(z) = ZXT2.
bz+a

z,weU. 5)

These transformations preserve the hyperbolic
length and we thus have:

dn(z, w) = dy(M(z), M(w)); z,weld (6)

We now introduce briefly some special subgroups of

the group SU(1,1) and describe some of their most im-
portant properties. More information about Lie groups
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and Lie algebras can be found in the relevant literature,
such as [6, 21, 25, 31].

A one-parameter subgroup M(z) is a subgroup
of SU(1,1), defined and differentiable for real values
of ¢, having the properties:

M(1) + 1) = M()M() Vi1, 1 € R,
M(0) = E = identity matrix. @)

For a one-parameter subgroup M(#) we introduce its
infinitesimal generator. Itis represented by the matrix X
defined as:

— fim MO —E ®)
t—0 t

X — dM(t)
dt

t=0

Conversely, we can also construct a one-parameter
subgroup M(7) from a given infinitesimal matrix X us-
ing the exponential map:

N ). S tz 2 tk k
M) =™ =E+1X+ X 4 4 X' 4
©

where E is the identity matrix. The infinitesimal ma-
trices X form the Lie algebra su(1,1). Following the
convention in Lie theory we will denote the group with
capital letters and the corresponding algebra with lower
case letters. The Lie algebra of the Lie group SU(1,1)
is therefore denoted by su(1,1). It can be shown that
this Lie algebra forms a three-dimensional vector space
[25]. Each element in the Lie algebra has thus an
expansion:

3
X=) &l (10)
k=1

where the J; form the basis of the Lie algebra su(1,1)
and are given by:

1fi O
Jaz—[ } (1)

We use the vector of the three real numbers &, &
and &; to define the coordinate vector of X.

Given a starting point z(0) on the unit disk to-
gether with a one-parameter subgroup M(z) we define
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a SU(1,1) curve as the following function of #:

2(t) = M(1)(z(0)) = eX(z(0)); teR; z(t)el

(12)

This curve is defined by the straight line #X in the
three-dimensional Lie algebra. Although the restriction
to one-parameter curves limits the class of curves on
the chromaticity disk considerably we will show in the
following that this class of curves is rich enough to
provide interesting applications.

4. Computing the Subgroup from the Spectra

Given a set of points {z, = (x,, y,);n =0, ..., N}on
the unit disk describing a series of illumination spectra,
we describe algorithms to find a one-parameter sub-
group (under the assumption that it exists) connecting
these points. This is done by computing the Lie algebra
X and the increment values At, such that:

Zn = M(AL) (z,-1) = e X(z,1);
(13)

The At, are the increments between two consec-
utive observations. We describe two methods to re-
cover the one-parameter subgroup from a set that
was generated by a one-parameter subgroup M(z). We
first assume that the step length is fixed and given
by At:

At € R, X € su(l,1) : {z, = e*X(z,_1);
n=1,...,N}. (14)

The general problem where no exact solution exists
for the Eq. (13), will be solved with the help of an
optimization technique at the end of this section. This is
the case for real data which practically never lie exactly
on a curve.

4.1. Lie Algebra Method

Using the relation between the x, y coordinates, their
first order derivatives and the three parameters of
the SU(1,1) curve, we can recover the three coordi-
nates &;, & and &; describing the one-parameter sub-
group M(z) = exp(¢X) by solving the following linear

n=1,...,N.

equations:

_ 1+xk27yf E2
Xk Yk ) Xk g,;

Axk
= . (15)
]

Where z; = xx + iyx, and Axy, Ay, are the partial
derivatives of the curve at z; in x and y coordinates.
The values of the partial derivatives can be computed
by convolving a first order derivative kernel with the
data set. The detailed description of the method can
be found in [15]. From two observations z;_1, 2y We
obtain thus two equations. Given that &}, &, and &; are
varying slowly along the curve, we can obtain more

equations from neighboring points and use all of them
to estimate values of &, &, and &;.

