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 A B S T R A C T

The identification of historical painting materials is essential for understanding artistic techniques, proposing 
conservation strategies, and supporting dating and provenance studies. However, the presence of pigment 
and dye mixtures, along with complex pigment–binder interactions, poses significant challenges for non-
invasive analysis. This study presents a spectral unmixing approach based on the data fusion of hyperspectral 
imaging (HSI) and Diffuse Reflectance Fourier Transform Spectroscopy (DRIFTS) data to identify the painting 
components of mock-up samples that replicate historical objects. Results show that fusion significantly 
improves the identification of mixture painting components compared to single-technique analysis. The 
complement of the Goodness-of-Fit Coefficient (cGFC) outperformed other metrics, achieving the highest rate of 
correct painting component identification and lowest error for the greater presence of some elements compared 
to others. Preprocessing steps including Savitzky–Golay derivative, spectral cropping, and normalization proved 
essential for maximizing performance. The method was further validated on a set of historical manuscripts, 
correctly identifying painting materials in the majority of cases.
1. Introduction

The analysis of historical pigments and dyes plays a critical role in 
studying past cultures, planning conservation strategies [1], and aiding 
in the accurate dating of artworks based on the materials present [2]. 
Given the fragility and importance of heritage objects, non-invasive an-
alytical methods are indispensable tools for its study and conservation.

Among these techniques, Hyperspectral Imaging (HSI) has gained 
relevance in cultural heritage research for its ability to map materials, 
offering both spectral and spatial information [3]. However, traditional 
classification approaches often assume that each pixel or measurement 
corresponds to a single pure material, which is rarely the case in 
painted surfaces. In these cases, a single pixel often contains signals 
from multiple pigments, binders, or even surface irregularity effects, 
which can limit the accuracy of material identification. These limita-
tions are particularly pronounced when binders or varnishes alter the 
optical properties of pigments, requiring complementary methods such 
as Raman spectroscopy, X-ray fluorescence (XRF) or Fourier Transform 
Infrared Spectroscopy (FTIR) for confirmation [4].
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Diffuse Reflectance Fourier Transform Spectroscopy (DRIFTS) is 
widely employed to identify pigments, dyes and binders [5,6]. Acqui-
sition of DRIFTS spectra using portable systems offers non-destructive 
information about the molecular composition of the samples [7], and 
allows identifying organic and inorganic components, even in layered 
structures. However, DRIFTS can struggle to resolve mixtures due to 
overlapping absorption bands [8].

The integration of multiple techniques has become increasingly 
common, as in most of the cases, single techniques are insufficient for 
identification. For example, techniques such as Raman spectroscopy 
or DRIFTS can be used for the identification of molecular vibrational 
modes, and then complemented using HSI, which allows taking into 
account the spectral reflectance of the sample in the visible and infrared 
ranges, as well as mapping the results [9–11].

Recent advances in data fusion offer a promising solution to these 
challenges. In fields such as food analysis [12,13], low-level data 
fusion, performed through simple concatenation of DRIFTS and HSI 
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reflectance spectra, has led to significant improvements in classification 
and component identification when compared to using the techniques 
independently.

Similar strategies have been proposed for pigment mixture classi-
fication with promising results [14], although such studies are often 
limited in scope, for instance, by focusing on a narrow range of pig-
ments of similar color or composition, while more complex mixtures of 
pigments and/or dyes remain largely unexplored.

Spectral unmixing has proven to be a powerful analytical tool 
for this purpose. These models aim to decompose a spectrum into a 
linear or nonlinear [15] combination of known reference spectra, called 
endmembers, weighted by their relative concentration [16]. In the field 
of cultural heritage, this procedure has been successfully used with 
hyperspectral data for pigment component identification [17–20], but 
its efficacy in other types of spectra, such as DRIFTS, has not yet been 
studied.

This work aims to address the problem of pigment and dye unmix-
ing in a multimodal manner. It seeks to apply unmixing algorithms 
with different spectral comparison metrics to two different types of 
data: VNIR–SWIR reflectance and DRIFTS spectra, both separately and 
merged by low-level data fusion, with the goal of getting one step closer 
to non-invasive material identification in real historical documents.

Through quantitative validation on a controlled mock-up dataset, 
and qualitative assessment on real historical samples confirmed by XRF, 
this study demonstrates that data fusion significantly improves compo-
nent identification via unmixing over single-modality approaches.

2. Materials and methods

2.1. Samples description

To optimize and test the proposed method, a subset of a series of 
painting mock-ups previously presented in [21], which are part of the 
HYPERDOC dataset [22], was used.

The full dataset presented in [21] contains 156 painting mock-ups, 
of which we selected 54 samples deposited on paper, composed of a 1:1 
mixture of cotton and linen fibers, and 54 deposited on parchment. The 
paintings components chosen as endmembers for this work are shown 
in Table S1 of supplementary information (including the abbreviations 
and chemical composition of each painting component). These are:

• 14 pigments: azurite (AZ), smalt (SM), lapislazuli (LAP), lead 
white (LW), calcite (CA), cinnabar (CIN), hematite (HMT), minium
(MIN), orpiment (ORP), lead tin yellow (LTY), malachite (MLC), 
verdigris (VG), yellow ochre (OC), and burnt umber (BU) mixed 
with either gum arabic (GA) or egg glair (EG), with the exception 
of hematite, which was bound exclusively with EG, making a total 
of 27 samples.

• 6 dyes: carmine (CARM), gamboge (GMB), saffron (SA), indigo 
(ING), and imperial yellow ink (IYI, made as a mixture of buck-
thorn with alum), all of them bound exclusively with GA, and a 
buckthorn (BCKT) dye solution with no binder.

Therefore, this results in 33 endmembers, representing the possible 
individual painting constituents of the more complex mixtures.

In addition, 42 mixtures also described in [21] were selected to 
test our method. 38 of these mixtures are triphasic, (i.e. composed of 
2 pigments and 1 binder, or 1 pigment, 1 dye and 1 binder), while 
the remaining 4 are quadriphasic, containing a mixture of 3 pigments 
(CIN, LTY and LW) bound with either GA or EG. All these mock-
ups are combinations in equal proportions of its painting components 
(pigments, dyes and binder). All of the painting samples were applied 
on paper and on parchment supports. The full list of the triphasic 
and quadriphasic mixtures can be found on Table S2 of supplementary 
information.

