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Abstract: In the cultural heritage preservation of medieval buildings, it is common to find plaster
walls covered in lime, which previously were painted in polychromy. The conservation interventions
usually try to remove the whitewash, whilst maintaining the original color of the painted wall as
much as possible. However, there is no agreement on which cleaning technique best preserves the
original appearance of the colored plaster. Different pigments found below the lime layer may
behave differently depending on the cleaning technique used. Usually, colorimetric or photometric
area-based measurements are carried out to study the color of the cleaned areas to compare with their
original color, obtained from pre-made plaster probes. However, this methodology fails when the
mean color difference is not enough to fully characterize the changes in texture and color appearance.
This study presents a set of experiments carried out using two different pigments (cinnabar and
malachite) covered with lime, and treated with nine different cleaning techniques on plaster probes
prepared according to medieval techniques. We have studied the effect of the cleaning process on the
color and the homogeneity of the samples using a hyperspectral imaging workflow. Four different
analysis methods are presented and discussed. Our results show that the proposed analysis is able to
provide a much more comprehensive and diversified characterization of the quality of the cleaning
method compared to the commonly used colorimetric or photometric area-based measurements.
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1. Introduction

One of the main problems that medieval plasterwork presents, as far as its conservation and
restoration is concerned, is the risk involved with the cleaning processes used. Currently, the great
majority of plasterwork decorations show a very different aspect to what they originally had, which was
characterized by vivid, rich colors similar to those found today in ceramic tiles [1]. Historically, layers
of various materials were applied one on top of the other to change the original appearance of the
plasterwork. On the one hand, they were whitewashed to adapt to the neoclassical taste or for hygiene
reasons, or on the other hand, the polychromy was redone to refresh or renovate colors which had
been lost over time. An example of this kind of actions from the plasterworks of patio de las Doncellas
in Real Alcázar of Sevilla is shown in (Figure 1) [2].
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Figure 1. (A) Plasterworks in the intrados of the access gate of Carlos V room in Real Alcázar of 
Sevilla. The red dot highlights the area where the sample was collected. (B) Stereo microscope image 
of a sample taken from the Patio de las Doncellas in the Real Alcázar in Sevilla where there is 
presence of whitewash and red polychromy hiding its original blue color. 

In these cases, from a conservative point of view, we consider the alteration a dirt problem as it 
has to be removed with a cleaning process. This is where we can encounter great difficulties because 
when we remove the altered layers the original polychromy can be detached too, and it is therefore 
very difficult to remove them without negatively affecting the original piece [3]. Due to the current 
complexity of their removal and the extent of the topic, this study focuses only on cleaning the 
whitewash layers. In this sense, it is important to highlight that it is a topic which has not been 
extensively addressed, and there are only few studies which have focused on this problem affecting 
this type of decoration. 

The difficulties encountered removing this kind of alteration have been analyzed in previous 
studies, such as the ones conducted by Hubbard [4] or Cotrim et al. [5], among others. The problem 
of removing this kind of modifications is the need of using solvents that are invasive for the 
plasterwork as well. This is the case of deionized water and other polar solvents such as acetone or 
alcohols like ethanol [4–6]. In order to avoid the excessive pervasion of these methods, cotton 
poultices were used traditionally [4], or more recent techniques such as gels [5]. In these works, the 
authors highlight the need of combining those chemical treatments with the use of mechanical 
procedures, such as the scalpel, for the cleaning to be effective, especially in case of gels [5]. 

Some of the most relevant interventions dealing with the issue of whitewash removal are the 
plasterwork restoration in the Madraza chapel [2], the plasterwork restoration in the hall of the 
Palace of King Don Pedro in Seville [7] and the intervention in the gothic linear style murals in the 
Santa Maria la Nueva church in Zamora [8], or the restoration of the plasterwork front in a Nasrid 
building of XIV–XV centuries in Granada [9]. These works highlight the problem of the existing 
limewash layers and the difficulty of their removal. On the one hand, the limewash layer causes the 
decohesion of the inner layers agglutinated with organic materials (animal glue, Arabic gum, and 
egg). Thus, during the removal process, there is the risk of removing the original layer together with 
the limewash layer. On the other hand, it is also highlighted in these works that the presence of such 
layers, involves a problem of the chronological decontextualization of the coating. This makes it 
necessary to remove them, in order to preserve and date the pieces. The cleaning methods applied 
on these works, are based on both the use of manual cleaning methods with scalpels [2,7], and the 
use of these techniques combined with chemical treatments such as applying solvents like water and 
ethanol with cotton poulettes [8,9]. In those cases where only mechanical procedures were applied, it 
was concluded that they are very aggressive and they may remove part of the original polychromy 
layer as well. Hence, the need of including chemical treatments which make the cleaning more 
effective and decrease the risk of introducing changes in the original color [2,7]. Accordingly, in 
those works where a mechanical and chemical combination of procedures were applied, the cleaning 
was much more effective and the appearance of the original color was better preserved [8,9]. 

Figure 1. (A) Plasterworks in the intrados of the access gate of Carlos V room in Real Alcázar of Sevilla.
The red dot highlights the area where the sample was collected. (B) Stereo microscope image of a
sample taken from the Patio de las Doncellas in the Real Alcázar in Sevilla where there is presence of
whitewash and red polychromy hiding its original blue color.

