
Research Article Vol. 32, No. 6 / 11 Mar 2024 / Optics Express 10392

Estimation of daylight spectral power
distribution from uncalibrated hyperspectral
radiance images

MAXIMILIAN CZECH,1,2 STEVEN LE MOAN,2,* JAVIER
HERNÁNDEZ-ANDRÉS,3 AND BEN MÜLLER1

1Cubert GmbH, Ulm, Germany
2Colourlab, Department of Computer Science, Norwegian University of Science and Technology, Gjøvik,
Norway
3Color Imaging Lab, Optics Department, University of Granada, 18071, Spain
*steven.lemoan@ntnu.no

Abstract: This paper introduces a novel framework for estimating the spectral power distribution
of daylight illuminants in uncalibrated hyperspectral images, particularly beneficial for drone-
based applications in agriculture and forestry. The proposed method uniquely combines
image-dependent plausible spectra with a database of physically possible spectra, utilizing an
image-independent principal component space (PCS) for estimations. This approach effectively
narrows the search space in the spectral domain and employs a random walk methodology to
generate spectral candidates, which are then intersected with a pre-trained PCS to predict the
illuminant. We demonstrate superior performance compared to existing statistics-based methods
across various metrics, validating the framework’s efficacy in accurately estimating illuminants
and recovering reflectance values from radiance data. The method is validated within the spectral
range of 382–1002 nm and shows potential for extension to broader spectral ranges.
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1. Introduction

Multi- and hyperspectral imaging have gained significant scientific interest in a variety of fields
over recent decades, notably in satellite-based earth observation [1], agricultural surveillance [2],
food quality assessment [3], and cultural heritage preservation [4]. A fundamental pre-processing
step in these applications involves converting the captured radiance data into reflectance values.
This is traditionally accomplished by using a reference target as ground truth, a method which
presents challenges particularly in uncontrolled outdoor settings due to weather factors, limited
site accessibility and/or the size of the area of interest [5].

This study introduces a novel approach to estimate the spectral power distribution (visible and
near infrared) of the main illuminant in uncalibrated hyperspectral images, focusing on outdoor
scenes where sunlight is the dominant illumination. It leverages image statistics and employs
constraints to tackle the ill-posed problem of illuminant estimation. We demonstrate that the
proposed approach outperforms state-of-the-art methods in terms of several well established
metrics. This work shifts the focus from existing estimation methods, which often rely on specific
scene content, to a more robust, scene-independent methodology. The research stands out in
two key aspects: the use of an image-independent principal component space and an innovative
algorithm combining information from both image-dependent and physically plausible spectra.

2. Related work

Illuminant estimation methods can be broadly classified into four categories. The target-based
approach relies on a calibration object present in the scene, such as a Macbeth ColorChecker.
Image statistics-based methods leverage image-dependent variables in tandem with statistical
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frameworks. Physics-based methods model scene-specific physical properties for illumination
retrieval. Lastly, learning-based approaches employ machine learning models such as neural
networks.

The standard method in illuminant estimation to date is the target-based approach, relying on a
reference tile with known reflectance such as a Spectralon or alternatively more cost-effective
materials like Teflon [6–8]. Two essential properties for this tile include a Lambertian surface
for uniform reflection regardless of viewing angle [9], and near 100% reflectance across the
spectrum of interest. Placement and angle of the tile should approximate that of the object being
measured. Common practice in airborne or UAV-based applications is to capture reference data
before and after the flight [10–12]. Exposure time and other parameters should be optimized
to maximize sensor response while avoiding saturation, given that sensor behaviour becomes
nonlinear near saturation [11,13,14]. The flat-fielding equation serves to calculate reflectance
values from raw sensor data, incorporating dark current intensity and a correction factor for
tiles with reflectance factors below 1.0 [7]. Drawbacks of this approach become apparent in
uncontrolled environments with changing illumination conditions, demanding multiple reference
captures for accuracy [5,15]. Though automation solutions exist [16], they still require manual
setup and are ill-suited for most scenarios. Challenges also arise in airborne systems, particularly
when it is not possible to properly place a reference target, as in forest canopy measurements
[17,18].

Image statistics-based approaches constraint the search space by relying on specific assumptions
[19]. A common way to achieve this is through algorithms designed for illuminant chromaticity
estimation in color images. These algorithms are rooted in the human visual system’s (HVS)
ability for chromatic adaptation and color constancy [20–27]. Notable algorithms include the
grayworld [28], retinex or max-RGB [29], shades-of-gray [30], and gray-edge [31] algorithms.
The Grayworld algorithm adjusts the image colors based on the assumption that the average scene
color is gray, effectively neutralizing color casts in uniformly colored scenes. The Max-RGB
algorithm operates on the premise that the brightest values in each color channel are influenced by
the light source, adjusting these to represent white light and correct the light source’s color effect.
The Shades-of-Gray algorithm is a further refinement that generalizes the Grayworld assumption
by calculating the average color using a Minkowski norm, allowing for more flexible adjustments
across scenes with varying levels of lightness. The Gray-Edge algorithm, an extension of
Grayworld, assumes the average edge color in a scene is gray, enhancing color correction in
areas with significant textures or edges for more nuanced adjustments. Each of these algorithms
employs a unique strategy to improve image color perception, making them suited to different
scenarios and lighting conditions. They were all extended for multi-spectral channel estimation
[32,33]. Grayworld, for example, is computationally simple but often inaccurate due to its
dependency on image content. Similarly, shades-of-gray and max-RGB can be described through
the Minkowski norm, with varying parameters for p [30]. Furthermore, spectral variations of
these algorithms, particularly max-spectra and spectral gray-edge, have been found to yield the
best results [32]. Another distinct method uses a six-channel system and illuminant databases
[34], but it suffers from high database dependency.