The samples were applied to the support (paper or parchment) in 
two ways: as flat-tone over a 2x2 cm surface, and as writing strokes, in 
2 
both cases applied with a brush. For this study, only the spectral infor-
mation of the squares was used, since it provides a more homogeneous 
surface.

In addition to the mock-up samples, some points of interest from 11 
different historical documents were analyzed to test the applicability 
of the proposed method in real cases. These historical documents are 
preserved in the Archive of the Royal Chancellery of Granada (Spain), 
and consist of 7 illuminated manuscripts with parchment support that 
correspond to nobleman’s lawsuits dated between 1459 and 1608, and 
4 maps on paper from the 18th century. All of them decorated with 
a significant variety of bound pigments and dyes, some of which have 
not yet been unequivocally identified.

Fig.  1 shows a series of examples of the pigments, dyes and mixtures 
containing binder measured for this study, as well as the comparison 
between the spectra of the endmembers and their mixture for the case 
of a mixture of azurite and lead white bound with GA.

2.2. Analytical techniques

To characterize the painting materials present in both mock-up sam-
ples and historical documents, a multi-modal analytical approach was 
adopted. For spectral measurements (HSI and DRIFTS), a representative 
area of each color was chosen for each document. The points of interest 
were chosen to completely cover an area of about 7 mm2, which roughly 
corresponds with the spot area of the XRF measurement device used as 
external validation technique for material identification in this study 
(as explained in Section 2.2.3).

2.2.1. Hyperspectral imaging (HSI)
Hyperspectral imaging (HSI) captures were acquired for both mock-

up samples and historical documents using two line-scan spectral cam-
eras from Resonon: the Pika L [23] and Pika IR+ [24] systems, en-
abling data acquisition in the visible-near infrared (VNIR) and short-
wavelength infrared (SWIR) spectral ranges, respectively. The VNIR 
camera covers the 380–1080 nm range with a spectral resolution of 
2.1 nm and a spatial resolution of 900 pixels per line. The SWIR camera 
operates over the 888–1732 nm range with a 2.4 nm spectral resolution 
and 640 pixels per line. Due to signal degradation at the extremes of 
each range, the outer portions were discarded. The spectra were then 
interpolated to a common 5 nm sampling interval, resulting in 121 
bands in the VNIR range (400–1000 nm) and 161 bands in the SWIR 
range (900–1700 nm). Dark current noise subtraction was performed, 
and flat-field correction was applied using the 90% reflectance patch of 
the Sphere Optics Zenith Lite Multistep reference white. Illumination 
was provided by four halogen lamps arranged to minimize specular 
reflections. Acquisition distances were set at 50 cm for VNIR and 40 cm 
for SWIR, resulting in fields of view of approximately 14.5 cm and 
spatial resolutions of 0.16 mm/pixel and 0.22 mm/pixel, respectively. 
Fig.  1 shows the capture configuration and an example spectra for this 
technique.

To ensure spatial alignment between the VNIR and SWIR datacubes, 
spectral images were registered using MATLAB’s Registration Estimator 
App. A region of interest (ROI) corresponding to the painted square in 
each sample was extracted from the registered cubes for both spectral 
ranges. The spectral reflectance curves within each ROI were averaged, 
and the VNIR and SWIR spectra were concatenated. To ensure spectral 
continuity, the final ten bands of the VNIR and the initial eleven bands 
of the SWIR spectra were removed, producing a single reflectance 
spectrum for each sample.

2.2.2. Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS
Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS

analyses were performed on both mock-up samples and historical 
documents using a portable 4300 Handheld FTIR Spectrometer from 
Agilent Technologies [25] equipped with a diffuse reflectance interface 
and a 6 mm spot diameter. Spectra were acquired in the mid-infrared 
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region (4000–650 cm−1) with a spectral resolution of 4 cm−1, averaging 
10 scans per spectrum. Background correction was carried out using a 
Coarse Gold Reference Cap (G8180-67560).

Spectral pre-processing was conducted using OMNIC [26] software 
(version 9.12.993), applying both smoothing and baseline correction 
procedures to minimize instrument-induced errors [27]. Measurements 
were performed by avoiding direct contact with the surface of the 
samples, aiming to establish an applicable non-invasive procedure for 
the analysis of real historical documents. This was achieved through 
the use of an adjustable tripod and a reclining bookrest, which enabled 
a stable positioning of the instrument. Fig.  1 shows the position of the 
document on the bookrest and how the spectrometer is placed for the 
measurement, together with an example of a DRIFTS spectrum.

As DRIFTS spectra are usually expressed in terms of wavenumbers, 
with units of cm−1, in our case we calculate the inverse of these 
values in order to express them in wavelengths (nm) and make them 
comparable with HSI spectra.

2.2.3. X-ray Fluorescence (XRF)
To evaluate the effectiveness of the proposed method for historical 

document analysis, our results were compared with those obtained 
through portable X-ray fluorescence spectroscopy (XRF), a complemen-
tary technique that provides elemental information of the inorganic 
constituents present in the measured points [28].

XRF analysis was performed using a handheld NITON XL3t GOLDD+ 
(Thermo Fisher Scientific, Waltham, MA, USA) [29] with a silver 
anode (50 kV, 200 A). The analyzer was fitted with a camera and 
a suitably equipped Small Spot analyzer, with which analysis could 
be restricted to a small diameter of the camera angle (3 mm). After 
waiting five minutes to allow the instrument’s electronics to stabilize, 
a system check was performed to calibrate the detector and ensure it 
was operating according to the specifications. Spectra were collected 
using the measuring mode ‘‘test all geo’’. The analyzer was equipped 
with four excitation filters (main, high, low, and light) that optimize 
the sensitivity of the analyzer for the various elements. Measurements 
of 30 s for each filter were set, meaning that each spot analysis took 
approximately 120 s to complete. The geometrical setup was the same 
for all the measurements. NITON Data Transfer (NDT) software 6.1 was 
used to control the instrument and for data management and transfer.