1—x2+y? &
[% —Xk Yk _yk:|

4.2.  Cartan Decomposition Method

In the following we denote the subgroup of rotations
by K and the subgroup of hyperbolic transformations
by AT € SU(1,1):

i0/2 0
K:{K(Q):[ 0 ei"/21|; 0<9<4n},
(16)
and
At — {A(r) _ |:Cf)sh(‘(/2) sinh(r/2):|; ‘e R+}.
sinh(t/2) cosh(t/2)
(17)

Then G = KATK is the Cartan decomposition
of SU(1,1)(for more information about this, and re-
lated, decompositions see [7, 28]). By this we mean
that each M eSU(1,1) can be written as M =
K(®A@K®@) for K(¢), KW)eK; A(r)e AT, If
M € SU,1), and M ¢ K, this decomposition is
unique. The relations between ¢, t, ¥ and a, b are
given by:

T = 2arctanh

b b _
—'; ¢ = arg <t>; ¥ = arg(ab),
a a (18)



or alternatively
. T . T
a = e @2 cosh X b= e @ ¥/ 2ginh 7 (19)

Notice that M{0) = (a - 0+ b)/(b -0+ a) = b/a. We
also have:

Tt = 2arctanh |[M(0)|; ¢ =arg(M(0)). (20)

Consider first the simplest case with the special input
set of three points {0, u, w}, where 0 < u < 1. We
construct an M € SU(1,1) with:

u=M(0); w=Mu);
M = K(éu)ATn)KWy). 21)

O<u<l; wel,

From Eq. (20), the first Eq. in (21) and using u € Rt
we get the values of the two parameters ¢y, and 7,;:

u = M(0) = K(¢u)A (1)K (¥31)(0),
therefore
¢m = arg(u) = 0; 1y = 2arctanh(u). (22)

Inserting this solution into the second Eq. in (21),
we find for the third parameter v, from which we can
compute M:

w = Mu) = K(0)A () K(War)(u)
= A(m)K ) (1)
= A@DK)AT)K(W)(0)
= A(tm)KWrp)A(T)(0),

therefore

KWn)A(ti)(0) = A(ty) ' (w), and
Y = arg(A(ty) " H(w)).  (23)

In the general case with arbitrary three points zg, 21
and z, on the unit disk related by a one-parameter sub-
group, we want to find an M € SU(1,1): z; = M(zy);
22 = M{(z1).

First we show that there is an Ny € SU(1,1) and
O<u<1; w € U such that:

20 = No(0);

21 =No(u);  z22=No(w). (24
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The matrix M connecting z, z; and z; can then be
obtained by:

M = NoMN; . (25)

where, by the same notation, M is the solution of
Egs. (22), (23). Ny can be obtained by computing its
Cartan parameters as follows:

z0 = K(@n)A(Tv)K(¥y)(0)
= K(¢n)A(Tn)(0),
therefore ¢y = arg(zp); tn = 2arctanh|zp],
then z; = K(pn)A(Ty)K(Wy)(u) gives
A@n) T K(gn) " zr) = KW (u)
= KW¥n)A(Tm)K(@u)(0),

so Yy = arg(K(@n)A(Tn) ™ (z1)).
(26)

For given t and M = exp(¢X), we obtain the coordi-
nates &1, &, &; using Eqgs. (10) and (11) as follows:

[ &i §2+§3ij|_x_w
& —&i =& r
therefore
Ay bx + E bx - Z
sl _— l_, EZ — 2 ) %‘3 — 21 s
where
[a)‘ bx] X @7)
by @]

4.3.  Optimization as Linear Regression
on the Unit Disk

For real data, the projected points on the unit disk are
practically never exactly located on an SU(1,1) curve.
We thus have to use an approximation. Given a set of
points {z, = (x,, y»);n = 1, ..., N} on the unit disk
describing a series of illumination spectra we formulate
the problem of fitting the data to a SU(1,1) curve as an
optimization problem as follows:
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Find a series of parameters Azf,(n = 1,...,N), a
matrix X in su(1,1) and a point zo such that:
N
Z di (2, €™¥(z0))  is minimal (28)
n=1

where 7, = ) /_| Az.

Here exp(t,X)(zg) denotes the fractional linear
transform of the matrix exp(t, X) applied to the point z,
and dj(z, w) (Eq. (3)) is the hyperbolic distance (which
is invariant under the action of SU(1,1)) between two
points z and w on the unit disk.