In these cases, from a conservative point of view, we consider the alteration a dirt problem
as it has to be removed with a cleaning process. This is where we can encounter great difficulties
because when we remove the altered layers the original polychromy can be detached too, and it is
therefore very difficult to remove them without negatively affecting the original piece [3]. Due to the
current complexity of their removal and the extent of the topic, this study focuses only on cleaning
the whitewash layers. In this sense, it is important to highlight that it is a topic which has not been
extensively addressed, and there are only few studies which have focused on this problem affecting
this type of decoration.

The difficulties encountered removing this kind of alteration have been analyzed in previous
studies, such as the ones conducted by Hubbard [4] or Cotrim et al. [5], among others. The problem of
removing this kind of modifications is the need of using solvents that are invasive for the plasterwork
as well. This is the case of deionized water and other polar solvents such as acetone or alcohols like
ethanol [4–6]. In order to avoid the excessive pervasion of these methods, cotton poultices were used
traditionally [4], or more recent techniques such as gels [5]. In these works, the authors highlight
the need of combining those chemical treatments with the use of mechanical procedures, such as the
scalpel, for the cleaning to be effective, especially in case of gels [5].

Some of the most relevant interventions dealing with the issue of whitewash removal are the
plasterwork restoration in the Madraza chapel [2], the plasterwork restoration in the hall of the Palace
of King Don Pedro in Seville [7] and the intervention in the gothic linear style murals in the Santa
Maria la Nueva church in Zamora [8], or the restoration of the plasterwork front in a Nasrid building of
XIV–XV centuries in Granada [9]. These works highlight the problem of the existing limewash layers
and the difficulty of their removal. On the one hand, the limewash layer causes the decohesion of the
inner layers agglutinated with organic materials (animal glue, Arabic gum, and egg). Thus, during
the removal process, there is the risk of removing the original layer together with the limewash layer.
On the other hand, it is also highlighted in these works that the presence of such layers, involves a
problem of the chronological decontextualization of the coating. This makes it necessary to remove
them, in order to preserve and date the pieces. The cleaning methods applied on these works, are
based on both the use of manual cleaning methods with scalpels [2,7], and the use of these techniques
combined with chemical treatments such as applying solvents like water and ethanol with cotton
poulettes [8,9]. In those cases where only mechanical procedures were applied, it was concluded that
they are very aggressive and they may remove part of the original polychromy layer as well. Hence,
the need of including chemical treatments which make the cleaning more effective and decrease the
risk of introducing changes in the original color [2,7]. Accordingly, in those works where a mechanical
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and chemical combination of procedures were applied, the cleaning was much more effective and the
appearance of the original color was better preserved [8,9].

The aim of this study is to determine the effectiveness of a series of cleaning processes that allow the
removal of whitewash layers from polychromed plasterwork. The effectivity of the cleaning methods
over polychromic layers has been evaluated in other studies through different techniques like stereo
microscopy, optical microscopy, scanning electron microscopy, photogrammetry, or colorimetric point
measurements using a spectrophotometer [10–12]. While the colorimetric point-based measurements
only offer information about the mean changes produced in a specific area of the sample, imaging
techniques like the ones presented in this work provide more detailed information about the local
changes produced in the surface.

To conduct the research, we used plaster probes which underwent a 36-month ageing process and
simulated the materials and execution techniques of medieval plasterwork. Then, we added a layer
of whitewash and selected various cleaning processes in order to test them. The base materials were
selected taking into account previous work conducted by our team and other researchers in some of
the most representative monuments of this period: Cuarto Real de Santo Domingo [13], the Madraza
chapel [2], the plasterwork of the Alhambra [14,15], and the Real Alcazar of Sevilla [16]. Regarding the
cleaning processes, we selected traditional methods, both physical (such as a scalpel) and chemical,
and other techniques more recently used in restoration (polysaccharide-based gels, polyacrylic acids,
or cellulose ethers).

We should highlight the complexity of assessing colorimetric data objectively in these kinds of
studies. The simple visual analysis of the samples or the analysis of images taken with a camera,
although useful, do not offer an objective assessment in this kind of work, where the color differences
between two samples measured with the tools traditionally used for this aim (point/area-based
measurements) can be minimum, although both samples are visibly very different.

The aim of this work is to assess the effectiveness of these cleaning processes in very precise areas
of the probes. For such purpose, we propose a method based on the use of perforated acetate templates
and hyperspectral imaging techniques to analyze in more detail the changes produced in the studied
chromatic surfaces.

Analysis methods based on spectral images have been successfully applied in previous studies for
restoration and cultural heritage applications. For example, in [17], the effect of different consolidants
used in medieval plasterwork is analyzed. In [18], the effect of ageing of the different varnish materials
is studied on paper samples. In [19], a complete capturing and processing workflow is presented for
the high dynamic range and multiple focus hyperspectral imaging of works of art. However, to the
best of our knowledge spectral imaging has not so far been used to assess the quality of cleaning
procedures in plaster probes. In this study, four novel analysis techniques based on spectral imaging
data are proposed to study the performance of nine different medieval plasterwork cleaning methods
aimed at restoring the original appearance of the samples. Most of the methods presented here would
require the use of either calibrated imaging or spectral capture devices. This makes spectral imaging
devices a very convenient tool for analyzing the effect of the cleaning procedures on our samples,
since spectral imaging techniques allow us to perform conventional simple colorimetric analyses based
on point color measurements and also to have access to colorimetric pixel-by-pixel information.