XRF analysis has been carried out exclusively for validation in 
historical documents, given that the mock-ups had already been thor-
oughly characterized in a previous study [21].

2.3. Data fusion

To integrate the complementary information provided by VNIR–
SWIR reflectance and DRIFTS spectra, a low-level (feature-level) data 
fusion strategy was employed. Each VNIR–SWIR reflectance and DRIFTS
spectrum, both in the endmembers and the problem mixtures, was 
concatenated into a single feature vector, preserving the full spectral 
resolution of both modalities while allowing the unmixing algorithm 
to operate on a unified dataset.

The motivation behind this strategy lies in the spectral complemen-
tarities of the two techniques: VNIR–SWIR reflectance spectra provide 
information about the actual color of the sample (VNIR range), and 
its behavior under infrared illumination (SWIR range), but they do 
not provide compositional information regarding the chemical bonds 
and vibrational modes of the molecules present within the material. 
On the other hand, DRIFTS does provide this information, but au-
tomatic algorithms using this spectra can confuse painting materials 
of similar chemical composition but different color, such as pigments 
with a high presence of lead, like red minium and lead white. Our 
main hypothesis is that, by combining both spectra, each will comple-
ment the weaknesses of the other, improving the results of using both 
individually.
3 
In a preliminary test, mid-level data fusion was also explored us-
ing Principal Component Analysis (PCA) to reduce the dimensionality 
of each spectral technique prior to fusion. However, this approach 
produced poor results. This was likely caused by the loss of spectral 
physical meaning: this type of data fusion can be very useful for 
classification tasks, but in our case, the resulting fused data no longer 
represented an interpretable spectral function, which is essential for 
effective application of the unmixing algorithm. However, the PCA 
analysis with two Principal Components has been used as a mean 
of data visualization for supporting the hypothesis, with the aim of 
observing the difference between the information provided by each 
technique.

2.4. Spectral unmixing

Spectral unmixing is a procedure used to estimate the concen-
trations of the constituents of a spectrum resulting from the mixing 
of multiple known pure materials. In our work, the objective is to 
estimate the concentration for each of the individual painting materials 
to be present in the painting mixtures, which in our case are the 33 
endmembers described in Section 2.1.

Although non-linear models such as the subtractive model have 
been shown to be more effective in unmixing problems with HSI 
reflectance spectra [15,17], preliminary tests with DRIFTS data and 
fused spectra showed that better results are obtained with the linear 
additive model. In this model, it is assumed that the resulting spectrum 
will be a linear combination of the spectra of the different endmembers: 

𝑥 =
𝑞
∑

𝑖=1
𝜌𝑖𝛼𝑖 (1)

where 𝑥 is the reflectance of the mixture, 𝑞 is the total number of 
endmembers, 𝜌𝑖 is the reflectance of endmember 𝑖 and 𝛼𝑖 represents its 
concentration. We will then seek the linear combination of endmembers 
that most closely approximates the problem spectrum of the mixture 
whose painting components we want to identify, according to the 
metric used, which will be selected as the best performing of those 
described in Section 2.4.2.

For this search, the MATLAB R2023a optimization function fmnin-
con was used with two conditions: non-negativity (𝛼𝑖 > 0,∀𝑖), which 
assumes that no component can be found in a negative proportion in 
the mixture, and sum to one (∑𝑞

𝑖=1 𝛼𝑖 = 1), since the sum of all concen-
trations cannot exceed or fall below 100%. This last condition means 
assuming that all real constituents are found within the endmembers 
library, which in the case of mock-ups we know is true, but cannot be 
certain in historical documents.

2.4.1. Unmixing evaluation
Two metrics were used for evaluating the unmixing performance:
First, the number of painting components correctly identified by the 

algorithm was computed. For this, only the two (for triphasic mixtures) 
or three (for quadriphasic mixtures) endmembers with the highest 
unmixing-predicted concentrations, independently of their binder, were 
compared with the real constituents of the mixtures. Hence, each of 
those highest-predicted endmembers that matched one of the actual 
constituents would count as a correct guess. In the case of binders, it 
will be taken as the one present in the endmember with the highest pre-
dicted concentration, since it is the one with the greatest contribution 
to the reconstructed spectrum.

The evaluation of the concentrations of the endmembers was per-
formed by calculating the Root Mean Squared Error (RMSE =

√

MSE, 
see Eq. (3)) between the unmixing-predicted concentrations and the 
real proportions used for making the mixtures. As the triphasic and 
quadriphasic mixtures were produced by mixing in equal parts the 
biphasic mixtures that we take as endmembers, a concentration of 1∕2
was expected for each endmember in the case of triphasic mixtures (two 
pigments + binder), and 1∕3 for the quadriphasic ones (three pigments 
+ binder). Those endmembers that were not present in the mixture 
were considered to have a concentration equal to zero.
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Fig. 1. Materials used for obtaining the HSI and DRIFTS spectra. Top left: examples of the endmembers (left column) and triphasic and quadriphasic mixtures 
(right column). Bottom left: examples of historical documents, illuminated manuscripts (left column) and maps on cotton paper (right column). Measurement 
configurations for HSI (top right) and DRIFTS (bottom right), both with example spectra of azurite bound with GA (blue), lead white bound with GA (orange) 
and their mixture (yellow).
2.4.2. Spectral metrics
Different spectral metrics can be used to compare the reconstructed 

spectrum with the one measured from the mixture, so five widely used 
spectral comparison metrics [30] were tested to verify which one was 
the most appropriate to work with our data. All of them were computed 
as measurements of difference between the reconstructed spectra 𝑥, 
and the reference spectra 𝑥̂, both along 𝑁 bands, of the mixture to be 
unmixed.