In our implementation, we use the two methods de-
scribed above to find the initial values for X. These
initial values are taken as the mean of all solutions
given by applying the algorithms for all three consecu-
tive points in the input set. Optimization is done using
the Matlab Optimization Toolbox. The result of the op-
timization defines the projection of the input data set
to the best fitting SU(1,1) curve.

5. Experiments

In our experiments we investigate the properties of
Planck black-body radiation spectra and measured se-
quences of daylight spectra.

5.1.  Properties of the Sets of Black-Body Radiation

In the first series of experiments we investigate the
blackbody radiation spectra given by Planck’s Eq. (29).

2 he?

EG.T) = S —

(29)

In which:

h: Planck’s constant (6.626 x 1073* Js).

c: Speed of Light (3 x 108 m/s).

A: Wavelength (m).

k: Boltzmann Constant (1.38 x 10723 J/K).
T: Temperature (K).

The goal of this experiment was to test whether the
proposed framework is applicable in a simple but non-
trivial case. Here we know the spectra in the database
completely and could use known approximations, such
as the Wien approximation (see [32]). The experiment
is however interesting for at least two reasons:

e If the subgroup description gives a reasonable ap-
proximation then this is an indication that the
methodology is useful since the derivation of the
subgroup approximation is completely data-driven:
The basis is computed by principal component anal-
ysis and the subgroup parameters are estimated from
the expansion coefficients. From the definition of the
blackbody radiation it is not immediately clear that
there is such a group theoretical description and we
will also show that the group parameter is similar to
the inverse temperature and not to the temperature.

e The parametrization of the Planck spectra with one
parameter is useful in practical applications like vi-
sualization. Here the decomposition of the spectral
distribution into a linear combination and the simple
rule how to change the relation between the weight
coefficients can be used to pre-compute those parts of
the data that depend on the basis functions and com-
bine them with the different weight combinations to
produce the final result.

In the following we use a reciprocal color tempera-
ture scale,i.e. E(A, T) = E(X, 1/T). This parametriza-
tion is more linear with respect to human perception
(see [29] and [32] pages 224-225), in the sense that a
given small parameter change in this scale leads to sim-
ilar perceptual change independent of the location in
the parameter space. The unit of this reciprocal temper-
ature scale is the mired (given by 10° K~!) also known
as reciprocal megakelvin.

In our experiments, we proceed as follows:

e First we generate a series of N Planck blackbody
radiation spectra evenly distributed along the re-
ciprocal color-temperature scale corresponding to
the Kelvin range of [Tjow.. Thign], We denote this se-
ries as Smired(NV, Tiow, Thigh)- The correlation matrix
of the sequence Spireqa(5000, 3000, 200000) is used
to compute the principal eigenvectors defining the
basis.

e Then we generate new series of spectra with differ-
ent parameters. Using the basis computed from the
previous step, we compute the projected coefficients
of the whole series resulting in a sequence of points
on the unit disk {z(k) : z(k) € U, k=1...N}.

e For each point z(k) together with its neighbors,
we apply the methods described above to find the
three parameters &; (k), & (k), &3(k) describing the es-
timated SU(1,1) curve.

e From an arbitrary point z(k) from the input set and the
one-parameter subgroup described by the computed



parameters &, (k), £2(k), £3(k) we use an optimization
procedure to generate one simulated SU(1,1) curve
describing the whole set.

There are two different types of errors in the esti-
mation of an illumination spectrum in the input se-
quences: The errors caused by approximating the il-
lumination spectra with a few basis vectors, and the
errors caused by estimating the coordinates of the
spectrum by an SU(1,1) curve. In the experiments,
we calculate for each spectrum in the input sequence:

He(k)

1. Hyperbolic estimation error:
ha(w(k), z(k)).
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2. L?> approximation error: L2(k)
123y 0ikob; — sl
3. L?estimation error L2(k) = || Y5 _o o (k)b; —

J
s(k)|l.

where b; is a basis vector, z(k) and w(k) are the
coordinates of the spectrum k and its SU(1,1) esti-
mation, s(k) is the kth spectrum and crf(k), o j'-” (k) are
the jth coefficients of z(k) and w(k) respectively.