The remainder of the paper is organized as follows: in Section 2 we describe the experimental
methods used, including the sample preparation and spectral imaging capture devices used. In Section 3,
we present the main results of the different analytical methods proposed. In the discussion section
(Section 4) we extend the analysis of the results presented, and finally in the conclusions section
(Section 5) we summarize the main outcomes of this work.
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2. Materials and Methods

2.1. Plaster Probes

For this study two probes reproducing medieval plasterwork were used. The probes were chosen
due to the necessity of having a wide colored surface on which to be able to assess objectively
and precisely the different processes to be tested. To make the probes the results from 10 samples
analyzed with X-ray diffraction from the plasterwork of the Patio de las Doncellas in the Real Alcázar
de Sevilla [16] were taken as a reference. The probes were made using a base of fired clay bricks
manufactured industrially, over which the plaster support was reproduced with white gypsum plaster
95% (CaSO4•

1
2 H2O) certified by AENOR, to which 5% calcium hydroxide (CaCO3), was added

(from CALCINOR). The amounts used were 500 g of calcium sulphate, 25 g of calcium hydroxide and
1200 mL of water using a mold in order to be able to repeat the probes, which were 20.5 cm long, 10 cm
wide, and 2.7 cm thick.

On this support a layer of polychromy is added, based on the tempera technique, which uses a
pigment and a binder. The used pigments are natural malachite (K.10300) for probe 1 and cinnabar
(K.42000) for probe 2 from Kremer Pigmente GmbH & Co.KG® (Aichstetten, Germany) manufacturers.
These pigments were selected taking into account the results from previous studies, as they are two of
the most commonly found in work of this period [2,13–16]. Two binders were selected. On the one
hand, animal glue for probe 1 and gum arabic for probe 2, as they were the most used during this
period. Both are from manufacturers CTS® (Madrid, Spain) and were prepared at 10% concentration
(Figure 2).
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ensuring the effectivity of this kind of natural aging method (EEA) for the evaluation of polychromic 
surfaces, which was used in previous studies [20]. 

Figure 2. Above: identification of natural malachite and cinnabar in the original layers of the plasterwork
in the Patio de las Doncellas in the Real Alcázar of Seville. Below: general image of the chromatic study
surface of the probes.

The proportion of pigment and binders was determined with the aim of creating a homogenous,
opaque and covering layer over the plaster support to be able to assess adequately the data obtained
from the cleaning tests. The proportion for the natural malachite was 10 mL/5 g, whilst the proportion
of the cinnabar pigment was 10 mL/3 g [16].

The prepared chromatic surfaces were aged for 36 months after their preparation with polychromy.
After applying the whitewash, they were aged for 3 months before proceeding with the cleaning
processes. The aging process consisted in storing the probes in a research laboratory, controlling
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the humidity and temperature (daily, weekly, and monthly) using a portable device by Sensonet.
This procedure allowed us to control the real conditions of the probes during aging, ensuring the
effectivity of this kind of natural aging method (EEA) for the evaluation of polychromic surfaces,
which was used in previous studies [20].

2.2. Acetate Template Evaluation

Due to the complexity of the cleaning processes it was essential to define exactly the areas
of polychromy where the different treatments were applied to be able to extract the relevant data.
So, following the methodology recommended by the Institute of Spanish Cultural Heritage in the project
Nanorestart—EU Project (Nanomaterials for the Restoration of Works of Art) [21]—for interventions in
contemporary works of art, we decided to design acetate transparent templates adapted to the surface
of each assessed probe. In one of these templates 9 holes were made and each was assigned a selected
cleaning process with a test area of 2 cm2. In each of these the number of the process was indicated with
a permanent marker so that the condition before and after the treatment could be perfectly compared
in each of the chromatic test surfaces (Figure 3).
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Figure 3. (A) Image of Probe 1 in its initial stage with the acetate template that shows the gaps where the
different cleaning processes will be applied. (B) Two-dimensional and simplified simulation of Probe 1
and how the gaps of the acetate template created for the cleaning tests are distributed. (C) Mechanical
cleaning process with a scalpel.

2.3. Cleaning Tests

As we mentioned before, the fact that there are few studies focusing on adequate cleaning
processes to remove whitewash from medieval polychromed plasterwork was one of the biggest
problems of this study. Therefore, it was necessary to do an in-depth review of the existing bibliography
on cleaning treatments that dealt with the problem of removing a superficial layer when the base
material is plaster, soluble in water, painted with the tempera technique (with gum arabic or animal
glue) with water-soluble binders. After this review two types of techniques were chosen—mechanical
and chemical—which were applied individually or in combination (Table 1).

To date, physical treatments have been the most used to remove both whitewash and calcium
carbonate in archaeological mural paintings. However, they are very abrasive methods that depend
greatly on the restorers’ expertise, and are also not advisable when the surface is very wide because
of the time it takes. Among these, the most used are mechanical/manual techniques such as surgical
knifes, scalpels, glass fiber pencils, or wood sticks among others; or electronic tools such as small
drills which are faster than the first but are sometimes not advisable when removing thin layers on
weak polychromy [22]. Gradually, new techniques such as the infrared laser have been used recently.
This gives good results in some cases, but it is expensive, which can be a problem particularly in small
restoration interventions [23,24].
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Table 1. Selected treatments for each probe.