The unmixing algorithm described above will be applied to the 
complete set of 42 mixtures, using each of the metrics as a comparison 
between the reconstructed spectrum and that of the mixture. Once the 
results are obtained, the evaluation described in Section 2.4.1 will be 
carried out, and the metric with the best performance will be used for 
the optimization of the model.
Complement of the Goodness-of-Fit Coefficient (cGFC). The complement 
of the Goodness-of-Fit Coefficient (cGFC) is a similarity measure repre-
senting the cosine of the angle between the two vectors [31]: 

cGFC(𝐱, 𝐱̂) = 1 −
∑𝑁

𝑖=1 𝑥𝑖𝑥̂𝑖
(

∑𝑁
𝑖=1 𝑥

2
𝑖

)1∕2(
∑𝑁

𝑖=1 𝑥̂
2
𝑖

)1∕2
(2)

with values closer to zero indicating greater similarity between the 
spectra.

Mean Squared Error (MSE). The Mean Squared Error (MSE) is one 
of the most widely used error metrics in regression and signal pro-
cessing. It quantifies the average of the squared differences between 
corresponding elements of two vectors. It is defined as: 

MSE(𝐱, 𝐱̂) = 1
𝑁

𝑁
∑

𝑖=1
(𝑥𝑖 − 𝑥̂𝑖)2 (3)

where the lowest values are given for the most similar spectra. MSE 
is sensitive to both amplitude and shape discrepancies. This should be 
4 
taken into account, as differences in signal intensity would give high 
MSE values even though the spectra might in fact be similar.

Spectral Information Divergence (SID). Spectral Information Divergence 
(SID) [32] is a statistical measure derived from the Kullback–Leibler di-
vergence, and it treats spectra as probability distributions by converting 
them to normalized positive values. 

SID(𝐱, 𝐱̂) =
𝑁
∑

𝑖=1
𝑝𝑖 log

(

𝑝𝑖
𝑞𝑖

)

+
𝑁
∑

𝑖=1
𝑞𝑖 log

(

𝑞𝑖
𝑝𝑖

)

(4)

where 𝑝𝑖 = 𝑥𝑖
∑𝑁

𝑖=1 𝑥𝑖
 and 𝑞𝑖 = 𝑥̂𝑖

∑𝑁
𝑖=1 𝑥̂𝑖

. SID is advantageous when discrim-
inating spectra with similar global shape but differing local features. 
However, it may be sensitive to noise or very small intensity values 
due to its logarithmic nature.

Combined SAM and SID (SAMSID). A fifth metric, defined as a combi-
nation of the Spectral Angle Mapper (SAM) and SID [33] was tested. 
SAM is an angular similarity metric that interprets spectra as vectors in 
a high-dimensional space and computes the angle between them [34]. 
It is defined as: 

SAM(𝐱, 𝐱̂) = 𝑐𝑜𝑠−1
⎛

⎜

⎜

⎜

⎝

∑𝑁
𝑖=1 𝑥𝑖𝑥̂𝑖

(

∑𝑁
𝑖=1 𝑥

2
𝑖

)1∕2(
∑𝑁

𝑖=1 𝑥̂
2
𝑖

)1∕2

⎞

⎟

⎟

⎟

⎠

(5)

which can also be interpreted as the arccosine of GFC. SAMSID is 
defined as: 

SAMSID = 𝑠𝑖𝑛(SAM) ⋅ SID (6)

SAMSID can be useful in cases where small deviations in spectral 
shape need to be captured. However, it presents a greater computa-
tional cost and is more complex to interpret quantitatively.
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2.4.3. Unmixing optimization
Once the most appropriate metric has been selected, according to 

the evaluation procedure described in Section 2.4.1, it is important 
to attempt improving the results by applying a pre-processing to the 
spectra before running the unmixing algorithm. This pre-processing 
to optimize the final result consists of three main steps: derivative 
computation, edge cropping, and normalization. As this preprocessing 
considers a number of variables that can be arbitrarily chosen, an 
optimization phase is performed to find which combination of them 
gives the best results.

The first step consisted in computing the first derivative of each 
spectrum using the Savitzky–Golay (SG) filter, a pre-processing pro-
posed in [12]. This derivative will highlight local spectral changes, such 
as peak slopes and inflection points, which are often more informative 
than raw intensity values when distinguishing between painting materi-
als. The SG filter was applied using two parameters for each technique: 
the polynomial degree, which defines the order of the polynomial used 
to fit the data, and the frame size, which specifies the number of 
neighboring points considered in each local fit.

The edge cropping step was introduced to address the boundary 
artifacts introduced by the derivative calculation at the edges of the 
spectrum, and also to eliminate non-relevant edge bands that did not 
contain characteristic information of the analyzed painting materials. 
Two additional parameters were defined here for each technique, which 
determine the number of bands to crop at the beginning and at the end 
of each spectrum.

Finally, the cropped derivatives were normalized, dividing by the 
largest value in absolute value to ensure that they are between −1 and 
1. This was added in order to make all the spectra comparable, so that 
the intensity of the signal would not be relevant, instead focusing on 
spectral variations.

Overall, the optimization for the data fusion spectra consisted of 8 
parameters, with their minimum and maximum possible values shown 
in brackets:

• DRIFTS polynomial degree for SG filter (1–4).
• DRIFTS window size for SG filter (5–155).
• VNIR–SWIR reflectance polynomial degree for SG filter (1–4).
• VNIR–SWIR reflectance window size for SG filter (5–155).
• DRIFTS bands cropped at the beginning of the spectra (0–400).
• DRIFTS bands cropped at the end of the spectra (0–400).
• VNIR–SWIR reflectance bands cropped at the beginning of the 
spectra (0–20).

• VNIR–SWIR reflectance bands cropped at the end of the spectra 
(0–20).

These parameters were optimized using the surrogateopt function 
of MATLAB R2023a, which was chosen due to its effectiveness in low-
dimensional problems, since in this problem we have a small number 
of variables. Additionally, unlike gradient-based solvers, surrogate op-
timization can explore the global landscape more effectively, avoiding 
getting trapped in local minima as easily.

