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Abstract: This paper analyzes, through computational simulations, which spectral filters increase 

the number of discernible colors (NODC) of subjects with normal color vision, as well as red–green 

anomalous trichromats and dichromats. The filters are selected from a set of filters in which we have 

modeled spectral transmittances. With the selected filters we have carried out simulations 

performed using the spectral reflectances captured either by a hyperspectral camera or by a 

spectrometer. We have also studied the effects of these filters on color coordinates. Finally, we have 

simulated the results of two widely used color blindness tests: Ishihara and Farnsworth–Munsell 

100 Hue (FM100). In these analyses the selected filters are compared with the commercial filters 

from EnChroma and VINO companies. The results show that the increase in NODC with the 

selected filters is not relevant. The simulation results show that none of these chosen filters help 

color vision deficiency (CVD) subjects to pass the set of color blindness tests studied. These results 

obtained using standard colorimetry support the hypothesis that the use of color filters does not 

cause CVDs to have a perception similar to that of a normal observer. 
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1. Introduction 

The study of color vision deficiencies (CVDs) has recently gained attention from social networks 

due to the appearance of companies that have developed what they call "aids" for subjects with CVD. 

Approximately 1 in 12 men and 1 in 200 women have some type of CVD [1]. These deficiencies are 

usually classified according to the type of cone affected and the severity of the CVD. Normal color 

vision observers have three different kinds of light photoreceptors in their retinas. These three cones 

are called L, M, and S because they roughly respond to long, medium, and short wavelength ranges 

of the visible spectrum. The most frequent anomalies are those of the red–green type [2], which, 

according to the criteria mentioned, can be divided into two types: protan and deutan, depending on 

the cone that is affected (L or M, respectively). If the affected cone is S, a blue–yellow anomaly occurs: 

tritan. In the case of subjects having the three types of cones (L, M, and S), but if one of them is anomalous, 

they are called anomalous trichromats (protanomalous, deuteranomalous, or tritanomalous 

depending on whether the affected cone is L, M, or S respectively), and if they totally lack any type 

of cone then they are called dichromats (protanopes, deuteranopes, or tritanopes depending on 

whether they lack the L, M, or S cone, respectively). In this study we have not taken into account 

tritanomalous subjects or tritanopes, since these represent a low percentage of the CVD population 

(according to [3]). 

Subjects whose color vision anomaly is between moderate and severe may suffer limitations in 

their daily lives, such as not distinguishing the degree of cooking of meat, the maturity of certain 
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fruits and vegetables, the color of certain indicative lights (LEDs), different colors on maps, etc. For 

this reason, in most countries, these subjects are automatically excluded from certain jobs such as 

being an airplane pilot, firefighter, train driver, air traffic controller, etc. [4].  

Although genetic therapy experiments in mice and primates have been carried out [5], there are 

still no effective treatments in humans to reverse this condition [2]. The fields of engineering and 

colorimetry have paid special interest to the study of anomalous color vision. Both have worked hand 

in hand to develop active tools that work by image processing to help these subjects in their daily 

tasks [6,7]. However, this type of aid, although useful for performing certain tasks, requires the use 

of displays to artificially increase the contrast perceived by CVD subjects, and depends on the specific 

task to be facilitated. 

On the other hand, passive aid is of interest, such as filters that can be worn in glasses or contact 

lenses. Despite the lack of scientific evidence on the improvement of color vision in CVD observers 

using any type of filters, companies manufacturing them (such as EnChroma Inc. [8], founded in 2010, 

or VINO Optics [9], founded in 2006, amongst others) are gaining attention with commercial 

campaigns advertising improvement on the color vision of CVD observers wearing their products. 

This viral phenomenon does not go unnoticed by many researchers who study the effect of this 

type of passive aid from different paradigms [10–14]. Real CVD observers have been used in all this 

research to study how their color vision changes when the passive aids are used, and if it becomes 

more similar to that of subjects with normal color vision. None of these studies have concluded that 

the use of these aids allows CVD observers to achieve a vision similar to normal observers. 

In addition, some authors have carried out research using computational calculations in a 

complementary way to simulate the different conditions of CVD [10,11,15–17]. Working with 

simulations is a very interesting and powerful complement, specifically if you want to determine if a 

filter is effective or not, since it allows you to study a large number of filters and reflectances 

representative of a very varied set of real objects, as well as different CVD conditions. In addition, 

you can study the effect of each of the filters on different aspects of color vision (how they affect each 

of the perceptual attributes separately, distributions in the color space, simulate the effect on the 

result of different tests of color vision, etc.). It is in this aspect that the methods of capturing and 

processing spectral images become very important. This type of technology allows us to take into 

account the effect of small modulations on the spectral transmittance of filters for the precise 

calculation of color coordinates, thus opening up the possibility of using stimuli in a realistic context 

such as real natural or urban scenes. 