PROBE 1 PROBE 2

# Method Solvent Time
(min) # Method Solvent Time

(min)

1 Scalpel x X 1 Methylcellulose gel
+ scalpel

Water and acetone
(75:25) 30

2 Cellulose poultice
+ scalpel Distilled water 20 2 Cellulose poultice

+ scalpel
Water and acetone

(75:25) 30

3 AB-57 + scalpel x 20 3 AB-57 + scalpel x 30

4 Polyacrylic acid gel
+ scalpel Distilled water 20 4 Polyacrylic acid gel

+ scalpel
Water and acetone

(75:25) 30

5

Gel from complex
polysaccharide

(Gellano Kelogel®)
+ scalpel

Distilled water 20 5

Gel from complex
polysaccharide

(Gellano Kelogel®)
+ scalpel

Water and acetone
(75:25) 30

6 Cotton swab
+ scalpel Distilled water X 6 Cotton swab

+ scalpel
Water and acetone

(75:25) X

7

Complex
polysaccharide gel

(Agar-Agar®)
+ scalpel

Distilled water 20 7

Complex
polysaccharide gel

(Agar-Agar®)
+ scalpel

Water and acetone
(75:25) 30

8
Hydroxypropyl

cellulose
Gel +scalpel

Distilled water 20 8
Hydroxypropyl

cellulose gel
+ scalpel

Water and acetone
(75:25) 30

9 Glass fiber pencil x X 9 Glass fiber pencil x X

For this study, we chose the scalpel and the glass fiber pencil from the mechanical techniques
described above due to the advantages both methods have for removing layers of this type from wall
coverings [25]. Both were tested individually: (method 1) scalpel and (method 9) glass fiber pencil or
combined with other methods as described in Table 1.

We will now go on to describe the chemical methods that were used. The use of solvents such as
deionized water, triammonium citrate, ethanol, acetone, toluene, or white spirit, have been traditionally
used for these decorations to soften the surface which has to be removed. The revised bibliography
recommends using these solvents with a thickening or gelling agent to improve control and effectiveness.
Traditionally, cellulose or cotton poultices have been used and recently gels made with polyacrylic
acids, complex polysaccharides, and cellulose ethers have been incorporated [6,26–28].

For this study, from the above methods we chose distilled water for method 2 (Probe 1) and
a 75/25 mixture of water and acetone (Probe 2), taking into account the positive effects of these
solvents which have been highlighted by authors such as Hubbard [4], Wolbers [29], Bogiorli [28],
Giordano and Cremonesi [30] or Tortajada and Blanco [31]. To apply them a selection of the most
adequate gelling and thickening agents for surfaces sensitive to water, such as plaster, was carried out.
These were applied in both probes (Probe 1 and Probe 2) in the different cleaning processes that were
used: cellulose poultice (method 3), gel formed from the polyacrylic acid Carbogel® (CTS®, Madrid,
Spain) (method 4), gel formed from the complex polysaccharide Gellano Kelogel® (CTS®, Madrid,
Spain) (method 5), cotton swab (method 6), gel formed from the complex polysaccharide Agar-Agar
(CTS®, Madrid, Spain) (method 7), and gel formed from the hydroxypropyl cellulose Klucel G® (CTS®,
Madrid, Spain) (method 8). With the aim of widening the study and observing the effects of different
processes, we decided to change the mechanical process based on a scalpel applied in method 1 for
Probe 1, for another more innovative process based on the use of another thickening agent, specifically
a cellulose ether, as it has not been studied in medieval plasterwork to date. The agent chosen to form a
gel was the methylcellulose Culminac MC2000® (CTS®, Madrid, Spain) used in method 1 for Probe 2.

On the other hand, within the chemical methods, the use of acids and bases should also
be highlighted to remove carbonate crusts as they have been frequently used for this kind of
interventions. However, their use should be limited as they are very aggressive on surfaces with
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delicate polychromy [32]. Within this group, ethylenediaminetetraacetic acid (EDTA) is often used to
remove whitewash and carbonate crusts [12]. Its use, as one of the main components of the AB-57
poultice (I.C.R. formulation-Rome), created by the Mora brothers [33], has widely demonstrated its
effectiveness removing this kind of alterations on wall coverings as it hydrolyses the fats that are
present between the painted surface and the carbonate crusts, allowing the removal of the latter.
Taking this into account, checking the effectiveness of the AB-57 (30 g of ammonium carbonate, 50 g of
sodium bicarbonate, 25–100 g of tetrasodium EDTA (pH 11), 25 g of the surfactant New Des 50® at
10%, 6 g of carboxymethylcellulose) was essential for this study (method 3).

In all the tests, except the mechanical ones, Japanese paper or tissue was inserted between the
artwork and the material to protect the surface, avoid direct contact and improve the removal [22].
As indicated in Table 1, in all the mentioned tests we decided to combine the chemical cleaning
treatments with a subsequent mechanical treatment using a scalpel due to the good results obtained
with both techniques. Examples of this are the intervention conducted on the plasterwork of the facade
of the Alcazar of Seville [34] and on the plasterwork of the cloister of the Cathedral of Toledo [35].