Physically-based methods for illuminant estimation utilize the physical attributes of a scene
to infer its illumination conditions. These methods typically rely on the specular reflections on
object surfaces to estimate the Spectral Power Distribution (SPD) of the light source [35,36].
The underlying principle is the dichromatic reflectance model. The hyperspectral image is
usually segmented into specular and nonspecular regions [37,38]. The identification of highlight
areas is performed through various techniques, such as the simplest form of pixel brightness
to more advanced methods like receptive field modelling [38,39]. Post detection, the SPD
of the light source is estimated using different strategies, including clustering methods and
optimization frameworks [37,38,40]. However, these methods are not without limitations. They
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often require surfaces with dichromatic properties and may not perform well otherwise [37,38].
Additional constraints involve the need for objects that are both shaded and illuminated [40], or
the assumption of convex surfaces [38]. Challenges also arise in accurately detecting specular
highlights [41] and in handling scenes mainly composed of vegetation.

Learning-based methods for illuminant estimation, particularly those using neural networks,
have gained attention due to developments in deep learning. While abundant research exists in
the colorimetric domain [42], fewer works focus on hyperspectral imaging for this application
[43–45]. The primary challenge is the requirement for a large volume of training data, specifically
for hyperspectral images. Unlike RGB images, for which datasets are plentiful [46], hyperspectral
data lack standardization and comparable availability. Issues include variable numbers of
channels, spectral ranges, and sensor sensitivities [47]. [47] offered a model utilizing a pre-
trained Convolutional Neural Networks (CNN) with an architecture similar to [48]. The network
was fine-tuned to estimate illuminants using patches from the spectral cube as input. This method
is, however, restricted to the visible range (400-700nm) with a resolution of 10nm and is designed
to detect only "smooth spectra". The primary focus of this work is on colorimetric estimation
rather than spectral, limiting its applicability for objective evaluation in spectral illuminant
prediction [47]. The potential of learning-based methods is promising, but current limitations
include the need for massive training data, model-specific applicability, and a focus mainly on
colorimetric estimates rather than spectral counterparts.

3. Methodology

This work proposes a methodology for estimating the Spectral Power Distribution (SPD) of an
illuminant from uncalibrated hyperspectral imagery. Our approach integrates two fundamental
components, which are detailed in this section: constraints derived from the image data and a
data-driven prior knowledge of SPDs. By defining a probable spectral domain and generating
‘spectral candidates’ that reflect potential SPDs, we merge these with a database of real-world
illuminants in a Principal Component Space (PCS). The estimated SPD, derived from the
intersection within the PCS, is then applied to convert radiance into reflectance, highlighting
the significance of spectral candidates in the estimation process. This approach, anchored in
image statistics, distinguishes itself from traditional methods by its reliance on synthesized and
empirical data for SPD estimation.

3.1. Defining constraints within the spectral search space

Estimating the SPD of illumination from radiance data is challenging due to the absence of
ground truth. The proposed method presumes uniform and diffuse illumination across the
captured scene. We acknowledge the assumption of uniform and diffuse illumination might seem
restrictive; it is, however, an acceptable approximation of the common environmental conditions
encountered in drone-based agricultural and forestry surveillance [49,50]. This assumption
simplifies the complex interaction of light with various surfaces, enabling a focused study on the
spectral estimation from radiance images. The work primarily focuses on daylight spectra for two
reasons: suitability for UAV-based applications where weather and lighting rapidly change [5],
and the availability of a larger, varied set of daylight reference data. It is also assumed that no
self-emitting objects are present in the scene and that radiance data is radiometrically calibrated
and normalized between 0 and 1.

With these assumptions, two main constraints are introduced to reduce the search space:

• The upper limit of possible SPD is determined by a uniform spectrum across all wave-
lengths. This is termed maxConstraint, and it sets the upper boundary for the search area
for an unknown illuminant, as depicted in Fig. 1. Additional constraints based on varying
illuminants were considered but dismissed to avoid overfitting at this stage.
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• The lower limit of possible SPD is set by the highest pixel value in each spectral band,
which we refer to as minConstraint. Given that the maximum possible response at each
wavelength is 1.0, and objects are assumed to be only reflective, this establishes the
minimum SPD for the illuminant.

wavelength is 1.0, and objects are assumed to be only reflective, this establishes the
minimum SPD for the illuminant.

The SPD of an unknown illuminant is assumed to fall within the area defined by these
minConstraint and maxConstraint limits.

Fig. 1. minConstraint and maxConstraint define the search area for the unknown
illuminant SPD.

3.2. Generating the Spectral Candidates

We generate candidate solutions employing a random walk approach, inspired by Pearson’s
formulation [51], which models paths as successive random steps. This stochastic process is
useful to explore variable outcomes through random movements. Initially, we select a random
𝑌 -value for the starting point (𝑥1, 𝑦1), with 0 ≤ 𝑗 ≤ 1. For each subsequent point up to 𝑥𝑛, we
determine 𝑦𝑖 values by generating a random number −1 ≤ 𝑚𝑖 ≤ 1 that dictates the direction and
magnitude of movement along the 𝑌 -axis. This process yields a "rough" spectrum within the
desired range, distinct from white noise.

To smooth this spectrum, we apply the LOWESS (Locally Weighted Scatterplot Smoothing)
method [52], a non-parametric regression technique that effectively smooths scatterplots for
enhanced data analysis. It combines multiple regression models in a k-nearest-neighbor-based
meta-model, providing local adaptability and robustness against outliers. Its performance can be
adjusted through a single parameter, making it particularly suitable for smoothing daylight spectra,
as noted by [53]. The adaptability of LOWESS allows for detailed analysis and smoothing of
data with non-linear relationships or varying patterns of dispersion, enhancing the accuracy of
our spectral simulations.

