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HYPERDOC is a hyperspectral imaging dataset of historical documents and mock-ups, designed to 
facilitate research in material identification in the cultural heritage domain. It contains mock-ups of 
historical inks (metallo-gallate, sepia, carbon-based, and mixtures) on various supports, including some 
artificially aged, and historical documents from the 15th to 17th centuries (manuscripts, illuminated 
manuscripts, and family trees). Hyperspectral reflectance images were acquired using line-scan 
cameras in the VNIR (400-1000 nm) and SWIR (900-1700 nm) ranges and were spatially registered. 
Small regions of interest, referred to as ‘minicubes’, were extracted from the full document images, and 
pixel-level ground truth material annotations were performed. False-color RGB images and metadata 
were included in both the full document and minicube captures. The HYPERDOC dataset has been 
successfully applied in various experimental studies, including ink classification using machine learning 
models, spectral unmixing, colorimetric analysis, and binarization. These applications highlight the 
dataset’s potential, which is publicly available to promote interdisciplinary collaboration and advance 
the use of hyperspectral imaging in the conservation field.

Background & Summary
Historical documents serve as invaluable repositories of cultural and scientific heritage, capturing knowledge, 
art and events of human history through manuscripts, archives, and different written or printed works that are 
worthy of study. To ensure their preservation and enhance accessibility and understanding, over 60 datasets of 
digital images of historical documents have been developed1. These serve as resources for diverse image process-
ing applications, including layout analysis2, binarization (i.e., separating ink and support into binary values)3,4, 
content analysis5,6, author identification7, and improved readability of degraded documents8.

Most existing datasets comprise digital images acquired using conventional RGB cameras, which capture 
information in only three channels: red, green, and blue. However, in the late 1970s and early 1980s, hyper-
spectral cameras were developed. They are able to capture hundreds or even thousands of spectral channels, 
from ultraviolet to short-wave infrared9. Unlike RGB imaging, hyperspectral imaging captures spectral radiance, 
which can be converted into spectral reflectance or transmittance for each pixel. This represents the ratio of 
reflected or transmitted radiation to the incident radiation. The spectral fingerprint enables material identifi-
cation and mapping by combining spectral and spatial information. Spectral images are recorded in a relatively 
fast and non-invasive way, which has led this analytical technique to gain prominence in the field of cultural 
heritage in recent years10–12.

In the context of document analysis, hyperspectral and multispectral imaging have demonstrated significant 
advantages over conventional methods. For instance, binarization using hyperspectral13 or multispectral14–21 
data achieves improved separation of ink and support compared to RGB imaging. In forensic analysis, spectral 
data have enabled the detection of ink mismatches, aiding in the identification of document alterations or forger-
ies22,23. Hyperspectral imaging has also been used for material identification, such as inks24,25 and pigments26,27. 
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Knowledge about the materials used provide insights into the provenance, authenticity, and historical context 
of documents13, aiding in tasks like dating manuscripts28, determining authorship, detecting falsifications or 
undocumented restorations, identifying causes of deterioration12,29 and developing preservation and restoration 
strategies12,30.

Spectral datasets can be very helpful for performing material identification. Some datasets of pigments 
have been proposed and used in the past for this purpose. For example, a multispectral dataset of pigments 
with information of 18 bandpass filters covering the 400-925 nm range was proposed by A. Cosentino (https://
chsopensource.org/multispectral-imaging-pigments-checker-standard/). In this case, the Pigments Checker 
STANDARD v.5 of CHSOS was captured, including 5 blacks among 69 pigments applied on cardboard. From 
the data, it was shown that browns and blacks lack sufficient spectral features for identification. Therefore, mul-
tispectral imaging in that spectral range is not adequate. A more comprehensive hyperspectral pigment dataset 
was later developed by Deborah et al.31, containing 195 pigment patches from Kremer color charts in the range 
of 400 to 1000 nm. In these, 14 black pigments were included, applied on acid-free 180 gram paper. Despite these 
advances, to our knowledge, no hyperspectral dataset exists with the purpose to assist in material identification 
for historical documents. To further advance the field, the availability of datasets with annotated ground truth 
is essential. Such datasets are critical for training and evaluating machine learning and deep learning models to 
perform different tasks in historical document analysis32. However, the creation of ground-truth data is often 
labor-intensive and costly. Additionally, datasets must encompass sufficient diversity to enable models to gener-
alize effectively, including documents of varying origins, materials, and historical periods.

In this work, a hyperspectral dataset of historical documents and mock-ups captured in the 400-1700 nm 
spectral range is presented33. This dataset was developed within the framework of the HYPERDOC project 
(https://colorimaginglab.ugr.es/pages/hyperdoc/project), which focuses on using hyperspectral imaging to ana-
lyze historical and artistic documents for material identification and mapping.

The workflow for data collection, capture, and post-processing is summarized in Fig. 1. Ink mock-ups were 
created using historical recipes and materials34,35, including metallo-gallate inks, sepia, carbon-based inks, and 
mixtures, which were applied on five different supports. The dataset also includes pencil mock-ups and historical 
inks subjected to artificial aging. Additionally, historical documents from the 15th to 17th centuries, sourced 
from the Archive of the Royal Chancellery and the Provincial Historical Archive of Granada (Spain), were cap-
tured within two spectral ranges: 400-1000 nm and 900-1700 nm, which were spatially registered. From these 
captures, the full hypercubes (referred to as parent cubes) were cropped into smaller, representative Regions of 
Interest, termed minicubes, to facilitate faster data processing. Ground Truth (GT) annotations were created to 
label the materials present at the pixel level. False-color RGB images were generated for both spectral ranges, and 
Metadata was also integrated into each parent cube and minicube to provide detailed information.

The HYPERDOC dataset stands as a unique and versatile resource, integrating mock-ups and historical 
documents to support a wide range of applications in hyperspectral imaging and historical document analysis. 
Its subsets have been utilized in studies addressing diverse tasks such as ink classification using machine learning 

Fig. 1 Graphical abstract of the capture methodology and data curation.
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and deep learning techniques36,37, binarization to enhance text legibility38, spectral unmixing to identify the 
materials39, and colorimetric analysis of aging processes in mock-ups40,41. Thanks to the variety of recipes in 
mock-ups, they can be used to perform multivariate exploratory analysis in order to identify spectral features 
related to some kinds of inks or their components, and spectral changes related to the amount of ink deposited. 
It also facilitates comparative studies between mock-ups and historical documents, including analyses of arti-
ficial versus real aging, the state of conservation of the real documents in comparison to other samples, and the 
impact of different supports or writing instruments on spectral properties. The spectral data also allow simula-
tions of document appearances under various illuminants.