2.4. The Colorimetric and Spectral Analysis Method

Hyperspectral images of the probes were captured before and after the cleaning process using
a hyperspectral imaging scanner model Resonon Pika L. This scanner yields hyperspectral images
roughly in the range from 383 to 1016 nm, with 4.1 nm spectral resolution. The system is calibrated for
illumination and flat field correction, so the hyperspectral cubes contain pixel-wise spectral reflectance
information of the probes [17,18,36].

For each of the 9 samples in each probe, an area of 100 × 100 pixels was extracted both before and
after the cleaning process. The sRGB renderization [37] of these areas is shown in Figure 4.
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Figure 4. sRGB renderization of the 100 × 100 pixel areas extracted from all the samples both before
and after the cleaning process.

Once the areas are extracted, their spectral reflectances are interpolated to the range from 400 to
720 nm in 1 nm step. In this way we are able to retrieve the reflectance information only in the visible
range. The mean spectral reflectances as well as the wavelength-wise standard deviations are then
calculated for the selected 10,000 (100 × 100) pixels in each area. The CIE XYZ tristimulus values and
the CIE L*, a*, b* color coordinates are also calculated pixelwise under CIE D65 standard illuminant and
using a reference white tile from Sphere Optics. Using the CIE L*, a*, b* data, we can calculate both the
volumes of the L*, a*, b* clouds, as well as the mean color of each sample (a point-measurement device
such as a spectrophotometer would do). The former is calculated using Delaunay’s triangulation
method [38], with infinite radius, together with an auxiliary algorithm based on the alpha-shape
concept [39].

For all the samples, 2 spectral metrics (Goodness of Fit Coefficient (GFC) and Root Mean Square
Error (RMSE)) [40] and one color metric (CIEDE 2000 color difference) [41] were calculated to compare
the reflectance spectra as well as the color of the samples both before and after the cleaning process.
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Finally, a k-means algorithm [42] was performed over the L*, a*, b* data clouds to automatically
segment those areas of residual white present in the samples after the cleaning process. These areas are
present due to two different reasons: firstly, some residue of the top white layer may remain even after
the cleaning process; and secondly the cleaning process could be so aggressive that even the pigment
was eliminated, and therefore the underlying white plaster material becomes visible. In both cases we
would consider white areas to be undesirable. It is then important to be able to quantify the portion of
the sample that remains white after the cleaning procedure, and this can be done by calculating the
number of pixels that are classified as white using the k-means algorithm.

To evaluate the performance of the k-means classification, a set of manually selected pixels were
extracted from the samples as a ground truth. These pixels consisted of areas of the samples clearly
containing white areas or pigment areas. K-means was applied to this ground truth set to check
its performance.

3. Experimental Data and Results

3.1. Mean Spectral Reflectance, Spectral Standard Deviation, and Spectral Metrics Results

The mean spectral reflectances and the wavelength-wise standard deviation of the 36 samples
(see Figure 4) are shown in Figure 5. Continuous lines represent the samples before and dashed lines
after the cleaning process.
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Note how all samples of the same probe have almost the same reflectance before cleaning, with very
low standard deviation for all the wavelengths, and how after cleaning the mean reflectances get
lighter (due to the whiter regions) and more spread across the samples. The standard deviation also
gets much higher for each sample due to the heterogeneity introduced by the cleaning processes.
The cleaning process that results in the highest standard deviation is number 9 (glass fiber pencil) for
both probes 1 and 2. The standard deviation is clearly dependent on wavelength for both samples.
The wavelength ranges for which the sample has a lower reflectance also register a higher standard
deviation (blue/red spectral ranges for the green sample, blue/green spectral ranges for the red sample).
This can be explained if we consider that after cleaning the spectral reflectance tends to be flatter
(approaching the typical shape of a white color). The initial spectral reflectance of the samples is closer
to the flat shape representative of the white for those wavelengths which have a higher signal, and so
to approach the flat curve, the variation introduced in the spectral ranges for which the signal is lower
needs to be higher, and thus the standard deviation is also higher in the low signal range.
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Regarding the effect of lightness increase, procedure number 6 (cotton swab + scalpel) results in
the highest increase for probe 1 and procedure number 9 (glass fiber pencil) yields the highest lightness
for probe 2. This can be explained if we consider that the increase in lightness is not always due to the
appearance of white areas, but it can also be produced by a more uniform but imperfect cleaning of the
sample, which would not necessarily increment the standard deviation across the pixels.

We have as well performed an additional analysis using the spectral reflectance information on
a pixel-by-pixel basis and two relevant spectral metrics: GFC and RMSE. We have compared the
pixel-by-pixel reflectance spectra of each Probe after the cleaning with the mean spectral reflectance
spectrum of each original Probe (before the limewash covering and cleaning). For Probe 1, the method
of choice would be number 3 (mean RMSE of 0.193, mean GFC of 0.9928), and the worst method
number 6 (mean RMSE of 0.372 and mean GFC of 0.9671). Both metrics are in agreement for Probe 1.
For Probe 2, the best method would be number 2 followed closely by number 1, 6, and 7 according to
RMSE results (mean RMSE of 0.218). GFC metric results are better for method number 6 (with average
GFC of 0.9856), while the worst method would be number 9 according to both metrics (with average
RMSE of 0.406 and average GFC of 0.9198). The cleaning procedures have introduced changes both
in scale and shape of the spectral reflectances, but the changes in shape are in general more relevant,
especially for Probe 2.