Figures 1 and 2 show the results when we ap-
ply the estimation to the different series of Planck
spectra  (Smirea(300, 4000, 15000) in Fig. 1 and
Smirea(500, 5000, 20000) in Fig. 2) and different

120

— Blackbody locus
¢ Estimated SU(1,1) curve (Lie algebra)

180 |y

0.7

©- Estimated SU(1,1) curve (Cartan)

270

(a)

0.6

Estimation error
Approximation error

L2 error

Hyperbolic error

0.

0.25¢

0.4

35

0.3+

0.2+
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Spectra number

200 250
Spectra number

150

(©)

0 50 100 300

Figure 1. Blackbody spectra sequence estimation: 300 samples in the interval 4000..15000 K, equally spaced in mired scale; starting point
Ist spectrum in the sequence (4000 K). (a) Blackbody locus and the estimated SU(1,1) curve on the unit disk, (b) Relative approximation and
estimation errors, (c) Hyperbolic estimation error.
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Figure 2. Blackbody spectra sequence estimation, 500 samples in the range 5000..20000 K, equally spaced in mired scale, starting point:
250th spectrum in the sequence (7990 K). (a) Blackbody locus and the estimated SU(1,1) curve on the unit disk, (b) Relative approximation and
estimation errors, (c) Hyperbolic estimation error.

starting points. The L? estimation/approximation 20th spectrum). Also the error distributions shown
and the hyperbolic estimation error distributions are in parts (b) and (c) are obtained with the Cartan
shown in part (b) and part (c) of those figures re- method.

spectively. In Fig. 1(a) we show as solid line the

chromaticity location of the original Planck spectra. In Fig. 1 we start tracking the illumination changes at
The results of the estimations based on the Cartan the first spectrum in the sequence and the estimation
decomposition are shown as dashed line (marked error accumulates over the sequence, whereas in Fig. 2
with circles every 60th spectrum), the Lie-algebra we start tracking in the middle of the sequence in both
based results are plotted as dotted line (marked with directions. The estimation error is much lower com-
diamonds every 60th spectrum). This shows that pared to the previous result (note the different scalings
there is practically no difference between the re- in the two figures).

sults obtained by these two methods. We therefore From our experiments with different numbers
present only results computed with the Cartan de- of Planck spectra, temperature ranges, and starting

composition in Fig. 2 (marked with circles every points z(s) we draw the following conclusions:



e The reciprocal scaled series of Planck spectra can
be well described by a one parameter subgroup with
fixed At.

e The Cartan decomposition and the Lie algebra meth-
ods give essentially the same results when we choose
the sampling rate high enough. The Lie algebra
method provides better approximation in the case
of a low sampling rate (e.g. 30 samples taken in the
range between [4000 K..15000 KJ).

e The approximation error caused by the reconstruc-
tion of the spectra from the KLT coordinates can be
limited if the temperature range used to compute the
basis is larger than the range of the series being de-
scribed. The range [3000 K..200000 K] is chosen
for the basis since it covers the majority of illumi-
nation sources of interest for this paper (see [32],
page 28).

e Theoretically there is no SU(1,1) curve perfectly de-
scribing the Planck spectra series, but the L2 approx-
imation/estimation errors are relatively small (with
an average error of less than 1% as can be seen in
Figs. 1(b), 2(b)) when we choose the starting point
in the middle of the series (Fig. 2).

5.2.  Properties of Measured Time-Sequence
Daylight Spectra

We also investigated sequences of time-changing day-
light illumination spectra measured in Granada, Spain
(37° 11’ N, 3°37" W, altitude: 680 m, see [10, 11, 13]).
The correlation matrix of the measured daylight spec-
tra is used to compute three principal eigenvectors for
this basis. The projected coordinates of such a sequence
on the unit disk are also computed, defining the vec-
tors {zx : k = 1..N}. Figure 3 shows the location
of daylight illumination spectra sequences measured
on two different clear-sky days. Sequence A has 433
illumination spectra, measured on 9-December-1998,
where the first 185 spectra are measured every minute
(solar elevations from 30.0° -the maximum for that day-
to 15.5°) and the remaining spectra were collected ev-
ery 30 seconds (solar elevations from 15.0° to —5.5°
-approximately the end of civil twilight-). The first 271
of 368 spectra in sequence B, measured on 29-March-
1999, were collected every minute during daylight (so-
lar elevations from 56.0° -the maximum for that day-
to 5.4°) and the remaining every 30 seconds during twi-
light (solar elevations from 4.6° to —4.7°). A detailed
investigation of these, and other, measurements can be
found in [11] and [13].
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90 O Sequence A (9 December 1998)
] - Sequence B (29 March 1999)
oo

120

270

Figure 3. Projected coordinates of the daylight spectra measured
in Granada on the unit disk.