Moreover, the HYPERDOC dataset fosters interdisciplinary collaboration between the image processing and 
restoration-conservation communities, encouraging the adoption of advanced techniques such as hyperspectral 
imaging, which remains underutilized in practical applications within archives and museums. This dataset holds 
significant potential to drive innovation in the restoration and preservation of our cultural heritage.

Methods
Samples description. Mock-ups. Mock-ups of historical inks on different supports. Mock-up samples of 
inks applied on different supports were prepared following historical recipes from the 13th to the 17th centu-
ries and bound with Arabic gum42. Some samples from this subset of the dataset were introduced in a previous 
study37. The contour of a 1 x 1 cm square was drawn with pencil and filled with ink, and two lines of text were 
written with brush (top) and fountain pen (bottom) (see Fig. 2(a)). The exact quantities of ingredients used to 
prepare the inks are detailed in the column ‘general info’ of the file ‘HYPERDOC_dataset_info.ods’ included in the 
dataset, and the inks used are listed below: 

•	 Metallo-gallate inks (or iron gall inks): Prominent from the medieval period onwards, particularly in 
Europe43, these inks consist primarily of two key components: a metal (predominantly ferrous sulfate), 
and a vegetable tanning agent, typically derived from oak apples in the form of gallotannin extracts. 
Ancient recipes of iron gall ink were followed42,44, resulting in eight variants created using different ratios 
of gallic acid and ferrous sulfate, including variants with copper and zinc sulfate. Detailed preparation 
can be found in reference37. Additionally, Andalusian ink recipes44 were used to produce two variants 
incorporating pomegranate juice and myrtle leaf infusion. In addition, the pigment Atramentum (Kremer 
Pigmente GmbH) was used.

•	 Sepia inks: Derived from the ink sac of the cuttlefish Sepia officinalis45. Two types of sepia ink were used 
in this dataset: one extracted directly from the animal and another obtained in powder form from Kremer 

Fig. 2 Examples of samples from different subsets: (a) mock-ups of historical inks on cotton paper, (b) pencil 
mock-ups, (c) mock-ups of artificially aged metallo-gallate inks, (d) manuscript of the Provincial Historical 
Archive of Granada, (e) illuminated manuscript from the Archive of the Royal Chancellery of Granada, (f) 
family tree from the Archive of the Royal Chancellery of Granada; and (g) hyperspectral capture using the Pika 
IR+ camera.
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Pigmente GmbH. For the natural extraction, three samples were prepared: pure ink diluted with water, 
and two others varying the concentration of Arabic gum binder.

•	 Carbon-based inks: Believed to be the earliest form of writing ink, carbon-based inks were traditionally 
made by burning oil or other materials (such as fruit stones, bones, or wood) in controlled conditions with 
limited air supply and mixing the resulting soot with a binder dissolved in a water-soluble medium45. The 
dataset includes several carbon-based inks from Kremer Pigmente GmbH: ivory black, lamp black, grape 
seed black, cherry black, and bistre.

•	 Mixed inks: Mixed inks, though recently gaining attention in scholarly and material studies, have been sig-
nificant historically, especially in the Islamic world, as suggested by medieval Arabic recipes46,47. They have 
also been found in ancient contexts30,45, but they still remain challenging to identify. The dataset includes 
17 mixed ink formulations, combining sepia, iron gall ink, lamp black, bone black, and Andalusian red 
earth (from Kremer Pigmente GmbH) in various proportions.

All inks were applied to five types of support, selected for their historical relevance: three types of hand-
crafted paper from Paperlan® made of 100% cotton fiber, 100% linen fiber, and a linen/cotton mixture 50/50%, 
hemp paper from Wanderings®, and goatskin parchment from Forum Traiani®. These supports were selected 
based on those commonly found in historical documents48.

The configuration of the mock-ups enables the study of spectral changes related to the amount of ink depos-
ited or the recipe used for the same type of ink37. Additionally, the effects of different writing instruments on the 
spectral characteristics can also be evaluated.

Pencil mock-ups. This subset of mock-ups includes 14 pencil types from Faber Castell®with varying grades of 
hardness (8B, 7B, 6B, 5B, 4B, 3B, 2B, B, HB, F, H, 2H, 4H, and 6H) applied to 4 different supports: cotton-linen, 
cotton, linen, and hemp paper. Similarly to the ink mock-ups, a 1 x 1 cm square was filled with pencil and a line 
of text indicating its hardness was written (see Fig. 2(b)). In total, there are 56 samples.

Mock-ups of artificially aged metallo-gallate inks. Three variants of metallo-gallate inks were deposited on 
hemp paper, including pure iron gall ink, iron gall ink with copper sulfate, and a mixture of iron gall ink and 
lamp black. These inks were used to create squares, strokes, and drops, and subsequently subjected to artificial 
aging using two distinct methods (see Fig. 2(c)). In the first method, an aging chamber (Solarbox®3000 eRH, 
Neurtek) was used following the norm ISO 5630-3 (1996). The chamber operated at a temperature of 80 C, a 
relative humidity of 65%, and a radiation of 550 W/m2. Samples were extracted and captured after 0, 72, 144, and 
288 hours of aging, corresponding to 0, 3, 6 and 12 days, respectively. In the second method, aging under acidic 
conditions was studied by exposing samples to hydrochloric acid vapors for 72, 144, and 288 hours.

Historical documents. Manuscripts of the Provincial Historical Archive of Granada. This subset comprises five 
different documents preserved in the collection of Arabic documents at the Provincial Historical Archive of 
Granada49. Four of these are notarial documents dating from 1488 to 1494, while the fifth is an undated religious 
text. All five contain handwritten text (see example in Fig. 2(d)). Scanning Electron Microscopy with Energy 
Dispersive X-ray Spectroscopy (SEM-EDX) has identified various types of inks in these documents, includ-
ing mixed iron gall ink with earth pigments, mixed carbon-based ink with earth pigments, pure carbon-based 
inks, and pure iron gall inks. The support used in all the documents has been confirmed to be linen paper, as 
determined through a combination of optical microscopy, Scanning Electron Microscopy (SEM), and Fourier 
Transform Infrared Spectroscopy (FTIR)49,50.