3.2. Mean L*, a*, b* Values

We analyze now the L*, a*, b* mean values of the samples before and after the cleaning procedures.
In Table 2, the mean CIEDE00 color difference introduced by the cleaning procedures with respect to
the original samples is shown.

Table 2. Mean ∆E00 color difference for each sample of both probes: before cleaning vs. after cleaning.

Sample 1 2 3 4 5 6 7 8 9 Mean

Probe 1 12.0 10.2 8.0 12.6 10.6 16.9 11.2 11.5 12.5 11.7

Probe 2 11.8 11.8 19.9 12.4 16.9 12.1 11.8 14.0 25.3 15.1

The information shown in Table 2 is what a standard point-measurement device such as a
colorimeter or spectrophotometer able to measure the full area of the sample would deliver. We see
how for probe 1, the best mean-color-preserving cleaning method is number 3 (AB-57 + scalpel),
and the worst is number 6 (cotton swab + scalpel, also producing the highest increase in mean spectral
reflectance), whilst for probe 2, the best performing methods in terms of mean color difference are
methods 1 (methylcellulose gel + scalpel), 2 (cellulose poultice + scalpel), and 7 (complex polysaccharide
gel (Agar-Agar®) + scalpel), and the worst is method number 9 (glass fiber pencil). Comparing
two by two all the nine samples before cleaning, the mean color difference was 0.9 units, with a
standard deviation of 0.49 for probe 1, and 1.2 units with a standard deviation of 0.63 for probe 2.
This points to the fact that probe 2 was more heterogeneous before the cleaning process, and also
that in general, probe 2 has been more affected by the impact of the cleaning processes. All the color
differences obtained after the cleaning procedures are clearly above the usual threshold for CIEDE2000
data, meaning that the color difference between the sample both before and after cleaning would be
visually perceptible.

Table 3 shows the differences in average color coordinates L*, a* and b* for the 2 probes and the
9 cleaning methods.
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Table 3. Differences in average color coordinates L*, a* and b* for the 2 probes and the 9 cleaning methods.

Probe 1

Method 1 2 3 4 5 6 7 8 9

∆L* 12.9 10.4 9.3 13.7 11.0 16.1 11.3 10.6 12.3

∆a* 9.6 9.6 5.4 10.1 9.7 15.8 9.9 11.6 11.6

∆b* −5.2 −4.3 −2.8 −5.2 −4.8 −7.1 −5.7 −5.8 −5.6

Probe 2

Method 1 2 3 4 5 6 7 8 9

∆L* 12.5 12.7 21.9 13.5 18.4 13.2 12.8 15.4 27.7

∆a* −8.1 −7.8 −16.1 −8.4 −15.0 −6.0 −6.8 −10.7 −23.7

∆b* −5.8 −3.0 −6.2 −5.3 −8.5 −2.6 −3.6 −5.4 −12.7

As Table 3 shows, for Probe 1, the method of choice and the worst method would be the same
as those selected considering only the color difference data shown in Table 2. For Probe 2, the worst
method would be still number 9, but the best would be number 6. However, when looking only at the
color differences shown in Table 2, there were three possible methods of choice (1, 2, and 7) with the
same color difference. According to the differences in mean a* and b* values, the method of choice for
Probe 2 would be number 6, which was not selected according to the mean color difference results,
although it offers comparative results to the ones chosen for this Probe. The results in Table 3 allow us
to characterize as well the change in color towards less saturated colors after the cleaning. Specifically,
for Probe 2 all ∆a* and ∆b* values are negative, and for Probe 1 all ∆b* are also negative. For Probe 1,
the ∆a* are positive, which makes sense because Probe 1 corresponds to a green color, so in this case
higher a* values after the cleaning implies also less saturated green color after the cleaning. Finally,
we also see that L* is always higher, in agreement with the conclusions derived from the analysis of the
sample’s spectral reflectance curves.

3.3. Pixelwise Spectral Reflectance and L*, a*, b* Values

In addition to the color difference from mean L*, a*, b* values, the spectral imaging system
used for this research is able to deliver spectral reflectance curves for each pixel of the image. Thus,
by computing the corresponding L*, a*, b* values for each reflectance in the retrieved 100 × 100 pixels
area, we achieve 10,000 color points that make up part of a “color cloud”. This is shown in Figure 6
where the color clouds of sample 1 in probe 1 are shown before (blue) and after (red) the cleaning.
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We could consider the center of mass of each cloud in Figure 6 as the mean color for these samples.
It is evident how the point clouds become more spread across the color space after the cleaning.
This result cannot be found by analyzing the mean color difference results, as we did in the previous
section. The increase in cloud size reflects that the cleaning is leaving some white residue on the
sample, and that the spatial distribution of this residue is not very homogeneous, so that some points
are less white than others. This spread or heterogeneity can be measured by calculating the standard
deviation of the L*, a*, b* color coordinates as well as calculating the minimum volume of the point
clouds. Figure 7 shows an example of the minimum volume [38,39] calculated for sample 1 in probe 1,
and Table 4 contains the mean standard deviation (std) across the wavelengths and the mean standard
deviation of the L*, a*, b* color coordinate clouds, as well as the minimum volumes of the point clouds.
Higher values of std or volume indicate higher heterogeneity of the samples after the cleaning process.
Note that this information is complementary to that shown in Figure 5, where the standard deviation
is plotted wavelength-wise to see what wavelengths are affected more or less by the heterogeneity
introduced in the cleaning processes.Sensors 2020, 20, x FOR PEER REVIEW 11 of 17 
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Table 4. Standard deviation of the spectral reflectances (mean across all wavelengths) and the L*, a*, b*
color coordinates, and L*, a*, b* clouds volumes before and after cleaning for all the samples.