Our objective is not to identify the actual illuminant but to create plausible illuminant
spectra for further analysis. To this end, we utilise Principal Component Analysis (PCA) for
dimensionality reduction, enhancing noise resilience and constructing a data-driven prior. This
involves integrating variable reflectance spectra with empirically measured illuminant Spectral
Power Distributions (SPDs) to form a Principal Component Space (PCS). This space encompasses
both physically plausible illuminant spectra, such as those from the Granada daylight spectral
database, and spectral candidates derived from image data. By situating these elements within
the PCS, our goal is to refine illuminant estimation through the intersection of these datasets.

Fig. 1. minConstraint and maxConstraint define the search area for the unknown illuminant
SPD.

The SPD of an unknown illuminant is assumed to fall within the area defined by these
minConstraint and maxConstraint limits.

3.2. Generating the spectral candidates

We generate candidate solutions employing a random walk approach, inspired by Pearson’s
formulation [51], which models paths as successive random steps. This stochastic process is
useful to explore variable outcomes through random movements. Initially, we select a random
Y-value for the starting point (x1, y1), with 0 ≤ j ≤ 1. For each subsequent point up to xn, we
determine yi values by generating a random number −1 ≤ mi ≤ 1 that dictates the direction and
magnitude of movement along the Y-axis. This process yields a "rough" spectrum within the
desired range, distinct from white noise.

To smooth this spectrum, we apply the LOWESS (Locally Weighted Scatterplot Smoothing)
method [52], a non-parametric regression technique that effectively smooths scatterplots for
enhanced data analysis. It combines multiple regression models in a k-nearest-neighbor-based
meta-model, providing local adaptability and robustness against outliers. Its performance can be
adjusted through a single parameter, making it particularly suitable for smoothing daylight spectra,
as noted by [53]. The adaptability of LOWESS allows for detailed analysis and smoothing of
data with non-linear relationships or varying patterns of dispersion, enhancing the accuracy of
our spectral simulations.

Our objective is not to identify the actual illuminant but to create plausible illuminant
spectra for further analysis. To this end, we utilize Principal Component Analysis (PCA) for
dimensionality reduction, enhancing noise resilience and constructing a data-driven prior. This
involves integrating variable reflectance spectra with empirically measured illuminant Spectral
Power Distributions (SPDs) to form a Principal Component Space (PCS). This space encompasses
both physically plausible illuminant spectra, such as those from the Granada daylight spectral
database, and spectral candidates derived from image data. By situating these elements within
the PCS, our goal is to refine illuminant estimation through the intersection of these datasets.
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We further refine our analysis using the RANSAC algorithm [54] to fit a line to the set
of plausible daylight illuminants in the PCS. RANSAC’s iterative approach, which selects
random data subsets for model fitting, effectively filters out outliers, ensuring robust and accurate
parameter estimations. This process involves iterative linear model fittings, with the model
accruing the highest number of inliers chosen to represent the daylight illuminant dataset in the
PCS.

Finally, we map the spectral candidates into the PCS, forming a hyperplane that simplifies
their representation. By calculating the centroid C and normal vector N of this hyperplane
through singular value decomposition of matrix M, which represents the spectral candidates, we
streamline the depiction of these candidates within the PCS.

A rough estimate of the illuminant is then achieved by calculating the intersection between the
line and the hyperplane, both represented in the PCS. To validate this estimate, an n-dimensional
convex hull enclosing the valid region of the PCS is constructed using the Quickhull algorithm
by [55]. Points from the illuminant dataset within this region are added to define the valid region
for the estimated illuminant. If Pest lies within this region, it is transformed back into the spectral
domain. If not, the closest point within the valid region is selected, and this point is likewise
transformed back into the spectral domain.

The full process is visualized in Fig. 2, where the red line represents the illuminant dataset, the
plane represents the spectral candidates, the red square marks the intersection point between both,
while the red cross represents the ground truth illuminant. This solution works well, particularly
in the first three dimensions. The obtained rough estimation of the input cubes illuminant is now
validated, refined and transformed back into the spectral domain as described below.

We further refine our analysis using the RANSAC algorithm [54] to fit a line to the set of
plausible daylight illuminants in the PCS. RANSAC’s iterative approach, which selects random
data subsets for model fitting, effectively filters out outliers, ensuring robust and accurate
parameter estimations. This process involves iterative linear model fittings, with the model
accruing the highest number of inliers chosen to represent the daylight illuminant dataset in the
PCS.

Finally, we map the spectral candidates into the PCS, forming a hyperplane that simplifies
their representation. By calculating the centroid 𝐶 and normal vector 𝑁 of this hyperplane
through singular value decomposition of matrix 𝑀 , which represents the spectral candidates, we
streamline the depiction of these candidates within the PCS.

A rough estimate of the illuminant is then achieved by calculating the intersection between the
line and the hyperplane, both represented in the PCS. To validate this estimate, an 𝑛-dimensional
convex hull enclosing the valid region of the PCS is constructed using the Quickhull algorithm
by [55]. Points from the illuminant dataset within this region are added to define the valid region
for the estimated illuminant. If 𝑃𝑒𝑠𝑡 lies within this region, it is transformed back into the spectral
domain. If not, the closest point within the valid region is selected, and this point is likewise
transformed back into the spectral domain.

The full process is visualised in Figure 2, where the red line represents the illuminant dataset,
the plane represents the spectral candidates, the red square marks the intersection point between
both, while the red cross represents the ground truth illuminant. This solution works well,
particularly in the first three dimensions. The obtained rough estimation of the input cubes
illuminant is now validated, refined and transformed back into the spectral domain as described
below.