Illuminated manuscripts from the Archive of the Royal Chancellery of Granada. This collection comprises 
seven documents on parchment, containing lawsuits of nobility dating from 1459 to 160851 (see example in 
Fig. 2(e)). Different pigments and dyes are present in certain areas of these documents; however, these regions 
were not included in the main focus of this dataset, which is primarily on inks. The inks used in the handwritten 
text were identified as iron gall ink with different sulfates, specifically zinc (Zn) and copper (Cu). Ink identifi-
cation was performed using X-ray fluorescence (XRF), while the inorganic elements used in the preparation of 
supports were identified using a combined X-ray diffraction and X-ray fluorescence system52.

Family tree book from the Archive of the Royal Chancellery of Granada. This series of eight documents from 
the 16th and 17th centuries comprises family trees, predominantly handwritten with some stamped sections 
(see example in Fig. 2(f)). All documents have cotton-linen paper as the support. Previous analyses identified 
two types of ink: a carbon-based ink and a mixture of sepia and iron gall ink. The documents were restored in 
2005 through mechanical cleaning with non-greasy soft rubbers, washing in water, and drying under weight and 
blotters. The ink types were characterized using SEM by the conservators in charge.

Hyperspectral imaging capture. Two line-scan hyperspectral cameras from Resonon Ltd. (Bozeman, 
Montana, USA) were used, together with the associated software Spectronon Pro 3.5.5: the Pika L and the Pika 
IR+. Details about the spectral range covered by each camera, number of spectral channels, spectral resolution, 
number of pixels per line (spatial pixels), maximum frame rate, and F-number for each camera are provided in 
Table 1. These cameras operate on a push-broom technique, capturing images line by line, which requires either 
the movement of the object or the camera to scan the entire scene. For image acquisition, a linear translation stage 
from Resonon Ltd. was used along with 4 stabilized halogen lamps positioned to minimize specular reflections 
and placed at 30 cm from the documents. To ensure controlled lighting conditions, all other lights in the room 
were turned off. A video illustrating the capture process is available at the following link: https://www.youtube.
com/watch?v=lIwNyjBeKmQ. The optimal exposure time was determined using the 90% reflectance patch from 
the Sphere Optics Zenith Lite Multistep of size 20 × 20 cm, or a Teflon bar with known reflectance, serving as 
the reference white. Then, the software automatically adjusted the scanning speed and camera data acquisition to 
ensure 1:1 vertical:horizontal aspect ratio. To maintain the reference white and the document at the same distance 
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from the camera, magnets and additional supports were used, as shown in Fig. 2(g). The distance between the 
camera and the samples was approximately 60 cm for the VNIR camera and 40 cm for the SWIR camera, result-
ing in linear fields of view (swath) of 13.5 cm and 14.5 cm, respectively. This setup yielded an estimated spatial 
resolution of 0.15 mm/pixel for the VNIR range and 0.227 mm/pixel for the SWIR range. Spectral binning was 
performed during capture to enhance the signal-to-noise ratio, resulting in 150 and 168 bands for the VNIR and 
SWIR captures, respectively. Before capturing the documents, reference images for calibration were acquired. 
To convert raw data into reflectance values, dark subtraction and flat-field correction were applied. These steps 
ensure that variations in illumination and sensor response across the field of view are accounted for, eliminating 
system-induced artifacts from the data. For this purpose, 30 lines of the reference white, the 90% reflectance patch 
from the Sphere Optics Zenith Lite Multistep or a Teflon bar, were captured. The mean value along the longitu-
dinal axis was then used as the reference white to correct non-uniformities in illumination and determine the 
light incident on the sample. A dark reference image was also captured by blocking the light entering the camera, 
allowing the removal of intrinsic sensor noise caused by dark currents. All captures were saved in BIL format. 
Further details on the conversion of raw captures to reflectance data are provided in next subsection.

Data curation. Reflectance from raw. Raw captures of the spectral cubes (Raw(λ)) were transformed 
into reflectance cubes (ρ(λ)) using the raw captures of the reference white (Raw(λ)white) and the dark image 
(Raw(λ)dark) according to the following equation: 

Raw Raw
Raw Raw
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λ λ
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 where ρ(λ)white is the spectral reflectance of the reference white used for calibration. This transformation is per-
formed pixel by pixel in the camera software before cube storage, except for the multiplication by ρ(λ)white, as the 
software assumes it to be 100% at every wavelength.

Once the reflectance cubes were in BIL format, they were converted to MAT format using MATLAB (Release 
R2023a, The MathWorks, Inc., Natick, MA, USA). The code used for the transformation is available on GitHub 
(https://github.com/anabelenlb/HYPERDOC_Database_code). It is during this step that the reflectance of the 
object is multiplied by the reflectance of the reference white (ρ(λ)white). During this process, linear interpolation 
was applied to ensure a consistent 5 nm sampling interval across both cameras, resulting in 121 bands between 
400 and 1000 nm for the VNIR and 161 bands between 900 and 1700 nm for the SWIR.

Registration. Spatial registration is performed to align pixel-by-pixel captures of the VNIR and SWIR ranges 
and equalize the spatial resolution. In this case, the SWIR capture was used as the reference image, while the 
VNIR capture, with its higher spatial resolution, was transformed to minimize artifacts in the final registered 
image. The registration was performed using one band from the VNIR (700 nm) and one band from the SWIR 
hypercubes (1000 nm). These bands were selected based on preliminary trials, and their position below 1200 
nm in the SWIR range. The latter condition was set to avoid proximity to the onset of the high reflectance 
region of metallo-gallate inks in the SWIR range, which could lead to a lack of key points necessary for proper 
registration. Feature-based image registration with SURF features53 was used within the MATLAB Registration 
Estimator App (Release R2023a, The MathWorks, Inc., Natick, MA, USA), applying either an affine or projective 
spatial transform. The registration quality was assessed using overlay images and the Structural Similarity Index 
Measure (SSIM)54, after testing different features and spatial transforms, to ensure satisfactory registration. The 
final registration transformation was then applied to all spectral bands within the VNIR cube. After the process, 
the parent cubes are obtained, that is, the hyperspectral images of the full pages from which the minicubes are 
extracted later on. These parent cubes are included in the folder ‘ParentCubes’ in the HYPERDOC dataset33.