In this study, we have used computer simulations using reflectance data measured with spectral 

capture systems. With this data we have verified the effectiveness of the use of spectral filters to 

increase the number of discernible colors (NODC) for different types of observers, as well as the effect 

that these filters have on color coordinates. At this point we would like to clarify that, as defined in 

Section 2.3.2, NODC is related to chromatic diversity (as explained in [18]) without being considered 

an exact measure of the actual number of colors that a subject could discern. 

Other authors have done work in this regard. Linhares et al. [18] investigated computationally 

the effects of only 10 colored lenses on the NODC perceived by dichromats, using the algorithm of 

Brettel et al. [19] to model dichromatic vision and to simulate for normal observers the appearance of 

50 hyperspectral images (with a spectral resolution of 10 nm) of natural scenes for the three types of 

dichromats (protanopes, deuteranopes, and tritanopes). They found that in dichromatic vision the 

NODC was around 7% of that perceived by normal trichromatic observers. Nine of the lenses tested 

were commercial sunglasses with colored lenses. The other lens was an optimized lens that 

maximizes the NODC perceived by normal trichromats when seeing the natural scenes. The effect of 

these lenses on normal trichromats was a small enhancement on the NODC. However, for protanopes 

and deuteranopes the effect was a small impairment, whereas for tritanopes there was a considerable 

enhancement. The authors also claimed that whether these improvements could be perceived by 

observers as enhancing their color vision is still an open question [18]. 

Moreland et al. studied the effect of filters by simulations in [20]. In this case, instead of standard 

colorimetry, they worked in LMS cone responses space using the cone sensitivity functions proposed 
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in [21]. They calculated the standard deviation along some cone responses ratios, and defined specific 

enhancement factors with them. They studied 43 commercial filters and the reflectances from 658 

Munsell samples and three standard traffic signals colors under C illuminant. This procedure is 

interesting for quantifying the effect of the filters, but it does not allow study of the changes in the 

perceptual attributes, or the impact on CVD tests like we do in this work 

Marín Franch and Foster [22] used information–theoretic methods to estimate NODC taking into 

account both differing surface-color frequencies and observer response uncertainty. However, they 

neither simulated CVD observers nor the effect of filters. They obtained much smaller values than 

those based on counting methods, such as the one used in this study. 

Pastilha et al. [23] evaluated the NODC through a psychophysical experiment to test the 

hypothesis that pairs of colors confused by dichromats are not frequent in natural scenes and therefore 

the visual impairment in natural environments is not as high as predicted by other studies [18]. Four 

normal trichromats and four dichromats (two protanopes and two deuteranopes) participated in the 

experiment and the results showed that the number of pairs discriminated by dichromats was around 

70% of those discriminated by normal trichromats. 

Masuda and Nascimento [24] studied different illuminant spectra in order to maximize the 

colorfulness of the set of optimal colors proposed by Schrödinger [25]. This problem was similar to a 

filter optimization problem. However, instead of the NODC, the evaluation metric they used to select 

the optimal illuminant was the volume of the solid generated by the Schrödinger’s optimal colors 

under the different illuminants, which is related to their discrimination capabilities. This idea was 

already proposed by Thorton [26]. Masuda and Nascimento conclude with the idea that the effect of 

selecting such an illuminant would be similar to using colored filters with absorption bands at certain 

wavelengths (notch filters like the ones studied in this work). 

In this study, we have investigated three types of filters: band-pass and notch whose 

transmittances have been simulated, and the two commercial models studied in previous research, 

from EnChroma [11] and VINO [10] companies. Differently from the works cited above, we have 

considered a huge set of 90,922 filters (see 2.1.c). We have evaluated how the filters affect NODC in 

different sets of objects and scenes of diverse origin, unlike the cited previous works. In addition, 

both dichromatic subjects and anomalous trichromatic subjects and subjects with normal color vision 

have been simulated. Also, the effects of each filter for each type of observer on the result of the 

Ishihara test [27] and, for the first time, the FM100 [28] test have been simulated. As far as we know, 

such a large set of filters has never been studied, nor have so many different CVD conditions been 

covered. 

2. Methods 

2.1. Reflectances 

In this study the spectral information was limited within the range from 400 nm to 700 nm 

(visible range), and sampled every 1 nm through linear interpolation. Three reflectance sets were 

used, each of them corresponding to three different types of objects or scenes. Simulations were 

carried out using D65 as illuminant following CIE (Commission Internationale de l'Eclairage) 

recommendations for the use of CIELAB color space [29]. This is a representation of daylight with a 

correlated color temperature of approximately 6500 K. 