We investigated the properties of these measured il-
lumination spectra by applying the optimization tech-
nique described above to different subsequences taken
from the input set. The sum of the hyperbolic distances
between the original and estimated points (its projec-
tion on the estimated curve) is used as a cost function
for the optimization.

At certain points in time, the Granada curves change
direction, which means that another SU(1,1) curve de-
scribing this new portion has to be found. We call
these points break points. The positions of the break
points are located manually in the experiments de-
scribed in this article. The first section of the mea-
surement series near the origin represents the daylight
spectra whereas the long tails of the sequences orig-
inate in the twilight spectra. The break points corre-
sponds roughly to those points in time when ordinary
daylight goes over to the very differently colored twi-
light spectra. See [13] for details on these and other
twilight measurements. Figures 4 and 5 show the re-
sults of the optimization with different subsequences
taken from the Granada sequences. The figures show
the coordinates of the input illumination spectra sub-
sequence and the estimated SU(1,1) curve. The radial
and angular values of the input illumination coordi-
nate points and its SU(1,1) estimation are illustrated
in the parts (b) and (c) of those figures. The horizon-
tal axis shows the value of the variable of the origi-
nal input spectra and the vertical axis the estimation.
For perfect estimation, the points should be located on
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Figure 4. Estimated and original coordinates of Granada sequence A, subsequence: spectrum 180 to spectrum 330. (a) Daytime illumination
sequence and estimated SU(1,1) curve, (b) Radius of coordinate vectors of the daytime illumination sequence versus estimation, (c) Angles of
coordinate vectors of daytime illumination sequence versus estimation.

the 45° line, which is presented by a solid line in the
figures.
We found that:

e Long subsequences of spectra with time changing
coordinates in both sequences A and B can be de-
scribed by SU(1,1) curves. Two examples are illus-
trated in Fig. 4, (sequence A, 151 spectra measured

e Among the first spectra in the input sequences A with solar elevations between 16.2° and 3.6°) and

and B (first 180 spectra in sequence A and 110 spec-
tra in sequence B) there is almost no coordinate
change. Those spectra belong to daylight measure-
ments for high solar elevations.

Fig. 5 (sequence B 49 spectra with solar elevations
between 0.1° and —4.7°). These subsequences rep-
resent the color changes during sunset. For the sunset
part of sequence A (91 spectra with solar elevations



180 [+

Radius of coordinate vectors
0.3 : : : :

90

0.25}

02r

0.15}

Estimated optimization result

0.1}
0.05 : : : ‘
0.05 0.1 0.15 0.2 0.25
Original
(b)

0.3

Group Theoretical Structure of Spectral Spaces 307

Estimated
Original

03 o

Angles of coordinate vectors

Estimated optimization result

14 12 1 0.8
Original

©

1.6 0.6

Figure5. Estimated and original coordinates of Granada set B, subsequence: spectrum 320 to spectrum 368. (a) Daytime illumination sequence
and estimated SU(1,1) curve, (b) Radius of coordinate vectors of daytime illumination sequence versus estimation, (c) Angles of coordinate

vectors of daytime illumination sequence versus estimation.

between 3.6° and —4.4°) and other subsequences the
results are similar and are therefore not shown here.

5.3.  Properties of Combined Databases
of Blackbody and Daylight Spectra

Another database we used in our experiments is a
database with 21871 daylight spectra (measured by
SMHI, the Swedish Meteorological and Hydrological
Institute in Norrkoping, Sweden, (58°35' N, 16°09’ E,
altitude: 34 m). The data was gathered from June 16th,

1992 to July 7th, 1993 during daytime (varies between
5:10 and 19:01 (Local time)). The wavelength range
was 380 nm to 780 nm in 5 nm steps.