PROBE 1

Sample std Ref std L* std a* std b* Volume Lab
Before After Before After Before After Before After Before After/Before

1 0.010 0.05 0.9 2.6 0.6 2.6 0.4 1.1 54.6 5.6
2 0.008 0.05 0.7 2.9 0.6 3.1 0.4 1.4 46.0 20.0
3 0.010 0.07 1.0 4.3 0.6 3.6 0.6 2.0 65.3 30.2
4 0.012 0.06 1.3 3.0 0.6 3.0 0.6 1.2 38.3 13.6
5 0.009 0.05 0.8 2.4 0.6 2.6 0.4 1.1 41.4 25.1
6 0.009 0.08 0.8 3.6 0.7 3.6 0.6 1.8 105.8 8.6
7 0.014 0.04 1.4 2.4 0.7 2.0 0.6 0.9 86.2 6.5
8 0.012 0.06 1.1 3.0 0.7 2.9 0.5 1.1 89.3 6.5
9 0.012 0.09 1.2 4.2 0.7 3.2 0.8 1.2 141.9 3.7
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Table 4. Cont.

PROBE 2

Sample std ref std L* std a* std b* Volume Lab
Before After Before After Before After Before After Before After/Before

1 0.016 0.10 1.6 8.0 1.5 8.1 1.5 4.1 595.0 5.7
2 0.013 0.08 1.2 7.4 1.5 8.9 1.4 4.3 340.0 12.0
3 0.013 0.09 1.4 7.2 1.2 9.2 1.3 4.7 184.9 31.6
4 0.013 0.08 1.3 6.7 1.2 7.9 1.3 4.1 569.1 7.8
5 0.014 0.11 1.5 8.3 1.2 9.7 1.1 4.5 264.2 12.1
6 0.016 0.09 1.7 7.5 1.4 8.7 1.5 4.5 251.4 32.4
7 0.016 0.10 1.6 7.9 1.7 9.1 1.9 4.8 759.7 8.2
8 0.017 0.09 1.6 7.7 2.0 9.1 1.8 4.7 531.5 5.9
9 0.013 0.12 1.4 8.5 1.2 9.3 1.4 5.1 226.2 18.4

As shown in Table 4, for probe 1, cleaning process number 3 (AB-57 + scalpel) produces the
highest heterogeneity, and in general number 7 (complex polysaccharide gel (Agar-Agar®) + scalpel)
the lowest. For probe 2, cleaning process number 9 (glass fiber pencil) in general produces the highest
heterogeneity, but the lowest heterogeneity is found with method 4 (polyacrylic acid gel + scalpel).
The results for the minimum volume increment ratio are different from the results based on L*a*b* std
values, but the methods of choice according to L*a*b* std (indicated above) are also among the three
best or three worst according to minimum volume increment.

3.4. Amount of White Residue Left after the Cleaning

For the validation of the k-means classification, white and pigment areas were manually extracted
and pooled together for each probe in order to perform the same k-means algorithm. Figure 8 shows the
sRGB renderization of the ground truth sets of pixels retrieved from different samples in both probes.
The pigment (top) and white (bottom) pixels are separated by a black line for each set. 1036 samples
were extracted from probe 1:637 green (top) and 399 white (bottom), and 1810 samples from probe
2:860 red (top) and 950 white (bottom).
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and the white (below black line) pixels from both probes.

Figure 9 shows the L*, a*, b* clouds of both sets of pixels (pigment and white) for both probes.
The top row shows the three two-dimensional projections of such a color space for probe 1. The green
color represents pigment samples and the grey color the white samples. The bottom row shows the
same for probe 2 (the red color pigment samples and the grey color for the white samples). As can be
observed, the different samples are easily classifiable with the k-means algorithm.
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sets as either pigment or white pixels. This result highlights the confidence in the information shown
in Table 5, as a figure of merit for the different cleaning methods used for both probes.

Table 5. Percentage of automatically segmented white areas over the full area studied for all the samples
and probes. The higher this value is the worse the performance of the cleaning method. The bottom
row shows the total of the two previous rows.

Sample 1 2 3 4 5 6 7 8 9

Probe 1 45.27 44.41 15.32 26.06 32.36 63.14 28.02 16.66 9.30

Probe 2 6.81 11.42 32.86 7.87 17.12 14.20 9.21 10.50 41.85

Total 52.08 55.83 48.18 33.93 49.48 77.34 37.23 27.16 51.15

Regarding the results of the automatic segmentation of the white areas, Figure 10 shows example
results of two different samples (sample 3 in probe 1 and sample 2 in probe 2). In this figure, automatically
segmented white areas are highlighted in black (for easier visualization). In general, the results are
satisfactory for all the samples and most white areas visually detectable were correctly segmented.