2.1.1. Data Set 1 (D1: Atlas) 

In order to select which filters, amongst the 90,922 simulated, maximized the NODC for each 

observer, a reduced but diverse hyperspectral reflectance set was used. This set was composed of the 

reflectances present in four popular color atlases: Munsell (1,269 samples) [30], NCS (1,751 samples) [31], 

Agfa (290 samples), and Pantone (923 samples) [32]. This set was used because it covers the whole 

color space quite regularly. Moreover, comparisons with other studies were easier this way. There 

were 4,233 samples in total in D1. Figure 1 shows an sRGB (i.e. the standard RGB space) [33] rendering 
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of the samples, as well as the three bi-dimensional projections of their L*, a*, b* distribution in CIELAB 

color space. 

 

Figure 1. sRGB (i.e. the standard RGB space [33]) rendering of the 4,233 samples present in D1 under 

illuminant D65, and their L*a*b* projections. 

2.1.2. Data Set 2 (D2: Scenes) 

This set is composed of 12 urban scenes retrieved from a database of hyperspectral images [34]. 

These scenes were chosen because of their color diversity, as well as for being representative of 

outdoor urban scenes for the majority of the population. These images were originally captured 

within the range from 400 to 1000 nm, with a step of 1.25 nm (519 bands). They were then interpolated 

to the previously mentioned visible range between 400 and 700 nm with 1 nm steps (301 bands). 

Figure 2 (left) shows the sRGB rendering [33] of the chosen scenes. 

 

 

Figure 2. sRGB rendering (i.e. into the standard RGB space [33])  of the 12 scenes present in D2 

(selected from a hyperspectral image database [30]) under illuminant D65, and their L*a*b* 

projections. 

The size of each spectral image was 1,300 x 1,392 pixels, which means a total of 21,715,200 

spectral reflectances in D2. As mentioned in Section 1, the total number of filters simulated was 

90,922. Since the amount of data is huge, the simulations would be computationally very slow (more 

than three months using 16 GB RAM and 3.19 GHz CPU). Hence, this set has been used to study the 

effect on the color coordinates only of the filters selected using D1. Figure 2 (right) shows the L*, a*, 

b* distribution of D2 under D65 illuminant on its three planar projections. Compared with D1 (Figure 

1), one can see how, even though D1 contains less reflectances, its chromatic diversity is wider since 

it covers a larger gamut compared to that typically found in natural scenes. 

2.1.3. Data Set 3 (D3: Ishihara and FM100) 

The third data set was composed of samples from two CVD tests. The first one was the Ishihara 

color vision anomaly detection test [27,35]. Six plates were chosen (pages 2, 3, 6, 7, 22, and 23) to be 

representative of this test. Their reflectances were measured using a hyperspectral scanner model 

Resonon Pika L [10,36]. This hyperspectral scanner together with its linear scanning stage, yielded, 

after calibration with a reference white and black image, a spectral reflectance image within the range 

from 383 nm to 1016 nm, with a 4.1 nm step (thanks to the hardware binning technique). After 



Sensors 2020, 20, 2023 5 of 16 

 

interpolation, the final reflectances were in the same range from 400 to 700 nm with a 1 nm step. 

These images have been used only for testing the visual effect of the filters. 

The second test was FM100 [28]. This is a sorting test consisting of 85 chips of similar luminance 

and chroma, but a different hue. Their reflectances were measured using the Konica Minolta CS2000 

spectro-radiometer. These measurements were used to simulate whether the chosen filters can help 

CVD observers improve their performance scores in this test. 

2.2. Filters 

Two types of filters were simulated (band-pass and notch), and each of them single and double. 

These types were considered since the existing passive aids usually feature this spectral shape. The 

filters were simulated using Gaussian functions (for the band-pass ones), and their complementary 

functions (for the notch ones). In the following sub-sections, we explain what each of these types of 

filters is like. Since increasing the width of a Gaussian function involves reducing the slope of its 

flanks, the rise and descent flank of a 10 nm bandwidth (FWHM) Gaussian function was used. These 

rise and descent flanks are separated more or less depending on the simulated band-pass or notch 

width of the filters. Thus, the simulated transmittances were more selective than normal width 

Gaussian functions but their spectral shapes are smoother than the step function, and hence more 

realistic. The pass-band for each filter (range between a rise flank and a descent flank) was considered 

with a maximum transmittance of 1.  

2.2.1. Band-Pass Filters 

These filters block all wavelengths but those belonging to a specific spectral range (the so called 

pass-band). We simulated filters with central wavelengths varying from 400 nm to 700 nm, with a 10 

nm step. Moreover, for each central wavelength, we simulated filters where the FWHM bandwidth 

varies from 10 to 100 nm in 10 steps. This was a total of 310 band-pass filters (see example in Fig. 3). 