5000 iterations were chosen for optimization, and the same seed 
was fixed in all cases to avoid randomness-related variations between 
experiments. To avoid the bias of optimizing the same spectra we are 
evaluating, the mixtures were randomly distributed into four approxi-
mately equal groups: sets 1 and 2 contained 10 mixtures, while sets 3 
and 4 contained 11. With this division, k-fold cross-validation with 𝑘 =
4 was performed to ensure consistency of results: on each experiment, 
one of the sets was used to optimize the parameters (train), while the 
other three were used for evaluation (test).

This optimization process was performed independently for the 
three types of spectra: DRIFTS (4 parameters), VNIR–SWIR reflectance 
(4 parameters) and data fusion of both (8 parameters). All three cases 
were computed in order to directly compare the best result for each of 
them, so it could be assessed if data fusion performed better than both 
techniques separately.
5 
Fig.  2 illustrates the workflow for the unmixing procedure for a his-
torical document spectrum, including pre-processing and data fusion. 
The gap between the HSI and DRIFTS spectra in the central part of 
Fig.  2 arises only from the visual representation of the spectra, since 
it has no influence on the final result. Both spectra are continuously 
concatenated and no wavelength information is used.

2.4.4. Method validation
Additionally, OMNIC software was used in order to assess the 

efficiency of the proposed method on both mock-ups and historical 
documents, as it remains as a widely used software for spectra pro-
cessing [35,36] and pigment recognition [37–39]. For this purpose, 
the DRIFTS spectra of the mixtures was compared with a reference 
library containing the DRIFTS spectra of the endmembers, evaluating 
the correct guesses in the same way as unmixing: by comparing the 
actual painting components with the two or three most similar spectra 
of the library.

The best optimization was also tested in the case of historical 
documents. In this case, the XRF spectra obtained were analyzed to 
check which elements are present in the different mixtures. By using the 
identified elements and taking the color of the mixture into account, a 
hypothesis was made regarding the possible painting materials present 
in the measured points, and this is compared with the results of the 
best optimization for unmixing with data fusion.

In this case, the three endmembers with the highest predicted 
concentration are taken into account, and if these results match the hy-
pothesis or offers another valid alternative (for example, by proposing 
the presence of a dye, undetectable by XRF, that matches the color of 
the sample), our model is considered to have given a reasonable result 
and it is counted as a success.

3. Results and discussion

3.1. Principal component analysis

Principal Component Analysis (PCA) was applied to the fused spec-
tra as an exploratory tool to assess spectral variance across the dataset 
and to examine the distribution of endmembers in reduced-dimensional 
space.

Fig.  3 (a) shows the loadings for all wavelengths in the fused spectra. 
PCA loadings represent how much each original variable, wavelengths 
in our case, contributes to a principal component in PCA, as they 
indicate the weight or influence that each variable has in defining 
the direction of a principal component. In PC1, which accounted for 
63% of the total variance, a clear separation was observed: VNIR–SWIR 
reflectance wavelengths were grouped on the left side of the loading 
plot, while DRIFTS wavelengths were on the right. This indicates that 
the primary axis of variance in the data arises from differences between 
the two spectral techniques, suggesting that each contributes with 
different information to the set. PC2, which explained 13% of the vari-
ance, showed both VNIR–SWIR reflectance and DRIFTS wavelengths 
close to each other, with HSI contributing slightly more positively and 
DRIFTS slightly more negatively. The fact that both wavelength curves 
fold back on themselves indicates that there is redundant information 
within each technique, but the clear separation between the two in 
PC1 reinforces the hypothesis that data fusion highlights the differences 
between painting materials even more than both techniques separately.

The scores scatter plot for all of the endmembers is shown in Fig. 
3 (b). As PC1 seems to differentiate samples according to the spectral 
techniques, samples with large negative PC1 values, like orpiment-EG, 
cinnabar-EG and minium-EG, are spectrally dominated by VNIR–SWIR 
reflectance wavelengths. Conversely, samples with high positive PC1 
values, such as burnt umber-EG and verdigris with both binders (GA 
or EG), show stronger influence from DRIFTS features, likely due to 
prominent vibrational bands in the mid-IR region.
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Fig. 2. Summarized workflow for the unmixing procedure using fused spectral data.
Table 1
Performance comparison using different spectral metrics for data fusion, DRIFTS and HSI VNIR–SWIR reflectance.
 Metric Fusion DRIFTS HSI

 Correct endmembers RMSE Correct endmembers RMSE Correct endmembers RMSE  
 cGFC 63.64% 0.0948 48.86% 0.1067 50.00% 0.1129 
 MSE 61.36% 0.0955 46.59% 0.1117 57.95% 0.1105 
 SID 40.91% 0.1119 31.82% 0.1238 57.95% 0.1159 
 SAMSID 54.55% 0.0969 42.05% 0.1158 48.86% 0.1173 
 
 
 
 

 
 
 
 
 

 
 

 
 
 
 

 

 
 

Differences in binder are very prominent in this figure: in several
cases, the sample of a pigment bound with GA separates clearly along
PC1 and PC2 from the same pigment bound with EG, such as azurite,
verdigris and lapislazuli, suggesting that the data fusion spectra is
sensitive to binder composition.

3.2. Metric selection

The performance of five spectral metrics (cGFC, MSE, SID, and
SAMSID) was evaluated using the full dataset across the three spectral
modalities: HSI VNIR–SWIR reflectance, DRIFTS, and their fusion, using
the full spectra without any pre-processing. Table  1 summarizes the
percentage of correctly identified endmembers and proportions RMSE
values for each technique and metric:

Among all metrics, the complement of the Goodness-of-Fit Coeffi-
cient (cGFC) provided the best results for the fused spectra, achieving
63.64% correct painting component identification and a minimum
RMSE of 0.0948.

SID showed the weakest performance in data fusion and DRIFTS,
with accuracy dropping to 31.82% for the latter, but it was one
of the best performing metric with VNIR–SWIR reflectance spectra,
along MSE. SAMSID demonstrated intermediate behavior for fusion and
DRIFTS, outperforming SID but not reaching the accuracy of cGFC.