Fig. 2. The red line is fitted using RANSAC on the illuminant dataset (green dots), the
plane representing and the the spectral candidates are shown in gray. The intersection
point is marked as red square, whereas the ground truth is shown as red ’X’.

Finally, this transformed point is verified to meet the initial constraints.

Fig. 2. The red line is fitted using RANSAC on the illuminant dataset (green dots), the
plane representing and the spectral candidates are shown in gray. The intersection point is
marked as red square, whereas the ground truth is shown as red ‘X’.

Finally, this transformed point is verified to meet the initial constraints.
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3.3. Optimization of the input parameters

To optimize model parameters for accurate illuminant estimation, an optimization process was
conducted using the complemented goodness of fit (CGFC) metric [56] (detailed in Section 4.2)
due to its effectiveness in comparing overall spectral shapes. Radiance cubes were computed
for three test images (excluded from the final test dataset) and 20 randomly selected daylight
illuminants. Subsequently, various model configurations were examined by altering several input
parameters. The parameters adjusted included the number of spectral candidates with values of
500, 1000, 1500, and 2000; the smoothing method with options of none, Median, and LOWESS;
the Median kernel size with values of 3, 5, and 7; the smoothing LOWESS factor (f ) with values
of 0.03, 0.08, and 0.15; and the number of principal components (PC) for reconstruction with
values of 3 and 6.

The optimization revealed that 500 spectral candidates often proved insufficient for meaningful
volume definition when computing the six-dimensional convex hull during the validation process.
This shortfall was especially pronounced in input images where the minConstraint failed to
significantly reduce the search area in the spectral domain. In extreme cases, none of the spectral
candidates intersected with the set of physically plausible illuminants within the PCS. Ultimately,
1500 spectral candidates were chosen to strike a balance between detailed volume creation for
estimation and computational efficiency.

LOWESS smoothing was pitted against a Median filter under varying configurations to evaluate
their performance as outlined in Section 3.2. Both algorithms were tested with three smoothing
levels. Expectedly, LOWESS yielded a more naturally shaped generated curve while retaining
local variation, with a smoothing factor of f = 0.03 identified as the most effective overall.

4. Experiments

To assess our image statistics-based framework, we tested its ability to estimate illuminant spectra
and reconstruct relative reflectance from radiance cubes. We simulated normalized radiance
images from known reflectances and daylight illuminants for this purpose. The framework
predicted the illuminant spectrum for each cube without a reference target. Evaluations
were conducted using full reference metrics including the Root Mean Square Error and the
Complemented Goodness-of-Fit Coefficient (detailed in Section 4.2), comparing our method
against spectral grayworld, spectral gray-edge, and max-spectral algorithms. Additionally, we
estimated Spectral Power Distributions (SPD) to recover relative reflectance, comparing the
outcomes to ground truth and applying the same metrics for accuracy assessment.

4.1. Data preparation

4.1.1. Reducing the bias within the illuminant database

The Correlated Color Temperature (CCT) is a common method to characterize daylight, correlating
a spectrum to a Planckian radiator’s temperature to indicate perceived color [57,58]. Metamerism,
a trait of the human visual system, allows multiple spectra to share the same CCT. The CCT of
an SPD is found by comparing its CIE 1931 x,y chromaticity coordinates to a Planckian locus,
built within the CIE 1931 chromaticity space [59]. Natural and artificial light sources often
align with this locus, and their CCT is determined by the closest point on the locus. A more
perceptually meaningful scale, the inverse CCT, represents a light source’s color, converting
CCT to reciprocal mega-Kelvin (MK−1) for a better classification of irradiance spectra in the
VIS range, calculated as CCT−1 = 106/CCT .

As stated by the authors [60], the Granada daylight spectral database is biased towards
illuminants of an inverse CCT of around 175 to 180MK−1. To mitigate this, we did a stratified
sampling by segmenting the dataset into regions with a range of 5MK−1 each, spanning from 5
to 270MK−1. Up to 40 spectra were then randomly selected from the dataset for each region
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to simulate a more uniform distribution. At the extremes, only a few spectra were available for
selection. The result was a dataset of 1326 daylight spectra, which replaces the initial dataset in
all calculations that are described from now on.

4.1.2. Simulating radiance cubes for testing

To test the proposed framework a dataset of relative radiance consisting of a total of 150 radiance
cubes with a value range from 0 to 1 was calculated. The radiance test cubes were created by
combining a set of 25 ground truth reflectance cubes and six representative illuminant spectra,
assuming homogeneous illumination conditions. To obtain the reflectance data, 25 radiance cubes
were recorded first by using a Cubert Ultris X50 as well as a Cubert Ultris X20 hyperspectral
snapshot camera mounted on an UAV. Both cameras are radiometrically calibrated and capture
a spectral range of 350 - 1002nm with a spectral sampling of 4nm, resulting in 164 channels
with a bit depth of 12 bit. While the Ultris X20 provides a native spatial resolution of 410x410
pixels, the spatial resolution of the Ultris X50 is 570x570 pixels. The image cubes of the
Ultris X50 were cropped to 550x550 pixels to remove artifacts that were present in some of the
images. Immediately before the capture of each radiance cube, a white and dark calibration
cube was recorded on scene with the respective camera. The position and angle of the white
tile was approximately the same as the surface to be captured. Special care was taken to avoid
measurements under rapid changes in illumination conditions, such as partial cloud cover. For
the white calibration, a Spectralon tile with a reflectance factor of >99% over the spectral range
of 400 - 1500nm was used as reference. To account for dark current noise, the sensor was
covered from any incident light when capturing the dark reference. The calibration measurements
were then used to calculate reflectance data from the original radiance measurements. These
reflectance values were considered as ground truth reflectances.