2.2.2. Notch Filters 

These filters allow through all wavelengths but those belonging to a specific spectral range (the 

non-channel or valley). In order to simulate them, all transmittances from the band-pass filters 

previously calculated were subtracted from the unity transmittance. Thus, another 310 notch filters 

were simulated (see example in Fig. 3). 

2.2.3. Double Filters 

Along with the single filters, double filters have also been simulated with two pass-bands or two 

notch-bands. For this purpose, all the possible 2 by 2 band-pass and notch combinations have been 

simulated (see examples in Figure 3). We get a total of 45,150 double band-pass filters and their 

complementary 45,150 double-notch filters. This means a total of 90,300 double filters. 

2.2.4. Commercial Filters 

Together with the previous ones, the transmittances measured from two commercial filters used 

in previous studies were also included. The models were EnChroma Cx-65 and VINO 02 Amp Oxy-

Iso [10,11]. 

2.3. Simulation 

The initial data for simulations were: the spectral reflectance Robject(λ), which multiplied by the 

spectral radiance of the illuminant SPDillum(λ), and by the spectral transmittance of the filter T(λ), 

yields the color signal Lcolor(λ), as shown in Equation (1). 

 

������(λ) = ��������(λ) ∙ �������(λ) ∙ T(λ) (1) 
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Figure 3. Top: left: spectral transmittances of single band-pass filter. Right: spectral transmittances of 

single notch filter. Both centered on 500 nm with 30 nm FWHM. Bottom: Left: example of a double 

band-pass filter. Right: example of double-notch filter. 

As mentioned in Section 2.1, the illuminant used was the CIE standard D65, representative of 

daylight since it is the most common general case of outdoor illumination. From the color signal, and 

using the CIE1931 Standard Observer, tristimulus values were calculated as well as the color 

coordinates in CIELAB color space: L*, a*, b*, C*ab y hab. The reference white used for both unfiltered 

and filtered conditions was the same in order to be able to directly compare results between unfiltered 

and filtered cases. 

We need to clarify here that the most correct way to proceed would be to build a personalized 

set of transformations and functions to be used in colorimetry for each observer (matrix 

transformations, color space, color difference formulae, perceptual attributes computations, etc.) 

using as a starting point the color-matching functions of each type of observer. However, this 

approach, besides being considerably complex, is still an open problem and there is no clear way to 

see it done in practical terms. Hence, standard colorimetry was used for CVD observers as it is usually 

done in the literature [10–12,14,18], so that results could be compared between different types of 

observers and simulations could be computed as shown in Sections 3.2.2 and 3.2.3. 

2.3.1. CVD Simulation Model 

Once the tristimulus values were calculated for the D1 set and the normal observer, the 

tristimulus values for different CVD observers (type and severity) were simulated. There are several 

models in the literature for doing this [15–17,19]. In this study, a model proposed by Lucassen and 

Alferdinck [15] was used. This model has already been explained and used in previous studies by 

this research group [10,11]. According to this model, the anomalous cone responses for protan (L’) 

and deutan (M’) observers are calculated via the following Equations (2) and (3): 

�� = ((1 − �) ∙ �) + (� ∙ �) (2) 

�� = ((1 − �) ∙ �) + (� ∙ �) (3) 

where L and M are the cone responses from a normal trichromat observer and parameter d represents 

the amount in which the responses from normal cones are combined to obtain the response from the 

anomalous cone. Thus, d is not directly related to the severity regarded as the spectral separation 
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between L and M curves. However, this spectral separation is related to the increase of the chromatic 

discrimination threshold, as shown in [37], where they conclude that a spectral separation of 3 nm 

between L and M maxima corresponds to a moderate/severe CVD condition. For this reason, we 

calculated the value of d corresponding to this spectral separation of 3 nm (d = 0.7 for protanomalous 

and d = 0.9 for deuteranomalous observers), using the cone response curves in [38]. Figure 4 shows 

the spectral cone response functions for a normal observer (left), a protanomalous observer (center), 

and a deuteranomalous observer (right) with the above-mentioned values of d. 

 

 

Figure 4. LMS cone response functions simulated for normal (left), protanomalous d = 0.7 (center), 

and deuteranomalous d = 0.9 (right) observers. 

To simulate dichromat subjects in an extreme case we use the severity parameter with a value 

of d = 1. In this study we have simulated five types of observers: observers with normal color vision, 

anomalous trichromat observers (protan07 and deutan09), and anomalous dichromat observers 

(protan10 and deutan10). 