In general, when using the DRIFTS and VNIR–SWIR reflectance
spectra individually, a better performance was observed in the lat-
ter in all metrics, with a great difference in SID. However, even in
the pre-optimization step, data fusion provides better results for all
metrics than DRIFTS and VNIR–SWIR reflectance separately. The only
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exception is SID, where fusion presents a worse result than VNIR–
SWIR reflectance in terms of correctly guessed endmembers, but a 
better RMSE. This reinforces the hypothesis proposed in this work and 
demonstrates that, with the concatenation of spectra, both techniques 
complement each other by providing different information for painting 
component identification.

Although the best results have been obtained for data fusion un-
mixing using cGFC, a success rate of 63.64% can still be considered 
low, as more than one third of the painting components are not 
correctly identified. Therefore, the optimization phase will be of great 
importance to improve this result and try to achieve a more accurate 
model.

These results indicate that cGFC is not only more effective in 
selecting correct endmembers but also more accurate in predicting 
concentrations, especially when combining the information from both 
techniques. Therefore, from now on, only this metric will be used for 
optimization and application on historical documents.

3.3. Unmixing optimization results

Once the metric for unmixing has been chosen, the next step is to 
perform the cross-validation with the four previously defined training 
sets (see Table  2).

After optimization, data fusion newly showed a greater performance 
in all sets than the two techniques individually, with an average of 
75.39% correct endmembers, 96.02% correct binder and an RMSE of 
0.0804. DRIFTS had the second best result (59.44%, RMSE = 0.0976), 
followed by VNIR–SWIR reflectance (53.41%, RMSE = 0.1152).
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Fig. 3. PCA Loadings (a) and Scores (b) for the data fusion spectra of the endmembers (biphasic mixtures and buckthorn).
Table 2
Cross-validation for the unmixing performance after optimization for each set and technique.
 Spectra Train set Correct 

endmembers
Correct binder RMSE Average 

correct 
endmembers

Average 
correct 
binder

Average RMSE 

 
Fusion

1 74.63% 96.88% 0.0809

75.39% 96.02% 0.0804

 
 2 74.63% 96.88% 0.0775  
 3 75.76% 96.77% 0.0788  
 4 76.56% 93.55% 0.0844  
 
DRIFTS

1 59.70% 93.75% 0.0949

59.44% 92.87% 0.0976

 
 2 61.19% 90.63% 0.1009  
 3 60.61% 93.55% 0.0957  
 4 56.25% 93.55% 0.0987  
 
HSI

1 56.72% 81.25% 0.1074

53.41% 74.60% 0.1152

 
 2 52.24% 68.75% 0.1210  
 3 50.00% 83.87% 0.1141  
 4 54.69% 64.52% 0.1183  
Preprocessing of the data has also shown an improvement in the 
unmixing results in all cases, being less influential in the case of VNIR–
SWIR reflectance-only spectra. This can be explained by the larger 
variations in the DRIFTS spectrum compared to the VNIR–SWIR re-
flectance spectrum, with a large number of peaks that provide relevant 
information about the painting material, so that calculating the first 
derivative has a greater effect in this technique. The optimization 
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increased the proportion of correct painting components in data fusion 
by twelve percentage points, and caused a 15% decrease in the RMSE 
value of the concentrations.

Data fusion has also shown to have lower variability between sets 
than the two techniques separately, both in terms of painting compo-
nents and binders, with a standard deviation of 0.8 versus 2.5 in the 
case of DRIFTS and 1.9 in the case of HSI.
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Table 3
OMNIC results and data fusion unmixing results using set 3 as the training set on paper 
support. Green: All correct components. Red: No correct components. Yellow: One correct 
component (triphasic mixtures). Orange: One correct component (quadriphasic mixtures). 
Blue: two correct components (quadriphasic mixtures).

Mixture Fusion OMNIC
 Pigments/Dyes Binder Endmembers Binder Endmembers Binder
 Azurite
Lead White

GA LW GA
AZ EG

GA SM EG
CIN GA

EG

 Azurite
Lead White

EG AZ EG
LW EG

EG CARM GA
CIN GA

GA

 Carmine
Gamboge

GA GMB GA
IYI

GA SA GA
MIN EG

GA

 Carmine
Lead White

GA CARM GA
LW EG

GA IND GA
LTY GA

GA

 Cinnabar
Lead White

GA LW GA
CIN GA

GA LW GA
LW EG

GA

 Indigo
Orpiment

GA IND GA
CIN GA

GA LW GA
ORP EG

GA

 Malachite
Lead White

GA MLC GA
LW EG

GA MLC GA
MLC EG

GA

 Malachite
Lead White

EG LW EG
MLC GA

EG LW EG
ORP EG

EG

 Verdigris
Lead White

GA LW GA
VG GA

GA LW GA
LAP EG

GA

 Verdigris
Lead White

EG LW EG
VG GA

EG IND GA
OC EG

GA

 Cinnabar
Lead Tin Yellow
Lead White

GA LW GA
LW EG
LTY GA

GA CA EG
ORP EG
SM GA

EG

 Cinnabar
Lead Tin Yellow
Lead White

EG CIN EG
MIN EG
LW EG

EG ORP EG
LW GA
MIN EG

EG
To detail the results, Tables  3 and 4 show a comparison between 
OMNIC and data fusion results using set 3 as the training set, as this 
was the case with performance closest to the average.

For samples deposited on paper support, unmixing with data fusion 
chooses a correct constituent of the mixture as the endmember with the 
highest concentration in all cases. In most of the triphasic samples, the 
error in the second endmember with the highest proportion predicted 
occurs only in the binder, so they are considered as a correct guess, 
as only the pigment or dye is taken into account for the second 
endmember. Furthermore, in all samples of this subset, the binder of the 
endmember with the highest predicted concentration is the correct one 
present in the triphasic or quadriphasic mixture for the fused spectra 
(100%), while OMNIC identifies the binder in two thirds of the cases. 
For the paper support, the proposed method using data fusion correctly 
identifies 84.6% of the endmembers, while OMNIC correctly identifies 
only 23.1%.