Here we describe how we use this database together
with the blackbody radiators to study the influence
of the statistical properties of the database on the re-
sulting basis and consequently on the projection on
the disk. In this experiment we computed the correla-
tion matrix Cj, from 50 blackbody radiation vectors in
the range from 5000 K to 8000 K with equal spac-
ing in the mired scale. Then we computed the cor-
relation matrix Cy from the 21871 daylight spectra
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Figure 6. Location of daylight spectra and Planck locus for corre-
lation matrix C; = 25Cy + Cp and SU(1,1) estimation.
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Figure 7. Location of daylight spectra and Planck locus for corre-
lation matrix C, = Cy + 25Cp and SU(1,1) estimation.

in the Norrkdping database. In both cases the wave-
length range was 380 nm to 780 nm in 5 nm steps.
Next we combined these two matrices Cp, Cy and
computed two new correlation matrices Cy, C,. In the
first case, Fig. 6, the relation between the daylight cor-
relation matrix and the blackbody correlation matrix
is (25:1), ie. C; = 25Cy + Cp in the second case,
Fig. 7, it was (1:25), ie. C, = Cy + 25C,. Then we

projected the blackbody spectra and the spectra from
one days observations (Norrkoping, Sweden, March
10th, 1993, 8:45-11:15, 11:30-15:25, (local time), 5
minutes between two measurements, solar elevations
between 8.6° and 23.3° and between 24.3° and 21.9°
respectively) to the unit disk. In the blackbody domi-
nated coordinate system the blackbody locus is nearer
to the origin whereas the daylight sequence is nearer to
the origin when the daylight spectra had weight factor
25 in the PCA. This is expected from the properties
of the PCA but it has to be taken into account when
interpreting the results obtained by this technique. Fig-
ures 6 and 7 show also the estimated SU(1,1) curves
for each of the sequences. These two figures show that
it was possible to estimate both sequences in both coor-
dinate systems. The estimations are done using the Lie
method for Planck locus in both cases and using the
optimization method for the SMHI spectra. For each
coordinate system we get an estimation of the curve
parameters of the analyzed spectra. Comparing the re-
sults from both estimations we found that the time evo-
lution parameters ¢ for the SMHI spectra are in both
cases closely related to each other (Fig. 8) by a multi-
plicative scale factor. This result is very natural since
the coordinates of the points on the SU(1,1) curve are
given by the parameters ¢ and &1, &, &3 (see Egs. (10)
and (12)). Scaling the parameter ¢ with a constant y and
the parameters &1, &, & with the inverse 1/y leads to

SMHI estimation parameters, different weighted basis
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Figure 8. Comparison of estimated ¢ parameters computed from
SMHI spectra in different coordinate systems.



the same coordinates and the description of the curve is
thus only unique up to a scaling factor. We see that the
estimations produce consistent results even though the
estimations are done in different coordinate systems.

6. Discussion and Conclusions

The observation that illumination spectra can be de-
scribed by a few coefficients in a suitable subspace is
by now well-known. It is also known that these co-
efficients are all located in a cone-like subspace of
the coefficient space. Empirically it has been demon-
strated for a number of spectral databases that the space
spanned by the first principal components together with
the natural scaling of the axes provide such a conical
parameterizations of the spectra in the database. The
conical structure of the coefficient space can be ex-
ploited such that the value of the first coefficient is
used as a norm of the spectrum, whereas the remaining
coefficients provide an intensity-independent vector by
perspective projection. This non-linear projection op-
eration distinguishes the conical model from conven-
tional subspace-based color descriptions. In the case
of three-dimensional linear approximations this non-
linear projection leads to coordinate vectors that are
located on the unit disk and Lorentz-type transforma-
tions as their natural mappings.

Lorentz transformations have been used earlier to
study color perception (see for example [1, 23, 33]) and
some of those results are relevant in the current context.
There are however also fundamental differences to the
approach described here and in the following we point
out some of them:

1. Earlier applications of group theoretical methods
to color perception are based on the argument that
changing conditions, such as illumination changes,
map the color space into itself and that the boundary
of the color space is invariant under these transfor-
mations. Some of these results are also valid here but
the difference is that these models are intended to de-
scribe human color perception whereas the current
methodology is completely data-driven and based
on the properties of the spectral databases used.