2.3.2. Calculation of the Number of Discernible Colors (NODC) 

After calculating XYZ tristimulus values for the D1 samples and the five different observers 

simulated both with and without filters, we needed a metric evaluation in order to compare the 

performance of each filter for each observer. To do so we considered the number of discernible colors 

(NODC). 

If we assume that two colors are discernible when their CIELAB space color difference is above 

1 unit (ΔEab > 1) [39], we can divide the three-dimensional L*, a*, b* color space in cubes of 1 unit sides, 

and count in how many of them there is at least one sample [18]. This method has limitations. One is 

the fact that this color space is not homogeneous; hence the size of the discrimination ellipses is not 

the same in all the regions. Although more advanced methods have been proposed to calculate the 

real NODC in a scene [22], this is still an open problem. The aim of this study is not to propose a 

method to calculate the NODC, but to use this parameter as a measurement of the effect of filters on 

the CIELAB color distribution. Our aim, rather than knowing the exact number of discernible colors 

in a scene for each observer, was to determine how this parameter varies for different filters. 

3. Results 

This section is divided into two sub-sections. In the first, the NODC for all the simulated filters 

is computed, and the filter that maximizes NODC for database D1 is determined. In the second sub-

section, the effect of the filters that maximize NODC on color coordinates, sRGB rendering of the 

scenes, and the Ishihara and FM-100 simulations are explained. 

3.1. Selection of Filters 

The NODC has been computed for the five types of observers and the 90,922 filters, using the 

database D1. For each observer, the filter that maximizes NODC has been chosen (see Fig. 5). Table 1 

shows the NODC with both the chosen filter and without a filter, the type of filter, and the relative 

variation of NODC (ΔNODC), computed as shown in Equation (4) where the sub-index f  

denotes filtered: 
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�����(%) =
����� − ����

����
· 100 (4) 

The relative variation of NODC for dataset D1 (ΔNODC) was small in all cases, on average 1.76% 

higher for dichromats than for anomalous trichromats. These relative variation data were similar to 

those reported by Linhares et al. [18]. The fact that for simulated anomalous trichromats there was a 

relative decrease in NODC for dataset D2 suggests that the relative net variation was close to zero, 

and so the effect of the filters was of little relevance. The differences between results obtained for 

datasets D1 and D2 were to be expected, given the differences in the chromatic gamut spanned by 

the two reflectance datasets (see Figures 1,2). 

Table 1. Number of discernible colors (NODC) before and after filtering with the best-performing 

filter chosen for each observer and the relative increase for both dataset D1 (Atlas) and D2 (scenes). 

Observer 
Filter 

Type 

NODC 

Filterless 

(D1) 

NODC 

Filtered 

(D1) 

ΔNODC 

(D1) (%) 

NODC 

Filterless 

(D2) 

NODC 

Filtered 

(D2) 

ΔNODC 

(D2) (%) 

Normal 
Double 

notch 
4192 4195 0.08 30,689 29,967 −2.35 

Protan 

d=0.7 

Double 

notch 
4061 4093 0.79 16,024 15,867 −0.98 

Protan 

d=1 

Double 

band-

pass 

2855 2919 2.24 2634 2685 1.94 

Deutan 

d=0.9 

Double 

notch 
3836 3866 0.78 7690 7686 −0.05 

Deutan 

d=1 

Double 

notch 
2993 3078 2.84 3176 3238 1.95 

Figure 5 shows the spectral transmittances of the filters that maximize NODC for each observer, 

along with their LMS spectral responsivity curves. The color of the square patches below the graphs 

simulates approximately the appearance of each filter as seen by a normal observer.  

Figure 5 and Table 1 show that, in all cases except for the deuteranopic simulated observer, the 

filter that maximized NODC was a double notch filter. In any case, the double band-pass filter 

obtained for the deuteranopic simulated observer was very similar to a double notch. It is relevant to 

comment on the fact that for dichromats, the selected filters had a high transmittance in most of the 

wavelength range covered by the cone responsivity curves, and they included a narrow band of lower 

transmittance in between the two curves. For the normal and deuteranomalous subjects, the selected 

filters only had a low transmittance in the extreme portions of the visible range (especially in the blue 

region). For the protanomalous observer, the selected filter had two narrow bands of low transmittance, 

one in the area between the S and M and the other in the area between the L and M curves.  

 

Figure 5. Spectral transmittances of the filters that maximize the NODC for each type of observer studied. 

For all observers, it should be noted that there were more filters that produced an increase in the 

NODC, even with minimal differences with respect to the selected filters. In Table 2, the percentage of 

filters that produced a positive relative variation in NODC is shown for each kind of filter and each 

simulated observer, with the type of filter that corresponds to those selected written in bold characters.  
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Table 2. Global percentage of filters of each type that produced a positive relative variation in NODC 

for each observer. The data for the filters of the same type as the one selected are shown in bold numbers. 