Minicube extraction. We define a minicube as a crop extracted from a full document or page, with sizes ranging 
from [34 x 33] to [181 x 508] pixels, selected from representative areas of the full documents. Spectral images 
delivered by the hyperspectral devices are stored as spectral cubes (i.e. hypercubes), usually of extremely large 
size of even gigabytes of data per capture. Thus, the extraction of minicubes facilitates faster processing of spec-
tral information, as explained before. Each minicube contains data from one or two inks, the support, and 
sometimes pencil markings. Minicube extraction was performed on the registered VNIR and SWIR cubes using 
identical spatial coordinates, with Regions of Interest selected based on areas where different inks or materials 
were present in the document. These minicubes are included in the folder ‘minicubes’ in the HYPERDOC 
dataset33.

Parameter Pika L Pika IR+

Spectral Range (nm) 400–1000 900–1700

Spectral Channels 300 368

Spectral Resolution - FWHM (nm) 2.7 5.6

Spatial Pixels 900 640

Max Frame Rate (fps) 249 240

f/# 2.4 1.8

Table 1. Specifications for the Pika L and Pika IR+ hyperspectral imaging systems.
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False RGB images and Ground Truth creation. For each parent cube and minicube, a false-color RGB image 
was generated by assigning specific spectral bands to the [R G B] channels. For the VNIR range, bands [50 34 9], 
corresponding to wavelengths of 645 nm, 565 nm, and 440 nm, respectively, were used, yielding a color appear-
ance similar to that observed in the sample. Similarly, for the SWIR range, bands [141 61 21], representing 
wavelengths of 1700 nm, 1300 nm, and 1100 nm, were selected33.

A Ground Truth image (GT) was also created for each minicube using a semi-automatic method. The process 
is illustrated in Fig. 3 and consists of two main steps: binarization, which separates the foreground (pigments and 
inks) from the background (support), and GT creation, which assigns labels to differentiate between materials. 
The binarization process involves four steps. First, a band with high contrast between the ink and the back-
ground was selected by searching for the minimum Signal-to-Noise Ratio (SNR) value. Second, the skeleton 
of the part of the image covered with ink was extracted using the MATLAB R2023a function bwskel, based on 
Lee et al.’s medial surface axis thinning algorithm55. Third, the skeleton width was adjusted until the intensity 
of surrounding pixels matched the average intensity of the borders of the ink covered region, extracted by the 
Canny edge detector. This is a variation of the method proposed by Ntirogiannis et al.56, where the skeleton 
was manually corrected and then forced to grow until it met those borders. Fourth, manual correction using 
the open-source software GIMP was performed after obtaining the binarized image, by visually comparing the 
result with a false RGB image of the minicube. A different annotator then evaluated the revised GTs, and any 
discrepancies were resolved through consensus. After completing these steps, a binary image was generated 
with two labels: 0 (background) and 1 (foreground). The GT was then created by assigning different labels to 
distinguish materials in the binary image. The mapping between labels, GT colors, and materials is provided in 
the file ‘Materials_label_and_colormap_assignation.ods’. The final indexed images, including the index map and 
associated colormap, were saved as PNG files in the folder ‘GT’33. GT images were not created for the parent 
cubes due to difficulties in providing accurate pixel-level annotations for these larger and more complex regions.

Metadata info. Detailed information about each sample is included as metadata within the minicubes. In total, 
24 attributes were included, which can be divided into three main categories according to the type of informa-
tion provided: sample information, capture information, and other relevant data.

The sample information group contains 11 attributes: identifier number, name, general information about 
the sample (ink components, origin or recipe), type of support, height in pixels, width in pixels, number of 
bands, wavelengths captured, date of production of the document, aging status (either naturally or artificially 
aged, or not aged at all), and restoration status (whether restored or not).

The capture information group contains 6 attributes: device used, range captured, stage, exposure time, type 
of illumination, and reference white used.

The other relevant information group contains 7 attributes: colormap of the GT, GT labels, parent cube name, 
and pixel coordinates used to extract the minicube within the parent cube. Using the GT from the PNG files and 
GT labels, spectra of pixels belonging to each class are averaged and the mean and standard deviation is stored, 
along with the number of pixels used in the average.

For the parent cubes, metadata were also included. In this case, as GT images are not available, only 16 attrib-
utes were included, excluding the identifier number and all attributes in the ‘other relevant information’ group.

Data Records
The HYPERDOC dataset33, comprising hyperspectral images of historical documents and mock-ups, is publicly 
available in the Figshare repository. The data is structured as shown in Fig. 4 and includes the following folders 
and files: 

•	 Folder minicubes - Hypercube files with metadata (in HDF5 format): This folder contains hyperspectral 
datacubes for each minicube, captured in the VNIR and SWIR spectral ranges, along with associated 
metadata. The datacubes are stored as a 64-bits double-precision floating-point matrices with dimen-
sions M x N x λ, where M and N correspond to the spatial dimensions of the image, and λ represents the 
number of spectral bands or wavelengths. Each datacube includes metadata with 24 attributes, describing 
key information such as acquisition settings and sample details. A detailed description of these attributes, 
including their data types and possible values, is provided in Table 2. For the spectral range, three options 

Fig. 3 Steps involved in the creation of the Ground Truth (GT) images.
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are defined, including ultraviolet and visible (UVIS), even though no samples within this range are cur-
rently present in the dataset. This option has been included to accommodate future additions of UVIS 
samples to the dataset on the research group’s website (https://colorimaginglab.ugr.es/pages/hyperdoc/
project).

•	 Folder RGB - False RGB images (in PNG format): This folder contains false-color RGB images for both 
the VNIR and SWIR ranges, generated using the methods described in ‘Methods’ section. These images 
provide a convenient way to quickly visualize the minicube content.

•	 Folder GT - Ground Truth images (in PNG format): This folder includes ground truth (GT) images, 
where pixel values are directly mapped to colormap indices that relate to RGB data specific for each 
material and assigned according to a pre-existing list of materials present in the dataset. Each file contains 
an indexed image stored in the variable ‘cdata’, along with the associated colormap. The correspondence 
between material types and their respective indices and RGB values in the colormap is documented in the 
file ‘Materials_label_and_colormap_assignation.ods’.