In the case of samples deposited on parchment, a similar behavior is 
observed. Again, in all cases, the endmember with the highest predicted 
concentration is in fact one of the pigments or dyes actually used to 
make the mixture. Data fusion correctly identifies 70% of endmembers, 
while OMNIC does so for only 20%. As for the binders, in this case the 
data fusion approach does well in almost all cases (94.7%), as it only 
fails for the carmine and lead white mixture bound with gum arabic. 
As for OMNIC, the binder is correctly identified in almost half of the 
mixtures (47.4%).

Confusion between painting materials similar in color (lead tin 
yellow for imperial yellow ink or gamboge, all yellow) or composition 
(lead tin yellow for lead white or minium, all containing lead) is 
commonly observed, which is an expected behavior when using two 
techniques where specific bands may have been masked in the case of 
complex mixtures.

OMNIC presents considerable problems for the automated identi-
fication of the painting components, probably because it is using the 
DRIFTS spectrum and does not take into account the color of the 
samples, although it does not perform too badly in the identification 
of the binder.
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In the majority of quadriphasic samples, two of the endmembers are 
correctly identified, but again, it is common to find that confusion has 
occurred between lead-tin yellow and minium.

As for the proportions of endmembers, the first usually has a pre-
dicted concentration around 40%, and the second around 30%, with 
the remaining 30% distributed among the rest of the candidates. The 
case of the mixture of malachite and lead white bound with egg 
glair on paper stands out, in which the concentration of lead white is 
predicted to be above 99%, indicating the dominance of lead white in 
the spectrum of the mixtures in which it is present.

In light of our results it is observed that, for the mock-ups, when 
using data fusion for unmixing, the endmember with the highest pre-
dicted concentration corresponds to one of the actual painting com-
ponents of the mixture, offering a good result for binder recognition, 
which is in line with the conclusions of the PCA analysis.

3.4. Unmixing validation in historical documents

A total of 64 points between the manuscripts on parchment and 
the maps were chosen for the validation of the proposed method on 
real documents. From these measurements, Fig.  4 shows four examples, 
chosen in such a way that two of them correspond to good results and 
two of them to bad results.

Fig.  4 shows four examples of XRF spectra captured in illuminated 
manuscripts from the Archive of the Royal Chancellery of Granada. The 
spot in Fig.  4(a) was captured on the hand of the drawn character. Its 
XRF spectrum shows a high presence of lead (peaks Pb 𝛼, Pb L𝛽 and 
Pb L𝛾) and copper (peaks Cu K𝛼 and Cu K𝛽). Given the color of the 
hand, it can be assumed that it is a mixture of lead white with another 
painting material, possibly a dye, undetectable with XRF. The copper 
detected could be due to the green clothes painted around or beneath 
the hand, that may have malachite or verdigris, and is very close to the 
point of measurement. Unmixing with data fusion spectra identifies this 
painting material as a mixture of lead white (50%) and gamboge (30%), 
with the rest of endmembers scoring a concentration below 10%.

The spot in Fig.  4(b) was taken on a blue feather from a coat of 
arms. XRF analysis shows a high presence of lead (peaks Pb M 𝛼, Pb 
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Table 4
OMNIC results and data fusion unmixing results using set 3 as the training set on parch-
ment support. Green: All correct components. Red: No correct components. Yellow: One 
correct component (triphasic mixtures). Orange: One correct component (quadriphasic 
mixtures). Blue: two correct components (quadriphasic mixtures).

Mixture Fusion OMNIC
 Pigments/Dyes Binder Endmembers Binder Endmembers Binder
 Azurite
Gamboge

GA AZ GA
GMB GA

GA BU EG
CARM GA

EG

 Azurite
Lead White

GA LW GA
OC GA

GA BU EG
OC EG

EG

 Azurite
Lead White

EG AZ EG
LW EG

EG AZ GA
CA EG

GA

 Carmine
Gamboge

GA GMB GA
IYI

GA VG GA
LTY GA

GA

 Carmine
Lead White

GA LW EG
IYI

EG HMT GA
GMB GA

GA

 Cinnabar
Lead White

GA CIN GA
LW GA

GA VG GA
LW GA

GA

 Cinnabar
Lead White

EG CIN EG
LW EG

EG CARM GA
ORP EG

GA

 Gamboge
Malachite

GA GMB GA
MLC GA

GA BU EG
CIN GA

EG

 Gamboge
Verdigris

GA VG GA
GMB GA

GA CIN GA
LAP GA

GA

 Indigo
Orpiment

GA IND GA
LAP GA

GA LAP GA
LAP EG

GA

 Lead Tin Yellow
Lead White

GA LW GA
IYI

GA LTY EG
AZ EG

EG

 Malachite
Lead White

EG LW EG
MLC EG

EG GMB GA
SM GA

GA

 Minium
Lead Tin Yellow

GA MIN GA
GMB GA

GA LTY EG
LAP EG

EG

 Minium
Lead Tin Yellow

EG MIN EG
ORP EG

EG HMT EG
IYI

EG

 Saffron
Gamboge

GA GMB GA
IYI

GA BU GA
ORP GA

GA

 Verdigris
Lead White

GA VG GA
LTY EG

GA VG GA
LW GA

GA

 Verdigris
Lead White

EG LW EG
VG GA

EG CIN EG
HMT EG

EG

 Cinnabar
Lead Tin Yellow
Lead White

GA LW GA
GMB GA
IYI

GA AZ EG
ORP GA
BU GA

EG

 Cinnabar
Lead Tin Yellow
Lead White

EG MIN EG
LW EG
CIN EG

EG GMB GA
LTY EG
CIN EG

GA
L 𝛼, Pb L𝛽 and Pb L𝛾) and copper (peaks Cu K𝛼 and Cu K𝛽), together 
with some peaks of gold that may come from the surrounding golden 
details. The copper suggests the presence of azurite, which is consistent 
with the blue color of the sample, which may be mixed with lead white. 
The proposed method identifies the painting material as a mixture of 
lead white (63%) and azurite (30%), which is in line with the color of 
the sample and the XRF results.