Observer Global (%) Notch 1 (%) Pass 1 (%) Notch 2 (%) Pass 2 (%) 

Normal 0.01 0 0 0.02 0 

Protan  

d = 0.7 
0.79 5.18 0 0.43 0 

Protan d = 1 3.04 18.45 0 4.47 0.13 

Deutan  

d = 0.9 
0.23 4.85 0 0.43 0 

Deutan d = 1 2.39 18.45 0 4.47 0.22 

For dichromats there was a higher relative number of filters that produce an increase in NODC, 

in comparison with anomalous trichromats. Neither of the two commercial filters studied produced 

an increase in NODC for any of the observers (see Table 3). The same can be said about the simple 

band-pass filters. For double band-pass filters, only the dichromats registered an increase in NODC 

for some of these types of filters. 

Table 3. NODC before and after filtering with the EnChroma and VINO filters, and the relative 

increase for dataset D1 (Atlas). 

Observer 
NODC 

Unfiltered 

NODC with 

EnChroma 

ΔNODC 

EnChroma (%) 

NODC with 

VINO 

ΔNODC 

VINO (%) 

Normal 4192 4168 −0.57 3934 −6.15 

Protan 

d=0.7 
4061 3980 −1.99 3735 −8.03 

Protan 

d=1 
2855 2578 −9.70 1549 −45.74 

Deutan 

d=0.9 
3836 3680 −4.07 2849 −25.73 

Deutan 

d=1 
2993 2676 −10.59 2323 −22.39 

3.2. Effects Produced by the Selected Filters 

Once the filters that maximized NODC were selected for each simulated observer, the change 

that these filters produce on average on the color coordinates L*, a*, b* and the perceptual attributes 

Chroma (C*ab) and hue (hab) were determined using datasets D1 and D2. Moreover, the shift caused 

by the filter on the color distributions of L*, a*, b* was also analyzed for both datasets.  

3.2.1. Changes in Color Coordinates 

In Table 4, the L*, a*, b* average shifts caused by the selected filters are shown for both datasets 

and each observer. The increments were computed by taking the unfiltered condition as reference. 

Table 4. Mean (standard deviation) of shifts in color coordinates when the selected best-performing 

filters were used by each simulated observer, and for both dataset D1 (Atlas) and D2 (scenes). 

 D1 D2 

Observer ΔL* Δa* Δb* ΔC* Δhab ΔL* Δa* Δb* ΔC* Δhab 

Normal 
−0.23 

(0.12) 

−3.55 

(1.06) 

3.25 

(0.95) 

0.55 

(3.47) 

−0.13 

(28.04) 

−0.20 

(0.08) 

−2.52 

(0.36) 

2.11 

(0.28) 

1.40 

(1.15) 

7.96 

(19.02) 

Protan d=0.7 
−5.36 

(1.27) 

2.82 

(1) 

−3.55 

(1.31) 

0.72 

(3.63) 

−11.10 

(18.21) 

−4.39 

(0.86) 

2.20 

(0.41) 

−2.65 

(0.34) 

−1.25 

(1.52) 

−15.33 

(8.59) 

Protan d=1 
−3.29 

(1.16) 

1.13 

(0.71) 

−4.29 

(1.78) 

0.32 

(3.75) 

13.84 

(14.00) 

−2.48 

(0.55) 

0.63 

(0.21) 

−3.11 

(0.75) 

−2.24 

(1.57) 

−10.87 

(9.70) 
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Deutan d=0.9 
−0.09 

(0.04) 

−0.65 

(0.29) 

1.88 

(0.5) 

−0.01 

(1.69) 

5.63 

(6.61) 

−0.06 

(0.01) 

−0.36 

(0.08) 

1.24 

(0.12) 

0.94 

(0.61) 

3.6 

(3.48) 

Deutan d=1 
−4.13 

(1.63) 

1.69 

(1.13) 

−5.97 

(2.52) 

1.11 

(5.63) 

−14.55 

(16.86) 

−2.98 

(0.6) 

0.89 

(0.28) 

−4.24 

(0.89) 

-2.85 

(2.37) 

−14.77 

(14.31) 

As expected, lightness (L*) decreased when a filter was introduced since the filter partially 

absorbs the incident light and no lightness or chromatic adaptations were considered. The trends 

found for the a* and b* coordinates were similar for both datasets and each observer. This can be 

explained by considering that the filter shifts the color coordinates in the same direction for both 

datasets. For different observers, however, the shifts differed because the selected filters were 

different and the shifts introduced were not in the same direction. 

Regarding C*ab and hab shifts, different trends were found regarding the sign of the shift for both 

datasets. If the L*, a*, b* distributions were examined with and without the filter (see Figure 6), it was 

observed that the number of samples in each quadrant was different for each of the two datasets. 