Colorimetric thumbnail example images of the reflectance cubes rendered in sRGB using the
CIE D65 standard illuminant at a spectral resolution of 5nm and the CIE 1964 color matching
functions at 5nm resolution are shown in Fig. 3 below. With a focus on drone-based applications,
the images show a variation of vegetation and crops as well as soil, dirt, and tarmac roads as well
as other man-made objects like cars and houses. But also several cubes captured under controlled
conditions in the lab were included.

to simulate a more uniform distribution. At the extremes, only a few spectra were available for
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all calculations that are described from now on.
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cubes with a value range from 0 to 1 was calculated. The radiance test cubes were created by
combining a set of 25 ground truth reflectance cubes and six representative illuminant spectra,
assuming homogeneous illumination conditions. To obtain the reflectance data, 25 radiance cubes
were recorded first by using a Cubert Ultris X50 as well as a Cubert Ultris X20 hyperspectral
snapshot camera mounted on an UAV. Both cameras are radiometrically calibrated and capture
a spectral range of 350 - 1002nm with a spectral sampling of 4nm, resulting in 164 channels
with a bit depth of 12 bit. While the Ultris X20 provides a native spatial resolution of 410x410
pixels, the spatial resolution of the Ultris X50 is 570x570 pixels. The image cubes of the
Ultris X50 were cropped to 550x550 pixels to remove artifacts that were present in some of the
images. Immediately before the capture of each radiance cube, a white and dark calibration
cube was recorded on scene with the respective camera. The position and angle of the white
tile was approximately the same as the surface to be captured. Special care was taken to avoid
measurements under rapid changes in illumination conditions, such as partial cloud cover. For
the white calibration, a Spectralon tile with a reflectance factor of > 99% over the spectral range
of 400 - 1500nm was used as reference. To account for dark current noise, the sensor was
covered from any incident light when capturing the dark reference. The calibration measurements
were then used to calculate reflectance data from the original radiance measurements. These
reflectance values were considered as ground truth reflectances.

Colourimetric thumbnail example images of the reflectance cubes rendered in sRGB using
the CIE D65 standard illuminant at a spectral resolution of 5nm and the CIE 1964 colour
matching functions at 5nm resolution are shown in Figure 3 below. With a focus on drone-based
applications, the images show a variation of vegetation and crops as well as soil, dirt, and tarmac
roads as well as other man-made objects like cars and houses. But also several cubes captured
under controlled conditions in the lab were included.

Fig. 3. Example images from the test dataset, rendered as sRGB images using CIE
standard illuminant D65 and CIE 1964 colour matching functions.

Fig. 3. Example images from the test dataset, rendered as sRGB images using CIE standard
illuminant D65 and CIE 1964 color matching functions.
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From the altered illuminant dataset described in Section 4.1.1, six representative spectra were
selected based on their inverse CCT (see Fig. 4). These spectra were used along the reflectance
cubes for the calculation of radiance test images and were removed from the illuminant dataset.
The rest of the illuminant dataset was used to calculate the training data for the PCS, as described
in Section 4.1.3. The illuminant data was cropped and linearly interpolated to match the spectral
bands recorded by the Cubert Ultris cameras.

From the altered illuminant dataset described in Section 4.1.1, six representative spectra were
selected based on their inverse CCT (see Figure 4). These spectra were used along the reflectance
cubes for the calculation of radiance test images and were removed from the illuminant dataset.
The rest of the illuminant dataset was used to calculate the training data for the PCS, as described
in Section 4.1.3. The illuminant data was cropped and linearly interpolated to match the spectral
bands recorded by the Cubert Ultris cameras.

Fig. 4. Chosen SPD of the Granada daylight spectral dataset based on their CCT−1.

4.1.3. Simulating Radiance Data for Training of the PCS

Besides preparing radiance cubes for testing the framework, radiance spectra were simulated
to serve as a training dataset to fit the image-independent PCS. The training dataset contains
a total of 316.800 radiance spectra. It was created by combining 240 reflectance spectra and
a total of 1320 illuminant spectra described in 4.1.1. The reflectance spectra, kindly provided
by the University of Granada, were obtained by measuring a Greta McBeth colourChecker DC
using a Photoresearch PR745 spectroradiometer within a spectral range of 380 - 1080nm. The
spectra of the Granada daylight spectral database that were not used for creating the radiance test
cubes served as SPD for the calculation for all combinations of reflectance and radiance spectra,
resulting in 316.800 training spectra in a range of 380 - 1080nm.

Afterwards, it was assured that all data involved in the illuminant estimation was sharing a
common spectral range and spectral resolution. This was necessary to make it possible to fit
the common PCS, transfer the input data into it, calculate the intersection and convert the data
back to the spectral domain. Therefore, the training and the test dataset as well as the illuminant
database were all cropped to a common spectral range of 382 - 1002 nm. Then, the training and
illuminant datasets were linearly interpolated to match the spectral bands of the radiance data.

4.2. Evaluation Metrics

Various full-reference metrics evaluate the estimated SPD and reflectance values against ground
truth data. Root Mean Square Error (RMSE) assesses the average magnitude of differences
between estimated and original spectra, with a range of 0 (perfect match) to 1 (worst match),
or infinity if data isn’t normalised. Goodness of Fit Coefficient (GFC) compares two spectra,
with an adjusted version, the Complemented Goodness-of-Fit Coefficient (CGFC), allowing

Fig. 4. Chosen SPD of the Granada daylight spectral dataset based on their CCT−1.