2. Readers familiar with relativity theory may be
tempted to identify the “spectral” cone with the cone
in space-time. This is not correct since relativity the-
ory deals with a four-dimensional space whereas
spectral spaces are potentially infinite-dimensional.
We deal with spectra, coordinates in conical sub-
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sets of finite-dimensional vector spaces and the
representatives of these coordinate vectors in the
original Hilbert space and these three different ob-
jects have to be considered separately. A descrip-
tion of the relations between Lorentz groups and the
group SU(1,1) can be found in [31] (for example in
Vol.1, Section 6.1.3).

In this paper we studied the properties of sets of
blackbody spectra and databases of measured daylight
spectra. We found for the blackbody radiators a close
relation between the one-parameter subgroup descrip-
tion and the mired parametrization of the spectra. For
the measured daylight spectra we showed that long
stretches of the illumination spectra are located near
one-parameter curves.

Although we did not derive an analytical relation
between the spectral sequences and the one-parameter
curves we found that the one-parameter curves pro-
vided good approximations of larger sets of illumina-
tion spectra. This observation should be useful in many
image processing, computer vision and visualization
applications. Here we mention a few examples:

1. Visualization: The color properties of an image
point depend in general on the reflection properties
of the object in the scene, the illumination and the
sensor properties. If the dynamical spectral illumi-
nation characteristics can be modeled by a compact
description like the one-parameter curves then this
can be used in efficient color rendering of dynamical
scenes.

2. Estimation: In many computer vision applications
it is essential that the processing is independent of
the illumination characteristics and depends only
on the object properties. If the illumination changes
can be described by one-parameter curves then
this additional structure can be used for dynam-
ical illumination compensation (dynamical color
constancy).

3. Compression: Spectral illumination descriptions
contain by definition all the physical information
to characterize the illumination. They are however
highly redundant. For this reason low-dimensional,
parameterized descriptions of spectra are very use-
ful. With the one-parameter curve description of se-
quences of spectra it is possible to reduce the redun-
dancy of the coefficient-based descriptions further
by taking into account the relation between related
spectra.
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In conclusion we found that the theory of one-
parameter subgroups of Lie-groups provide powerful
tools for approximation of dynamical sequences of il-
lumination spectra. Motivated by the highly successful
application of Lie-techniques in other areas of science
and technology we find that their applications in color
related problems in machine vision are very promising.

Appendix: Geometry of Spectral Spaces

In this appendix we give a new derivation of the conical
properties of spectral color spaces and we also discuss
the relation to earlier approaches to use Lorentz groups
in color science.

In the following we denote by I = [Anin, Amax] the
closed interval of wavelengths of interest. The Hilbert
space of square integrable functions on this interval
is H(I). The scalar product of elements f, g in the
Hilbert space will be written as (f, g). We define a
spectrum as an element in the Hilbert space with non-
negative function values everywhere:

Definition 1.

1. s(A) is a spectrum if s(A) > O forall 1 € [.
2. The space of all spectrais C = {s(A) € H(I), s(})
is a spectrum}

For a finite set B = {bo(A),...,bx(A)} C H()
we define the projection operator Pg H(I) —
RX¥+ s — ((s,bo),...{s,bk)) = (0p,...0k) =
Pg(f). Starting from an element s in a Hilbert space
and a given set by, ..., bg one can compute the co-
ordinate vector ({s, by), ..., (s, bx)) = (0o, ..., Ok).
This mapping defines another mapping that maps an
arbitrary coordinate vector (o, ...,0k) to the ele-
ment§ = Y, oxb; in the Hilbert space. For more
information on how to apply the general theory of
Hilbert spaces to signal processing the reader may con-
sult [18].

In the Hilbert space we introduce a special type of
projection operators which will lead to conical coordi-
nate systems for spectra.