Then, even when the shifts were in the same direction, the resultant changes in hue and chroma on 

average were different depending on the number of samples present in each quadrant. 

 

Figure 6. L*, a*, b* data clouds for the protanomalous simulated observer. Left: D1 dataset. Right: D2 

dataset. First row: unfiltered; second row: filtered; third row: both filtered and unfiltered distributions 

in the same graph (red = unfiltered, blue = filtered). 

3.2.2. sRGB Renderings 

The sRGB values for each sample can be obtained straightforwardly from the XYZ values [33]. 

Then, each of the scenes can be rendered for visualizing the effect produced by the selected filters. It 

is important to note here that the sRGB rendering presented here has not been obtained using a 

chromatic adaptation transformation, so the appearance of the scenes could correspond to the 

observers’ perception in the instant just after looking through the filter and before chromatic 

adaptation takes place.  

The sRGB rendering for one of the scenes in dataset D2 is shown in Figure 7, for all simulated 

observers in both filtered and unfiltered conditions. The images have been normalized to [0,1] range 

to compensate for differences in lightness and allow for a comparison with a similar signal level in 

each case. There was a perceptible change in color for all the simulated observers, reflecting the shift 

in color coordinates shown in Figure 6. 
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Figure 7. sRGB rendering of one of the scenes in dataset D2, for all simulated observers. First row: 

unfiltered. Second row: filtered. 

In Figure 8, the six Ishihara plates belonging to dataset D3 are shown as sRGB renderings, for 

the protanomalous and deuteranope observers, with and without a filter. It can be observed that the 

effect of the filters on the appearance of the plates was not very relevant. These filters did not allow 

the simulated observers to pass the Ishihara test. As is shown in [10], the VINO commercial filter 

produced the opposite effect and allowed the simulated observers to recognize the numbers or tracks 

in the Ishihara plates, because this filter shifts all colors to the fourth quadrant and causes an increase 

in the contrast between the number and the background for CVD subjects, at the cost of substantially 

changing their color appearance. However, as shown in Table 3, this filter caused a decrease in the 

NODC for all simulated observers.  

 

Figure 8. sRGB rendering of the Ishihara plates in dataset D3, for the protanomalous (left side) and 

deuteranopic (right side) simulated observers, for both unfiltered and filtered conditions. 

3.2.3. FM100 Results 

The results of the FM100 [28] test were simulated for both filtered and unfiltered conditions 

using the selected filters for each observer. A normal observer should perform almost flawlessly, 

whilst the performance of CVD observers would depend on the severity of their condition. To 

simulate the test result, the spectral reflectance data of the 85 chips of the test were measured with a 

spectro-radiometer. Then, the L*, a*, b* values for each sample were computed using the D65 standard 
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illuminant. The L*, a*, b* distribution for the normal observer in unfiltered conditions is shown in 

Figure 9. 

 

Figure 9. L*, a*, b* data for the FM100 samples under D65, for normal observers in  

unfiltered conditions. 

To obtain the simulated test result, the samples were sorted according to the hue angle. Each 

chip was assigned a number from 1 to 85 in ascending hue order. The L*, C*ab and hab parameters have 

also been computed.  

In Figure 10, the a*-b* distributions for the three trichromat simulated subjects are shown 

(normal observer on the left, protanomalous in the middle, and deuteranomalous on the right), 

without (red) and with the selected filter for each observer (blue). The distributions for the two 

commercial filters EnChroma and VINO are also shown for all observers.  

The filters produced a shift in the a*, b* coordinates in all cases. This shift made it impossible for 

the normal observers to perform correctly when using the VINO filter. The reason for this was that 

the position of the center of the ring formed by the test samples in the a*-b* chart changed in the 

filtered condition. Hence, since the new center was not close to the origin, sorting by hue no longer 

produced correct results, because the reference for sorting the samples was the a* positive axis and 

in the filtered ring, there could be more than one sample with the same hue angle. For CVD observers, 

even the unfiltered sample ring was not centered in the origin, reflecting that they were unable to 

perform the sorting task correctly for either filtered or the unfiltered conditions. Only the normal 

observers with the EnChroma filter were able to perform correctly because the shift caused by the 

filter was not enough to disrupt the sorting process. 

In Table 5 the quadratic Total Error Score (SQR), the confusion index (CI), the scatter index (SI), 

and Angle parameters used in the standard FM100 evaluation of results are shown for each simulated 

observer in both filtered and unfiltered conditions. The definition of each of these metrics can be 

found in [40]. 