4.1.3. Simulating radiance data for training of the PCS

Besides preparing radiance cubes for testing the framework, radiance spectra were simulated
to serve as a training dataset to fit the image-independent PCS. The training dataset contains
a total of 316.800 radiance spectra. It was created by combining 240 reflectance spectra and
a total of 1320 illuminant spectra described in 4.1.1. The reflectance spectra, kindly provided
by the University of Granada, were obtained by measuring a Greta McBeth colorChecker DC
using a Photoresearch PR745 spectroradiometer within a spectral range of 380 - 1080 nm. The
spectra of the Granada daylight spectral database that were not used for creating the radiance test
cubes served as SPD for the calculation for all combinations of reflectance and radiance spectra,
resulting in 316.800 training spectra in a range of 380 - 1080 nm.

Afterwards, it was assured that all data involved in the illuminant estimation was sharing a
common spectral range and spectral resolution. This was necessary to make it possible to fit
the common PCS, transfer the input data into it, calculate the intersection and convert the data
back to the spectral domain. Therefore, the training and the test dataset as well as the illuminant
database were all cropped to a common spectral range of 382 - 1002 nm. Then, the training and
illuminant datasets were linearly interpolated to match the spectral bands of the radiance data.

4.2. Evaluation metrics

Various full-reference metrics evaluate the estimated SPD and reflectance values against ground
truth data. Root Mean Square Error (RMSE) assesses the average magnitude of differences
between estimated and original spectra, with a range of 0 (perfect match) to 1 (worst match),
or infinity if data isn’t normalized. Goodness of Fit Coefficient (GFC) compares two spectra,
with an adjusted version, the Complemented Goodness-of-Fit Coefficient (CGFC), allowing
a direct comparison with RMSE, where 0 indicates a best fit and 1 indicates a worst spectral
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match. Spectral Angle Mapper (SAM) measures the angle between two spectra treated as
n-dimensional vectors, with smaller values indicating more similar spectra, and is insensitive to
intensity differences. Integrated Radiance Error (IRE) calculates the sum of absolute values of
differences at each wavelength, normalized by the integrated reference spectrum, ranging from 0
(best match) to infinity (worst match), and is sensitive to scale changes.

4.3. Comparison to other statistics-based illumination estimation algorithms

In addition to comparing the estimated illuminant and the recovered reflectance cubes against
their respective ground truth data, the estimated SPD is also compared against three other
image statistics-based illumination estimation algorithms, namely spectral grayworld, spectral
gray-edge and max-spectral as proposed by [32]. Since these methods are adopted from their
color constancy algorithm counterparts, they will be referred to as spectral constancy algorithms
when talking about them as a set of algorithms. For each of the radiance cubes used as test data
for the proposed algorithm, the illumination is estimated using each of the spectral constancy
algorithms. Their performance is evaluated by comparison against the ground truth illuminant by
using the spectral full reference metrics CGFC, RMSE, IRE and SAM described in Section 4.2.

5. Results

5.1. Estimated illuminants

After estimating the SPD for each of the 150 radiance input cubes in the common PCS and
reconstructing the illuminant spectra using three principal components, the error metrics explained
in the previous section were computed. The results in terms of the mean CGFC, RMSE, IRE and
SAM over all input cubes are shown in Table 1. In addition, the table shows the performance
compared to state-of-the-art spectral constancy algorithms.

Figure 5 consists of six plots showing an estimated relative SPD against the corresponding
ground truth for each inverse CCT used for the experiments. Below, Table 2 shows the ability of
the proposed model to predict daylight illuminants with a certain inverse CCT. In addition, a plot
of the trendlines for estimating different inverse CCT is shown in Fig. 6.

The reconstruction from the PCS back to the spectral domain using three components yielded
better results than using at least six components, as recommended by [60].

The results in Table 1 show the proposed model’s strong capability to estimate a wide array of
representative daylight SPDs. With a CGFC mean value of 0.02 and a 90th percentile value of
0.05, there is a significant correlation between estimated and ground truth spectra. Despite not
meeting the ’good’ spectral reproduction threshold of CGFC-value ≤ 0.01 on average, as defined
by [61], the model still achieves a promising best CGFC value of 0.0026. Given the complexities
of no-reference illuminant estimation, achieving perfect results across all scenes and conditions
is improbable with a singular algorithm.

In terms of RMSE, the algorithm performs well, evidenced by a mean RMSE of 0.1593 and
0.2795 for the 90th percentile. This is visually corroborated by Fig. 5.

When compared to other image statistics-based algorithms, the proposed model shows superior
performance in most metrics, as outlined in Table 1. Though max-spectral and spectral gray-edge
show better peak performance in specific instances, our model improves precision across a broader
range of inputs. Notably, it exhibits fewer outliers with large reproduction errors, continuing to
deliver the best IRE mean and 90th percentile results. One key to this performance is the model’s
restriction of the estimated illuminant to a volume defined by the Granada daylight illuminant
database, which competing algorithms lack.

An analysis of the SPD estimation results by their inverse CCT indicates higher precision for
illuminants with an inverse CCT of 150 MK−1 and above. The dataset of illuminants encompasses
a broad spectrum of colors and illuminant conditions, and it was cured to reduce bias towards
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Table 1. Results of the estimation of the illuminant SPD
using three components for reconstruction from PCS,

statistical values for all 150 estimated illuminants of the test
dataset.

proposed grayworld max-spectral gray-edge

CGFC

min 0.0026 0.0074 0.0011 0.0049

mean 0.0219 0.2537 0.1279 0.1539

max 0.0832 0.5297 0.3259 0.3527

90thpctl 0.0508 0.4141 0.2675 0.2910

RMSE

min 0.0568 0.0829 0.0368 0.0735

mean 0.1593 0.4156 0.3183 0.3465

max 0.3685 0.6117 0.6533 0.6166

90thpctl 0.2795 0.5430 0.4629 0.4995

IRE

min 0.0022 0.0038 0.0019 0.0003
mean 0.2043 0.2961 0.2815 0.3154

max 0.6775 0.5782 0.7870 0.7262

90thpctl 0.4464 0.4859 0.5824 0.5456

SAM

min 0.0726 0.1213 0.0474 0.0993

mean 0.1889 0.6988 0.4689 0.5207

max 0.4109 1.0812 0.8310 0.8668

90thpctl 0.3200 0.9448 0.7488 0.7827

Fig. 5. Individual reconstruction results, one for each chosen CCT−1. The blue curve
represents the ground truth illuminant used for creating the radiance image, the orange
line is the reconstructed illuminant from three principal components using the proposed
estimation model.