•	 Folder ParentCubes: This folder is organized in two subfolders, one for each data set: ‘Historical docu-
ments’ and ‘Mock-ups’; and an OpenDocument Spreadsheet (in ODS format) named ‘ParentCubes_info.
ods’, which contains parent cubes information for quick reference, extracted from the metadata. Each 
folder has its own subfolders for each data subset. Within those subfolders, there are the ‘VNIR’ and 
‘SWIR’ folders, which contain the hypercubes in .h5 format, including the datacube and metadata with 
18 attributes, as well as the ‘RGB’ folder with false RGB images in PNG format.

•	 File ‘Materials_label_and_colormap_assignation.ods’ - OpenDocument Spreadsheet with material labels 
and colormap assignments (in ODS format): This file contains the mapping between material types (e.g., 
inks, pencils, or supports) and their corresponding indexed values in the GT images. The colormap 
assigns RGB values (0-255) to each material index. For each minicube, the associated materials can also 
be found in the ‘GTLabels’ attribute within the metadata.

•	 File ‘HYPERDOC_dataset_info.ods’ - OpenDocument Spreadsheet with hypercube information (in ODS 
format): The spreadsheet provides essential information about the minicubes for quick consult extracted 
from the metadata, which includes the set they belong to (mock-ups or historical documents), subset, 
name of the minicubes, name of the parent cubes, coordinates within the parent cube used for minicube 
extraction, general information about the minicube, materials found, support, date, information about if 
it is aged, restored, or not, and finally, exposure time and reference white used during capture.

Table 3 summarizes the number of minicubes and the total pixel counts associated with each material type 
across the different subsets. For a visual representation, Fig. 5 presents the distribution of minicubes (top) and 
the distribution of pixels on a logarithmic scale (bottom) across subsets and classes in the dataset using horizon-
tal bar graphs. To the right of 0, the minicubes correspond to historical documents, while to the left, they belong 
to the mock-ups set. A higher number of minicubes is included in the mock-up category compared to historical 
documents, representing 73% of the total dataset. In terms of pixel count, mock-ups account for nearly 94% of 
the total.

The high number of minicubes containing pencil is due to the first two subsets of mock-ups (historical inks 
on different supports and pencil samples), where all samples include pencil. However, this material is completely 
absent in the set of historical documents. Other materials or classes not present in the historical document sub-
sets include cotton, hemp, pure andalusian red earth, pure sepia, mixture of carbon and sepia, and a combination 
of metallo-gallate ink with carbon-based ink. Among historical documents, the most represented ink class is 
pure metallo-gallate ink. For the supports, linen, cotton-linen, and parchment are equally distributed in terms of 
minicube count; however, in pixel count, linen is less represented compared to the other two. In mock-ups, red 
earth and its mixtures are among the least represented materials, reflecting their limited historical use.

Fig. 4 Folder and file structure in the dataset.
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technical Validation
Some subsets or samples of this dataset have been used in previous studies to perform tasks such as classifica-
tion36,37, binarization38, spectral unmixing39, and colorimetric analysis40,41. A schematic representation of the 
results obtained in these studies is provided in Fig. 6.

In a recent study, three categories of inks were classified using machine learning techniques: pure 
metallo-gallate inks, carbon-containing inks, and non-carbon-containing inks36. Five traditional machine 
learning algorithms—Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Linear Discriminant 
Analysis (LDA), Random Forest (RF), and Partial Least Squares Discriminant Analysis (PLS-DA)—as well as 
a Deep Learning-based model, were trained and evaluated on mock-ups of historical inks applied to differ-
ent supports and on all the minicubes extracted from historical documents in the present dataset. Data from 
both the VNIR and SWIR ranges were combined using data fusion techniques, achieving a micro-averaged 
accuracy exceeding 90%. Examples of classification maps are shown in Fig. 6. The carbon-containing ink cat-
egory included pure carbon-based inks and mixtures of these with metallo-gallate or sepia inks. Similarly, the 
non-carbon-containing group included sepia inks and mixtures of sepia with metallo-gallate ink36. Such spectral 
identification of inks would directly inform the selection of appropriate restoration materials and conservation 
protocols for historical documents.

A part of the subset of mock-ups of historical inks on different supports was previously presented37 and a 
classification task was performed using VNIR data from samples applied to parchment and cotton-linen paper. 
A Bilayered Neural Network was trained and tested to distinguish four classes: iron gall ink, non-iron gall ink, 
support, and pencil. The first group contained all the pure and mixed inks with some amount of iron gall ink. 
The model achieved an overall accuracy of 67%, with notably higher precision in support classification (97%) 
compared to ink classification, particularly when carbon-based inks were mixed with iron gall inks.

In another study, spectral unmixing techniques have also been applied to identify pure components in mix-
tures of historical inks, using both mock-ups and selected parent cubes from historical documents included in 
this dataset39. Mixtures of iron gall, sepia, and carbon-based inks were analyzed by merging the VNIR and SWIR 
ranges. Pencil and support materials, including parchment and cotton-linen fibers in paper, were also incor-
porated into the unmixing process. Challenges were encountered in accurately identifying components when 
carbon was present in the mixtures. This is due to the very low spectral reflectance of carbon-based inks across 

 Group Metadata Description Data type

1 number Identifying number, from 00001 onwards. String

1 name Name of the minicube. String

1 cubeinfo Information about the type of sample (mock-up or historical) and relevant details such as materials or 
recipes used. String

1 substrate Type of substrate or support: parchment or paper, and fiber type. String

1 height Height of the minicube in pixels. 32-bits unsigned integer

1 width Width of the minicube in pixels. 32-bits unsigned integer

1 bands Number of spectral bands in the minicube. 32-bits unsigned integer

1 wl Wavelengths or spectral bands captured. 32-bits unsigned integer

1 date Date of creation of the mock-ups or historical documents (year or century, depending on the information 
available). String

1 aged Indicates whether the document is aged. Possible values: ‘No’ (not aged), ‘Art.’ (artificial aging, with details 
of the method and hours), and ‘Nat.’ (naturally aged). String

1 restored Indicates whether the document has been restored. Logical value. 8-bits unsigned integer

2 device Hyperspectral camera used in the capture. String

2 range 3 × 1 logical indicating the capture range: 1 0 0 for UVIS; 0 1 0 for VNIR; 0 0 1 for SWIR. 8-bits unsigned integer