The FM100 evaluation parameters for the normal observers did not change when the selected 

filter was introduced, so the filter did not alter the ability of the normal subject to correctly sort the 

FM100 samples. Regarding the CVD simulated observers, SQR values increased slightly for the 

deutan type observers, and they increased considerably for the protan type observers. The filter was 

thus worsening the performance to a higher degree for the protan type subjects. As shown in Figure 

6, the effect of the selected filter for protanomalous observers was a shift towards the right in a* 

values. Then, some samples with negative a* values in the unfiltered condition had positive a* values 

in the filtered condition, with a very noticeable effect on the sorting task based on hue. Regarding the 

angle values, Table 5 shows that they increased for deutan subjects and decreased for protan subjects, 

reflecting that the distribution of responses was increasingly different for both groups. This trend 

also was found in a previous study using the VINO filter [10]. CI values increased for protan 

observers, in agreement with the trends commented above for the SQR data, while they slightly 

decreased for the deutan subjects. The SI values showed a trend towards decreasing or they remained 

the same for all subjects. The SI parameter was thus less sensitive to the effect of introducing the filter, 
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reflecting that the randomness of the sorting was kept approximately equal when comparing the 

filtered and unfiltered conditions. It was not possible to analyze the statistical significance of these 

findings, since there was only a single instance for each simulated observer. 

 

 

Figure 10. a*-b* color charts with FM100 samples plotted for normal (left), protanomalous (middle), 

and deuteranomalous (right) simulated observers, in the filtered (blue) and unfiltered (red) 

conditions. First row: selected filter; second row, EnChroma filter; third row: VINO filter. 

Table 5. Quadratic Total Error Score (SQR), Angle, C-Index, and S-Index computed for each simulated 

observer in the filtered (with the best-performing filter) and unfiltered conditions. 

Observer 
SQR 

(unfilt) 

SQR 

(filt) 

Angle 

(unfilt) 

Angle 

(filt) 

CI 

(unfilt) 

CI 

(filt) 

SI 

(unfilt) 

SI 

(filt) 

Normal 2 2 49.58 49.58 1.05 1.05 1.33 1.33 

Protan d = 0.7 6 12.96 61.47 54.14 1.28 2.4 1.46 1.3 

Protan d = 1 17.55 19.80 43.17 42.52 5.89 5.03 2.07 1.85 

Deutan d = 0.9 15.23 15.62 43.3 46.32 4.61 4.47 1.64 1.63 

Deutan d = 1 16.97 17.32 48.72 56.17 3.95 3.7 1.45 1.27 
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4. Conclusions 

In this study, simulations were carried out to determine which spectral filter maximizes the 

number of discernible colors (NOCD) for normal observers, as well as four different types of red–

green CVD observers (anomalous trichromats and dichromats both protan and deutan). Simulations 

were carried out using standard colorimetry for both normal and CVD observers. For this purpose, 

a set of 90,920 simulated filters (composed of single and double band-pass and notch filters) were 

studied, together with two measured commercial filters released as passive aids for CVD observers 

by the VINO and EnChroma companies. 

Results on the choice of filters showed that, in all cases, the type of filter that maximized the 

NODC was a double notch, except for the protanope dichromats which was a double band-pass. 

Nonetheless, variations in NODC were small (maximum of 2.84%), and oscillated around 0% when 

different reflectance datasets were used. Moreover, both the EnChroma Cx-65 and VINO O2 Oxy-Iso 

commercial filters were shown to decrease the NODC for all studied observers and reflectance 

datasets. In this regard, the single band-pass filters did not yield any NODC increase either. 

sRGB renderings from D2 and D3 were carried out for the five types of observers, both with and 

without a filter. In case of dataset D3: Ishihara, the chosen filters were shown not to include any 

improvement, which lead CVD observers to fail this test even when using these filters. On the other 

hand, results from FM100 test using these filters showed that CVD observers were unable to pass this 

test either, or even get close to the filterless performance of normal observers. FM100 seems to be the 

most reliable test for evaluating the efficacy of colored filters in color perception. Regarding the 

commercial filters, the EnChroma filter did not improve the performance of either the Ishihara test 

or the FM100 test, whilst the VINO filter helped CVD observers recognize the numbers in the Ishihara 

test but did not allow any observer (including normal observers) to pass the FM100 test. 

These results, assuming the limitations of using standard colorimetry for CVD observers, 

support the hypothesis that, even though some filters may slightly increase the number of discernible 

colors, they can never allow CVD observers to perceive colors more similarly to normal observers. 

Even normal observers can stop perceiving colors correctly when using some of these filters, and they 

become unable to pass the FM100 test. In the future, if new personalized colorimetry frameworks are 

developed, especially for CVD observers, it would be very interesting to compare the results obtained 

to quantify the effects of these filters with the ones presented in this article. 
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