Fig. 6. Trendlines for the mean estimation accuracy of the proposed model per CCT−1

of all evaluation metrics.

5.2. Reconstructed Reflectance Cubes

Comparing ground truth reflectance against reconstructed reflectance using the illuminant SPD
estimated by the proposed model. First, the reflectance cubes are reconstructed by dividing
each radiance cube by its corresponding estimated illuminant. Then, for every individual point
spectrum across all pixels within the 150 reflectance cubes (equal to over 45.3 million point
spectra), the reconstructed reflectance is compared against the ground truth using the metrics

Fig. 5. Individual reconstruction results, one for each chosen CCT−1. The blue curve
represents the ground truth illuminant used for creating the radiance image, the orange line is
the reconstructed illuminant from three principal components using the proposed estimation
model.
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Fig. 5. Individual reconstruction results, one for each chosen CCT−1. The blue curve
represents the ground truth illuminant used for creating the radiance image, the orange
line is the reconstructed illuminant from three principal components using the proposed
estimation model.

Fig. 6. Trendlines for the mean estimation accuracy of the proposed model per CCT−1

of all evaluation metrics.

5.2. Reconstructed Reflectance Cubes

Comparing ground truth reflectance against reconstructed reflectance using the illuminant SPD
estimated by the proposed model. First, the reflectance cubes are reconstructed by dividing
each radiance cube by its corresponding estimated illuminant. Then, for every individual point
spectrum across all pixels within the 150 reflectance cubes (equal to over 45.3 million point
spectra), the reconstructed reflectance is compared against the ground truth using the metrics

Fig. 6. Trendlines for the mean estimation accuracy of the proposed model per CCT−1 of
all evaluation metrics.

Table 2. Results of the illuminant estimation, subdivided by the CCT−1 of the
ground truth SPD.

75MK−1 100MK−1 125MK−1 150MK−1 175MK−1 200MK−1

CGFC

min 0.0117 0.0101 0.0046 0.0026 0.0048 0.0046

mean 0.0566 0.0339 0.0175 0.0081 0.0079 0.0072
max 0.0832 0.0503 0.0277 0.0209 0.0118 0.0144

90thpctl 0.0745 0.0454 0.0260 0.0113 0.0104 0.0118

RMSE

min 0.0818 0.0821 0.0597 0.0568 0.0740 0.0776

mean 0.2698 0.2168 0.1525 0.1020 0.1006 0.1141

max 0.3685 0.2963 0.2237 0.1845 0.1486 0.1881

90thpctl 0.3340 0.2720 0.2125 0.1314 0.1175 0.1695

IRE

min 0.0443 0.0611 0.0123 0.0094 0.0022 0.0112

mean 0.4848 0.3276 0.1719 0.0878 0.0674 0.0862

max 0.6775 0.4638 0.2803 0.2466 0.1799 0.1927

90thpctl 0.6099 0.4238 0.2631 0.1177 0.1051 0.1702

SAM

min 0.1530 0.1420 0.0955 0.0726 0.0984 0.0964

mean 0.3329 0.2559 0.1807 0.1225 0.1242 0.1176
max 0.4109 0.3184 0.2359 0.2047 0.1540 0.1698

90thpctl 0.3884 0.3024 0.2283 0.1506 0.1442 0.1533
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certain color temperatures. Nevertheless, due to the limited availability of reference spectra at the
lower end of the CCT−1 range, we recognize the possibility of a significant under-representation
of illuminants with higher CCTs, which possess a larger ‘blue’ component not typically prevalent
in agricultural and forestry applications.

A comparison between results using the first three and the first six principal components
reveals a performance decline when using six components. Further refinement in the PCS might
improve future estimation accuracy. However, the current work still shows strong performance
with only three principal components. The decline in performance observed when using six
principal components, compared to three, may be due to overfitting or noise amplification.
Further investigation is required to determine more specifically the reason for this observation,
which is beyond the scope of this work.

5.2. Reconstructed reflectance cubes

Comparing ground truth reflectance against reconstructed reflectance using the illuminant SPD
estimated by the proposed model. First, the reflectance cubes are reconstructed by dividing
each radiance cube by its corresponding estimated illuminant. Then, for every individual point
spectrum across all pixels within the 150 reflectance cubes (equal to over 45.3 million point
spectra), the reconstructed reflectance is compared against the ground truth using the metrics
discussed in Section 4.2. From these sets of values, the minimum, mean, maximum, and 90th

percentile are calculated for each metric to evaluate the overall performance of the reflectance
reconstruction. The results are shown in Table 3. Figure 7 then shows a comparison between the
errors of the SPD estimation and the reflectance recovery.

discussed in Section 4.2. From these sets of values, the minimum, mean, maximum, and 90𝑡ℎ
percentile are calculated for each metric to evaluate the overall performance of the reflectance
reconstruction. The results are shown in Table 3. Figure 7 then shows a comparison between the
errors of the SPD estimation and the reflectance recovery.

Table 3. Results of the relative reflectance reconstruction. The results are calculated
using all 45.3 million spectra of the 150 test cubes.