2 stage Translation stage used to perform the capture. All captures were done using the ‘linear’ stage. String

2 texp Exposure time during capture in milliseconds. 64-bits double precision 
floating point

2 illumination Illumination used during the capture. Halogen lamps were used in all cases. String

2 reference_white Reference white used to calibrate reflectance measurements. Possible values: ‘Teflon’ (for the teflon bar) and 
‘Multi_90’ (the 90% reflectance patch from the Sphere Optics Zenith Lite Multistep). String

3 GT_cmap RGB values from 0 to 1 associated with each index in the GTs. Size 16 x 3. 64-bits double precision 
floating point

3 GTLabels Materials associated to indexes used in GT. String

3 parent_cube Hypercube from which the minicube was extracted. String

3 position Coordinates used to extract the minicube from the parent cube: [xmin xmax ymin ymax]. 32-bits unsigned integer

3 spectra_mean Mean spectra of all pixels associated with the same index in the GT. Size: λ x number of indexes in the GT. 32-bits single precision 
floating point

3 spectra_std Standard deviation of the mean spectra. Size: λ x number of indexes in the GT. 32-bits single precision 
floating point

3 pixels_averaged Number of pixels associated with the same indexes in the GT and used to calculate the mean. Size: 1 x 
number of indexes in the GT. 32-bits unsigned integer

Table 2. Description and data types of attributes in the Metadata field within each minicube, categorized into 
three groups: (1) sample information, (2) capture information, and (3) other relevant data.
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all wavelengths. When mixed with other components, the spectrum of the mixture remains uniformly low due 
to the subtractive nature of the mixture, and this hinders the identification of non carbon-based components. 
Examples of concentration maps and error maps derived from the spectral reconstruction are shown in Fig. 6.

In addition to classification, a binarization task was also explored38, where several binarization algorithms 
including Otsu57, Niblack58, Wolf59, Bradley60 and a Deep Learning-based method, were evaluated using a subset 
of 16th- and 17th-century family trees from the Archive of the Royal Chancellery of Granada. When comparing 
results from the VNIR and SWIR ranges, the Bradley algorithm consistently produced the best results. These 
binarization techniques offer strong potential for conservation, improving manuscript readability and enhanc-
ing Optical Character Recognition (OCR) which supports both digital preservation and content accessibility.

For the subset of artificially aged metallo-gallate inks, both colorimetric and spectral analyses were per-
formed to investigate their aging processes. Spectral differences were examined using metrics such as Root Mean 
Square Error (RMSE) and the complement of the Goodness-of-Fit coefficient (cGFC), while color differences 
were assessed using the CIEDE00 color difference formula40,41. These results support conservation strategies by 
linking spectral features to degradation processes, allowing conservators to base decisions on spectral evidence 
rather than visual inspection alone.

Beyond these specific applications, the mean reflectance spectra and standard deviation for each class and 
subset were calculated to preliminary explore the spectral features in the dataset (see Figs. 7 and 8 and the next 
section for details). Additionally, Principal Component Analysis (PCA) was used as a dimensionality reduction 
technique for visualization purposes (see Fig. 9).

average spectra and standard deviation per class and subset. The mean spectra and standard devi-
ation were computed for each foreground material, including pencil, pigments and inks (left plots), and for each 
support material (right plots), with the results separated by subset (different rows in Fig. 7 for the mock-ups 
and Fig. 8 for the historical documents). These calculations were performed by averaging all the pixels in the 
minicubes belonging to the same class and subset, using the ground truth (GT) information (example code for 
performing this calculation in MATLAB and Python is available on GitHub https://github.com/anabelenlb/
HYPERDOC_Database_code). VNIR and SWIR spectral ranges are presented in the same plot. A noticeable dif-
ference in the reflectance spectra is observed in the overlapping region between 900 and 1000 nm, which is a com-
mon artifact when data is captured using different sensors. This discrepancy arises from various factors, including 
differences in spectral bandwidths, low signal-to-noise ratios due to low sensor responsivity in the extremes of 
the spectra, and slight misalignments in the image acquisition setup, all of which can impact the Bidirectional 
Reflectance Distribution Function (BRDF)61. To mitigate this issue, various strategies can be employed to ensure 
a smooth connection between the spectra. One such approach, proposed by Grillini et al.62, involves a logistic 
splicing correction.

Ink spectra in the visible range are similar, showing low reflectance values and flat shapes, consistent with 
the black or brownish appearance of these inks. However, in the near-infrared range, metallo-gallate inks, both 
pure and mixed with red earth, begin to diverge from other inks, exhibiting a reflectance spectrum increasingly 
similar to that of the support. This trend is especially prominent beyond 1200 nm, where metallo-gallate inks 
become nearly transparent. In contrast, carbon-based inks strongly absorb infrared radiation, maintaining low 
reflectance values. Sepia ink and its mixtures with metallo-gallate allow more infrared transmission but do not 
reach the near-total transparency observed in metallo-gallate inks. Mixtures of carbon-based inks with other 
pigments, such as sepia or red earth, significantly reduce reflectance, resulting in spectra resembling those of 
pure carbon-based inks. Pencil spectra generally exhibit flat shapes with lower reflectance values in the pencil 
mock-ups subset due to the inclusion of pencils with varying hardness, including very dark grades. In the subset 
of mock-ups with historical inks, only HB pencils were used. Andalusian red earth displays a spectrum charac-
teristic of red hues, while it becomes transparent in the infrared.

Support materials such as cotton-linen, linen, and cotton exhibit similar reflectance spectra. Parchment 
shares a similar shape but demonstrates lower reflectance values, indicative of its darker tone. Additionally, 
parchment tends to show greater heterogeneity, particularly in historical documents, as modern parchment is 
generally more uniform in composition and appearance. Hemp has a different shape from the others, making it 
easily distinguishable from other supports.

For the historical documents, notable differences emerge when comparing spectra to those of mock-ups. 
For instance, carbon-based inks in historical manuscripts, particularly those from the Provincial Historical 
Archive of Granada (first row, Fig. 8), do not exhibit the nearly complete absorption of infrared radiation seen 
in mock-ups. Instead, these inks also become partially transparent in the infrared range. This discrepancy could 
be attributed to aging processes, such as surface wear due to rubbing, which may reduce the ink layer thickness, 
causing the spectrum to resemble that of the underlying support. Similarly, minor variations in support spectra 
compared to mock-ups are likely due to aging effects.