Fig.  4(c) shows another carnation on a hand. In this case, in the 
XRF spectrum, the lead peaks stand out, suggesting the presence of 
lead white. Some peaks from gold are observed, probably due to the 
surrounding golden details. However, in this case the unmixing with 
the data fusion spectrum does not detect the presence of lead white, 
but identifies it as a mixture of equal parts of saffron, imperial yellow 
ink and cinnabar, which does not agree with XRF results, showing the 
limitations of the proposed model. This could be due to the presence 
of a colorant in the fleshings, such as carmine, whose identification is 
usually complex by these methods and whose proportion compared to 
lead white would be minimal. In addition, it is also possible that the 
interaction of the lead white with the binder makes its identification 
more difficult.

Finally, the brown feather in Fig.  4(d) shows a high presence of 
calcium and iron, according to XRF spectra. The latter may be due to 
the iron oxide present in the brown ochre pigment, and the calcium 
might indicate the occurrence of calcite. Indeed, brownish and umber 
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pigments belong to the so-called earthy pigments which are polymin-
eral natural mixtures colored with free iron oxides, where clay minerals 
and calcite can be present [40]. According to unmixing, it is a mixture 
of equal parts of minium or cinnabar, which does not agree with the 
XRF spectrum, since this technique would detect the presence of lead 
(minium, (𝑃𝑏3𝑂4) and mercury (cinnabar, 𝐻𝑔𝑆).

Considering the complete set of measurements in historical doc-
uments, unmixing with data fusion correctly identifies at least one 
painting component among the three endmembers with the highest 
predicted concentration in 65% of the cases. In general, the proposed 
method easily detects the presence of azurite, lead-tin yellow, cinnabar 
and malachite or verdigris. Lead white is often correctly identified in 
mixtures with other pigments, but present difficulties when mixed with 
dyes. The model presents problems with brown samples, that could 
contain many painting components. It also struggles in cases where 
paint layers are very thin, where limitations are mainly caused by the 
detection limit of the instruments and the high influence of the support 
on the DRIFTS spectra, as studied in [21].

In summary, for historical illuminated manuscripts, the proposed 
method can be of great help for painting materials characterization, es-
pecially when considering the possible presence of organic dyes. In this 
way, the results of automatic unmixing assists confirming hypotheses 
about the presence of certain pigments and dyes, as observed in the 
cases of Fig.  4(a) and (b).
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Fig. 4. Examples of XRF spectra in historical documents, all of them with parchment support.
4. Conclusions

This study presents a methodology for non-invasive identification 
of painting materials in historical documents and mock-ups, includ-
ing pigments, dyes, binders and its mixtures using spectral unmixing 
and data fusion. By combining Diffuse Reflectance Infrared Fourier 
Transform Spectroscopy (DRIFTS) and Hyperspectral imaging (HSI), 
we demonstrate that low-level data fusion significantly outperforms 
individual techniques in both accuracy and concentration prediction.

As the first step for the proposed unmixing pipeline, the complement 
of the Goodness-of-Fit Coefficient (cGFC) was chosen as the comparison 
metric. It gave the best results for all modalities of spectra, achieving 
the highest percentage of correctly identified painting components and 
the lowest RMSE in predicted concentrations.
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A pre-processing step was proposed, including the computing of 
Savitzky–Golay derivative, edge cropping, and normalization. The op-
timization of this step further enhanced the unmixing results, par-
ticularly for fused data, correctly choosing one of the real painting 
components of the sample as the highest concentration predicted end-
member in almost all mock-up cases, which also led to correct binder 
identification.

In the complete set of analyzed historical documents, of which some 
examples were presented in Fig.  4, the proposed method was able 
to correctly identify at least one true painting component in 65% of 
the cases, often detecting key pigments and dyes such as lead white, 
azurite, malachite, and cinnabar. However, it is likely that these results 
could be improved if artificially aged samples were used to constitute 



F. Moronta-Montero et al.

-

Microchemical Journal 218 (2025) 115223 
the endmember library, since the degradation of the different painting 
materials over time can change their spectral response [41].

However, this correct identification rate for historical documents 
is not only the result of pigment alteration and material aging, but 
also reflects the limitations of DRIFTS and HSI. Both techniques can 
struggle with weak signals and overlapping spectral features, which, 
in addition to the presence of complex mixtures, may reduce iden-
tification accuracy. Furthermore, it is also important to consider the 
limitations of the sensors that were used. Increasing spectral resolution 
and expanding the sensitivity limits to higher infrared wavelengths 
may improve the identification of painting components. This 65% rate 
should be regarded as a realistic outcome that highlights the challenges 
of applying these non-invasive techniques to historical documents.

It should be noted that DRIFTS and HSI are surface-sensitive tech-
niques with shallow penetration depths, and their spectra can be in-
fluenced by the optical and chemical properties of the support mate-
rial [21] in the case of thin painting layers. In contrast, XRF penetrates 
more deeply into the sample and provides elemental information, 
which is less affected by surface heterogeneity. Therefore, the three 
techniques should be interpreted as complementary: by combining 
the proposed unmixing method with fused spectra and XRF elemental 
analysis, hypotheses about the painting materials present in historical 
documents can be proposed and confirmed more reliably than by using 
the three techniques separately.

An unavoidable limitation of this type of study is the fact that the 
endmember library, although extensive, does not include all pigments, 
dyes and binders present in historical illuminated manuscripts. The 
development of new datasets with spectral information of painted 
objects from different time periods and places is essential to facilitate 
the work of conservators and restorers, providing them with more 
precise information on what materials may be present in the documents 
in a non-invasive way.

Future work should focus on expanding the endmember library to 
include a broader range of historical painting components, including 
the presence of laquers and aged pigment spectra, either by artificial 
aging or by applying mathematical aging models to existing endmem-
ber spectra. It is also important to explore unmixing models that 
incorporate non-linearities or spatial constraints, which could further 
improve accuracy. Integration of spatial–spectral data from hyperspec-
tral imaging (HSI) within the fused spectra may also provide new 
insights, particularly in the mapping of painting components across the 
manuscript pages. In addition, fusion with other techniques, such as 
Raman spectroscopy, or a tandem between X-ray diffraction and X-ray 
fluorescence, can be explored to increase the amount of independent 
information that can provide more characteristic signatures of each 
painting component.
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