CGFC RMSE IRE SAM

min 0.0002 0.0003 0.0000 0.0200

mean 0.0172 0.0470 0.2312 0.1520

max 0.3364 0.3783 0.7199 0.8451

90𝑡ℎpctl 0.0461 0.1178 0.5110 0.3048

Fig. 7. Comparison of trendlines for the mean results in terms of illuminant SPD
estimation and reflectance recovery of the proposed model per CCT−1 of all evaluation
metrics; first three principal components used.

The evaluation of the reflectance recovery in this Section shows excellent reconstruction
qualities in the best cases with a minimum CGFC value of 0.0002, minimum RMSE of 0.0003 and
a numerically perfect match in terms of IRE. Also, as expected, the overall reflectance estimation
results increase slightly in comparison to the illumination estimation. This improvement is
visualised in Figure 7, where the mean results of all metrics are plotted for the mean SPD
estimation and the reflectance recovery for each inverse CCT. It can be seen that the overall trend
of the curves is the same, but the error is slightly smaller in terms of SAM and significantly
smaller in terms of RMSE over all inverse CCT. Since the illuminant estimation from image data
without ground truth measurements is always dependent on the information present in the image,
some regions of the SPD spectral range might not be properly represented by the input data.
There always exists the possibility that the objects within the scene barely reflect any radiance in
certain ranges of the measured spectrum. Since the illuminant information is recovered from a
particular scene measurement directly, the uncertainties of the estimation results will most likely

Fig. 7. Comparison of trendlines for the mean results in terms of illuminant SPD estimation
and reflectance recovery of the proposed model per CCT−1 of all evaluation metrics; first
three principal components used.

The evaluation of the reflectance recovery in this Section shows excellent reconstruction
qualities in the best cases with a minimum CGFC value of 0.0002, minimum RMSE of 0.0003 and
a numerically perfect match in terms of IRE. Also, as expected, the overall reflectance estimation
results increase slightly in comparison to the illumination estimation. This improvement is
visualized in Fig. 7, where the mean results of all metrics are plotted for the mean SPD estimation
and the reflectance recovery for each inverse CCT. It can be seen that the overall trend of the
curves is the same, but the error is slightly smaller in terms of SAM and significantly smaller in
terms of RMSE over all inverse CCT. Since the illuminant estimation from image data without
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Table 3. Results of the relative reflectance
reconstruction. The results are calculated using all 45.3

million spectra of the 150 test cubes.

CGFC RMSE IRE SAM

min 0.0002 0.0003 0.0000 0.0200

mean 0.0172 0.0470 0.2312 0.1520

max 0.3364 0.3783 0.7199 0.8451

90thpctl 0.0461 0.1178 0.5110 0.3048

ground truth measurements is always dependent on the information present in the image, some
regions of the SPD spectral range might not be properly represented by the input data. There
always exists the possibility that the objects within the scene barely reflect any radiance in certain
ranges of the measured spectrum. Since the illuminant information is recovered from a particular
scene measurement directly, the uncertainties of the estimation results will most likely be higher
for the same regions as well. However, this means in reverse that even if the illuminant can not
be predicted with high accuracy over the whole spectral range, using that estimation might not
introduce large errors when predicting reflectance values of the given radiance cube.

6. Conclusions and future work

This work focused on developing a framework for the precise estimation of daylight illuminant
spectra from hyperspectral radiance data, eliminating the need for simultaneous ground truth
measurements such as reflectance targets. The framework is particularly suited for drone-based
surveillance in agricultural and forestry contexts. Distinctively, the proposed method constrains
the potential illuminant spectra by establishing both image-dependent plausible spectra and
physically possible spectra. The former are produced by narrowing the search space in the
spectral domain based on generic assumptions, and generating spectral candidates through a
random walk approach. The latter are exemplified by a dataset of measured daylight illuminants.
An intersection point between these two sets is calculated within a pre-trained, input-independent
Principal Component Space (PCS). This intersection point, when converted back to the spectral
domain, yields the estimated illuminant.

The evaluation indicates that the proposed model excels at estimating a representative set
of illuminant spectra across an extensive set of 150 input images, significantly surpassing
competing statistics-based methods. A crucial assumption underpinning the method–that
daylight illuminants can be estimated as an intersection between these constraints within an
image-independent PCA–has been shown to deliver promising results. Specifically, illuminants
corresponding to an inverse CCT of 150 − 200MK−1 are accurately predicted. Furthermore, the
framework effectively recovers reflectance values from radiance input data. The model has been
successfully validated for illuminants within a spectral range of 382 − 1002 nm, making it apt for
various vegetation-based analyses. However, its applicability is not confined to these scenarios.

The framework shows promise but also has areas for improvement. Its spectral range of
382 – 1002 nm is versatile, especially useful for applications that examine biochemical and
biophysical plant parameters. Importantly, the framework is not restricted to this specific spectral
range; it can be expanded to include the UV and SWIR ranges, given that sufficient training
data are available to create the independent PCS. It is anticipated that such an extension would
not necessitate structural changes to the existing model. Another avenue for improvement
could come from the data sources. While the Granada daylight spectral database is a robust
resource, particularly for daylight conditions in southern Europe, expanding the database to
include illuminant measurements from different global locations could enhance the model’s
estimation capabilities. In terms of computational methods, the framework could benefit from
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the incorporation of alternative calculation approaches, such as a nonlinear representation of the
measured daylight illuminants within the PCS or gamut-based techniques. Future research should
explore extending the framework to other types of illuminants, including LED and incandescent
light sources for controlled agricultural environments like greenhouse farms. Finally, the current
model operates under the assumption of a singular light source in the scene. Future iterations
could consider more complex lighting conditions, potentially by subdividing the scene into
smaller grids to perform a local illuminant estimation to obtain an illuminant map, as suggested
by [62]. Another approach could be the incorporation of 3D hyperspectral data.
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