Diversity in standard deviation is observed across subsets, derived from factors such as the use of different 
supports or variability within ink classes. For example, the pure metallo-gallate ink class includes inks with 
additives like pomegranate juice, myrtle infusion, or varying amounts of Cu, Zn, and Fe sulfates. Likewise, the 
pencil subset includes a range of hardness grades. This variability is intentional, as it enhances the robustness of 
classification models by capturing a wide range of potential conditions, preparing them for real-world applica-
tions rather than highly controlled scenarios.

Comparing spectral libraries of black pigments or inks is challenging, as they consist of different samples 
prepared using diffrent techniques, binders, supports, and different data acquisition procedures or instru-
ments. While it can be found only one hyperspectral pigment dataset published in the range of 400 to 1000 nm31, 
in general, the already existing libraries contain a single homogeneized measurement per sample made by 
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using spectrorradiometers or Fiber Optics Reflectance Spectroscopy (FORS)63 (https://chsopensource.org/
pigments-checker/). As the dataset presented in this paper contains hundreds or thousands of datapoints, the 
average spectra of mock-up inks were used for comparison with existing ink spectral libraries.

The hyperspectral pigment dataset31 includes seven pigments or inks that are also present in our dataset: 
grape black, ivory black, cherry black, bistre, atramentum, Andalusian red earth (or red ochre), and sepia. In our 
classification, the first four inks are grouped together as carbon-based inks due to the same origin and similar 
spectral characteristics. This grouping was validated by comparing the mean spectra provided by the authors of 
the dataset (https://hyppigments.streamlit.app/) with our data, confirming that carbon-based inks exhibit a con-
sistently flat, low reflectance in the VNIR range. Similarly, the spectra for Andalusian red ochre, atramentum, 
and sepia show comparable shapes across both datasets.

Another publicly available dataset includes reflectance spectra obtained with spectrometers such as 
the GorgiasUV (200-1000 nm) and InGaAs (900-1700 nm) spectrometers (https://chsopensource.org/
pigments-checker/). This dataset contains seven black pigments or inks also present in our dataset: ivory black, 
vine black, bone black, lamp black, iron gall ink, Andalusian red ochre, and sepia. Again, the first four were 
grouped as carbon-based inks, exhibiting flat spectra between 400 and 1700 nm. The iron gall ink becomes 
transparent in the infrared, and it is interesting to see how the shape of the spectra in the 900-1700 nm range 
is completely influenced by the support, since in this case it was deposited on cardboard. Sepia ink becomes 
transparent beyond 1500 nm, displaying a common feature with the sepia spectra in our dataset, as shown in 
Fig. 7 upper left plot.

Overall, our spectral data aligns well with existing datasets of inks and black pigments, supporting the relia-
bility of this dataset for further analysis and applications.

Set Subset Class
Number of 
minicubes

Number of 
pixels

Mock-ups

Historical inks on different 
supports

Metallo-gallate ink pure 40 612,949

Metallo-gallate ink mixture carbon 30 452,478

Metallo-gallate ink mixture sepia 15 235,795

Metallo-gallate ink mixture earth 5 82,876

Carbon pure 30 429,217

Carbon mixture earth 5 64,782

Carbon mixture sepia 30 423,009

Sepia pure 20 300,988

Pencil 180 183,024

Andalusian red earth pigment 5 89,075

Parchment 36 1,204,442

Cotton-linen 36 1,217,969

Linen 36 1,456,972

Hemp 36 1,229,443

Cotton 36 1,433,623

Pencil

Pencil 56 153,920

Cotton-linen 14 121,414

Linen 14 106,705

Hemp 14 99,962

Cotton 14 119,084

Artificially aged metallo-
gallate inks

Metallo-gallate ink pure 18 95,255

Metallo-gallate ink mixture carbon 10 51,403

Hemp 28 203,886

Historical documents

Manuscripts Provincial 
Historical Archive

Metallo-gallate ink pure 20 13,930

Metallo-gallate ink mixture earth 5 3,501

Carbon pure 4 1,942

Carbon mixture earth 3 2,434

Linen 36 82,664

Metallo-gallate ink mixture unknown 4 1,896

Illuminated manuscripts 
Royal Chancellery Archive

Metallo-gallate ink pure 29 94,981

Parchment 29 251,723

Family tree book Royal 
Chancellery Archive

Metallo-gallate ink mixture sepia 24 29,109

Carbon pure 23 16,654

Cotton-linen 31 196,182

Table 3. Classes and total number of minicubes and pixels in each set and subset (commas used as thousands 
separators).
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Principal Component analysis (PCa). PCA is a widely used dimensionality reduction technique in 
spectral data analysis, often employed for assessing the separability of datasets. For each minicube, the average 
spectrum was calculated for each class, and PCA was performed using these averaged spectra. Two principal 
components (PCs) were selected based on the Variance Accounted For (VAF) metric, identifying the inflection 
point where the VAF versus PCs curve flattens. PC1 explains 85.0% of the total variance, and PC2 explains 11.0%, 
resulting in a combined VAF of 96% with just two components. Fig. 9 presents the score plots for PCs 1 and 2, 
showing inks and pencil in the left plot and supports in the right plot. Each class is represented by a unique color, 
and subsets are distinguished by different symbols.

In the left plot, the point clouds for pure metallo-gallate inks (dark blue) and their mixtures with earth 
(black) overlap, indicating that their spectra are highly similar. Similarly, pure carbon-based inks (pink) cluster 
closely with their mixtures with metallo-gallate ink (red), sepia (purple), or earth (yellow). These two groups, 

Fig. 5 Horizontal bar graphs showing the distribution of data: number of minicubes (top) and number of pixels 
on a logarithmic scale (bottom) by class and subset.
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metallo-gallate-based and carbon-based inks, form distinct, separable clusters. However, the clouds for pure 
sepia (teal) and its mixture with metallo-gallate ink (light green) lie between these two clusters, reflecting inter-
mediate spectral characteristics. Pencil samples, in contrast, form a more or less distinct cluster in a separate 
region. As for the standard deviation in the mean spectra plot, a high heterogeneity is found in the PCA due 
to different factors, including differences in spectra between mock-ups and historical documents, the applica-
tion of the same inks on different supports, variations in ink recipes, and the grouping diverse inks within the 
same class. For example, the minicubes from the Manuscripts of the Provincial Historical Archive of Granada 
(depicted as circles) exhibit minimal variability, forming a concentrated cluster. A similar pattern is observed for 
the artificially aged mock-ups: they form two distinct clusters based on the type of ink and are separated from 
the non-aged mock-ups. In this case, the support does not influence these clusters, as all inks were applied on 
hemp paper. However, samples from other subsets and classes are more dispersed, often overlapping in the PCA 
space.