Definition 2. A conical basis consists of orthonormal
functions by, . .., bg in H(I) with the following prop-
erties:

1. There is a constant Cy such that by(A) > Cy > 0 for
allA € 1.

2. There exists a constant C; such that for all A € [

and all unit vectors u = (uy, ..., ug)
K
Zukbk(x)‘ =b, < Cy (30)
k=1

Since this definition is fundamental for the rest we make
several remarks:

e Itis enough to require the validity of the inequalities
for all A € I outside a set of measure zero. This
allows basis functions with isolated singularities.

o The real restriction is the lower bound Cj, for the first
basis function by()).

e The restriction for the K basis functions by, ..., bx
is not as severe since the closed interval I and the
unit sphere in K dimensions are both compact.

e In our investigations we use only coordinate sys-
tems obtained by principal component analysis from
data sets of spectra. For all investigated databases we
found that the obtained bases were conical.

We now consider an arbitrary spectrum s and write
it as

s =(s,bo)bo + (s, b1)by +--- + (s, bg)bg + s
K
=

=oby+7 Zukbk> + 5, 31

1

with unit vector u = (uy, ..., ug). If the basis func-
tions are conical it follows from the definition that there
is a constant C such that

T
H <C 32)
o

To see this, note that from the definition follows: o =
(s,b,) > Co(s, 1) where 1 is the function that has
constant value one on the whole interval. Next de-
fineu = (uy, ....ug)astheunitvectorin(31)and b, =
Z,le uyby.. From the second property of the conical op-
erator we find that |(s, b,)| < Ci(s, 1). Therefore we
have

T

o

Ci(s, 1) Cy
< =—=C
Cofs, 1) Co

Equation (32) shows:

Theorem 1. Ifthe basis is conical then the coordinate
vectors of spectra are located in a cone.



For a spectrum we now define the conical coordinate
vector (o, p, u) where p = t/o and o, t and u are
defined as in Eq. (31).

Now assume we analyze spectra with a system char-
acterized by a basis. When this system analyzes a spec-
trum s it represents it by the vector (o, p, u). This map-
ping from the spectrum to coordinates is one of the
main problems in traditional color science. In spec-
tral based approaches it is however also important to
consider the inverse mapping, ie. to define which func-
tions should be represented by a given coordinate vec-
tor. Assume therefore that all such coordinate vec-
tors should represent a spectrum. Among all the el-
ements in the Hilbert space that are represented by
this vector it is (in a Hilbert space framework) best
to select the element § = Z/f:o (s, by)by. Since §
should represent a spectrum it seems plausible to
define.

Definition 3. A coordinate vector (o, p,u) = (o,
..., 0g) is called admissible if the basis is conical and
if Zf:o oby represents a spectrum, ie. is non-negative
everywhere.

From the definition follows immediately that multipli-
cation with a positive scalar maps an admissible vector
to another admissible vector. We now show:

Theorem 2. The space of admissible coordinate vec-
tors is topologically equivalent to a product of the non-
negative axis and the unit sphere.

To see this we show that we can find a unique p, such
that all vectors (1, p, u) with p < p, are admissible,
while all vectors with p > p,, are not. Consider a unit
vector u and write:

by (M)
s(A) = Sopu(A) = Gbo(k)<1 + pbo(k))

> obo(M)(1 + pfu) (33)

where 8, = min;(b,(X)/bo(1)). Since b, and b, are
orthogonal we see that 8, < 0. We also have oy =
(s, bp) > 0 since s is non-negative and by is posi-
tive everywhere. From this it follows that for all b, (1)
and for all 0 < p < —B;! the function s, ,,(}) is
non-negative everywhere, i.e. it represents a spectrum.
For p > -8, ! the function So,p,u(A) assumes nega-
tive values somewhere in the wavelength range. The
boundary of the space of admissible coordinate vec-
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tors in direction u is therefore given by (o, —;", u).

We call it the admissible boundary of the basis set.

Here we note that the relation between the bound-
ary of the space of spectra and the boundary of the
space of admissible coordinate vectors has to be an-
alyzed carefully (for a detailed discussion of related
topics see also [12]). The monochromatic spectra are
certainly elements of the boundary in the spectral space,
and the projection of the monochromatic spectra into
coefficient space results in a curve called the spectral
locus in traditional color science. Here it is important
to point out that the spectral locus is not the bound-
ary of the set of admissible coordinate vectors. This
can be seen by considering the basis consisting of the
three first trigonometric polynomials. The form of the
spectral locus is also not limited to simple circle-like
curves but can be much more difficult. We don’t discuss
this here but refer the reader to the examples discussed
in [12].
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