In the right plot, hemp samples are clearly separated from other supports, forming a distinct cluster. 
However, notable differences can be observed between mock-ups and historical document samples of the same 
support types. For instance, cotton-linen samples (blue clouds) and linen samples (red clouds) from mock-ups 
and historical documents form separate clusters despite belonging to the same class. Parchment samples (green 
clouds) are distributed across a wider area, also showing a clear distinction between mock-ups and historical 
documents. In contrast, cotton samples are tightly grouped, reflecting the limited variability within this class, 
as there were no samples with pure cotton support in the historical documents. Overall, the results of the PCA 
analysis show that separability among classes is not enough for tackling material identification using PCA com-
ponents as input. They also suggest that the dataset is wide enough to cover for a fair amount of the variability 
found in both mock-ups and historical document samples.

Usage Notes
The HYPERDOC dataset33 presented here is part of the Hyperdoc project (https://colorimaginglab.ugr.es/pages/
hyperdoc/project). To facilitate its use, example code, available on GitHub (https://github.com/anabelenlb/
HYPERDOC_Database_code), is provided in both MATLAB and Python to perform the following tasks: 

•	 Exploration of the general content of the minicube stored as an HDF5 file, including access to metadata 
stored as attributes.

•	 Extraction of the hyperspectral image data from the dataset named DataCube, along with relevant 
attributes as variables in the workspace or environment.

•	 Visualization of false-color RGB images derived from selected spectral bands.
•	 Extraction of the Ground Truth (GT) data.
•	 Calculation of the mean and standard deviation for each class in the GT using the hyperspectral data from 

the DataCube.
•	 Plotting of the mean reflectances and their standard deviations for both the VNIR and SWIR minicubes.

To execute the MATLAB code, a MATLAB version R2011a or later is required, along with the Image 
Processing Toolbox. For Python, the following packages are needed: h5py, numpy, pillow, and matplot-
lib.pyplot.

The resulting images based on the provided code are shown in Fig.  10, using the minicubes 
‘00007-VNIR-mock-up.h5’ and ‘00007-SWIR-mock-up.h5’.

Fig. 6 Schematic representation of the results from previous studies utilizing the HYPERDOC dataset for 
classification36,37, binarization38, spectral unmixing39, and colorimetric analysis40,41.
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Limitations and further considerations for dataset usability. One limitation of the HYPERDOC 
dataset is the imbalance between the mock-up samples and those derived from historical documents. Mock-ups 
offer a controlled and reproducible framework ideal for training robust algorithms and investigating specific 
interactions between inks and supports. Simultaneously, the inclusion of historical samples provides valuable 
insights into real-world conditions of aging and degradation, broadening the applicability of the dataset to prac-
tical scenarios. Efforts have been made to include a broader range of historical materials; however, access to such 
documents remains a challenge due to their fragile nature and restricted availability. Moreover, the aging pro-
cesses of inks and supports, along with their interactions and the uncertainty about the recipes used to prepare 

Fig. 7 Average spectra and standard deviation per class (each line in the plot) and subset (each row) in the 
mock-up set. Inks and pencil are represented in the left graphs, while supports are shown in the right graphs.
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inks and supports in historical documents introduce further variability in the spectral properties of these mate-
rials, which are challenging to model. These processes may result in spectral features that diverge from those of 
mock-ups, potentially reducing the dataset’s generalizability to other historical samples of different periods and 
origins.

Additionally, identifying the materials present in historical samples often requires complementary analytical 
techniques. Without these methods, it is difficult to precisely determine the composition of certain inks, pig-
ments, or supports, which can affect the accuracy of the ground truth (GT) annotations.

Fig. 8 Average spectra and standard deviation per class (each line in the plot) and subset (each row) in the 
historical documents set. Inks are represented in the left graphs, while supports are shown in the right graphs.
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The GT annotations in this dataset were generated using a semi-automatic approach, including manual 
corrections and verification by different annotators, which ensures a reasonable degree of accuracy. However, 
human involvement may still introduce occasional inconsistencies, particularly when defining boundaries 
between inks and supports. Interactions between inks and supports, such as penetration or blending at the 
interface, create transitional zones where both materials are mixed, complicating precise annotation. To address 
this challenge, algorithms could be employed to erode or expand the annotated ink regions in the GT.

Despite its limitations, the HYPERDOC dataset is a unique and comprehensive resource that integrates 
mock-ups and historical documents, supporting diverse applications as previously demonstrated. It bridges the 
gap between the scientific and conservation communities, promoting the adoption of advanced techniques such 
as hyperspectral imaging, which remain relatively novel in the field. By fostering interdisciplinary collaboration 
and enabling the development of innovative methodologies, HYPERDOC contributes to the analysis of histori-
cal documents, ensuring its ongoing relevance and advancing the safeguarding of our cultural heritage.

Code availability
Hyperspectral data capture and reflectance correction were performed using Spectronon Pro 3.5.5. MATLAB 
code for converting from BIL to MAT format, from MAT to HDF5, and for extracting Ground Truth data, along 
with additional MATLAB and Python code for the visualization and analysis of minicubes, is available on GitHub: 
https://github.com/anabelenlb/HYPERDOC_Database_code.

Fig. 9 Score plots of PCA for inks and pencil (left) and supports (right). Colors indicate different classes, and 
symbols denote different subsets.

Fig. 10 False-color RGB images (left) created using bands [645, 565, 440] nm (top) and [1700, 1300, 1100] 
nm (bottom), Ground Truth (GT) image (center), and the mean spectral reflectances with standard deviation 
for the labels present in the GT, extracted from the minicubes ‘00007-VNIR-mock-up.h5’ and ‘00007-SWIR-
mock-up.h5’ (right).
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