Table 5 shows the percentage of automatically segmented white areas in all samples of both
probes. Since these white areas are considered areas where the cleaning process failed, the higher this
percentage is the worse the cleaning process performed.

As Table 5 shows, cleaning method number 9 (glass fiber pencil), followed by method number
3 (AB-57 + scalpel) performs best for probe 1. Method number 6 (cotton swab + scalpel) performs
worst for probe 1, producing around seven times more white pixels. For probe 2, method number 1
(scalpel) offers the best result, followed by method number 4 (polyacrylic acid + scalpel), whilst the
worst method is number 9 (glass fiber pencil). Adding up the percentage of both probes, the cleaning
method that produced the least white areas was method number 8 (Hydroxypropyl cellulose gel +
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scalpel). The worst cleaning method according to this figure of merit and taking into account the two
probes is method number 6 (cotton swab + scalpel).
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4. Discussion

The results offered by the standard deviation analysis, both in spectral and L*, a*, b* data
(see Sections 3.1 and 3.3), are quite in agreement: for the malachite probe (1), the best performing
method (less inhomogeneity) is number 7 (complex polysaccharide gel (Agar-Agar®) + scalpel),
whilst the methods that produce more inhomogeneity are number 9 (glass fiber pencil) and 3
(AB-57 + scalpel). For the cinnabar sample, the method of choice (most homogeneous results across
sample pixels) would be number 4 (polyacrylic acid gel + scalpel) followed by 1 or 2 (both cellulose
based), whilst the least homogeneous results would be those obtained with method 9 (glass fiber pencil).

The minimum volume increment analysis and the residual white analysis show that the best
performing method would be number 9 (glass fiber pencil) for the malachite samples, whilst the method
of choice would be number 1 (methylcellulose gel + scalpel) for the cinnabar samples. The worst
methods are number 3 (AB-57 + scalpel) and 6 (cotton swab + scalpel) for the malachite sample,
whilst number 6 (cotton swab + scalpel) and number 9 (glass fiber pencil) are the worst for the
cinnabar sample.

According to the color difference analysis, however, the best performing method for the malachite
sample would be number 3 (AB-57 + scalpel), and the worst method, number 6 (cotton swab + scalpel);
for the cinnabar sample, the methods of choice would be numbers 1(Methylcellulose gel +scalpel),
2(Cellulose poultice + scalpel) or 7 (Complex polysaccharide gel (Agar-Agar®) + scalpel), whilst the
worst performing would be number 9 (glass fiber pencil).

The discrepancies found can be explained if we consider that the different analysis is pinpointing
different aspects (points in favor or against a given method). For instance, for the malachite sample,
we can see how method number 3 (AB57 + scalpel) would never be chosen if we look at the
inhomogeneity results; however, it would be considered if we wished for a more similar mean color to
the original sample after the cleaning process. If we look at the sRGB renderization of the samples
both before and after the cleaning process (see Figure 4), we can see how the more similar color to
the original sample is indeed method number 3 (AB57 + scalpel); nevertheless, with this method,
some clear patches of white residue have been left after the cleaning, and hence the high values of
inhomogeneity indexes would not be an asset of this method. This conclusion about method 3 for
Probe 1 is supported as well by the spectral metrics pixel-by-pixel analysis: looking at the average
results of GFC and RMSE, most of the pixels have a spectrum which is similar to the original probe
color, and thus the average GFC and RMSE are better for this method. When the performance of a
method is clearly below par, however, all the analyses agree in ranking it among the worst performing:
this is what happened with method number 9 (glass fiber pencil) and the cinnabar sample. For this
same sample, taking into account the results produced by all the methods tested, the best performing
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method would be number 1 (methylcellulose gel +scalpel) followed by number 4 (Polyacrylic acid
gel + scalpel).

As mentioned above, the identification of a layer of color which was less consistent in Probe 2 has
notably influenced the results as it was more sensitive to the processes involving a chemical agent
which softens the surface or a strong abrasive action such a glass fiber pencil. The results confirm that
mechanical cleaning using a scalpel is a valid method for these surfaces if there is good consistency of
the original polychromy layer to be cleaned on the plasterwork. This action can be improved with the
use of a gel formed from the complex polysaccharide Agar-Agar®, as the scalpel alone can be a very
aggressive treatment. In general, in both cases the glass fiber pencil is the least recommended method.

5. Conclusions

Using a non-invasive spectral imaging capture device has produced a much more comprehensive
analysis than conventional spectrophotometry on the efficiency of different cleaning methods to
eliminate a white layer deposited on a pigment layer on plaster probes.

Due to the many analytical methods tested, this study is restricted to two pigments that were
commonly used in the Nasrid period (malachite and cinnabar) and the two binders most commonly
used (animal glue and gum Arabic). It would be of interest to extend the study to additional pigments
and the same binders and also to consider additional analytical methods that would characterize the
spatial inhomogeneity of the sample, such as texture-based analysis.

We have introduced four different analytical methods: standard deviation across wavelengths,
L*, a*, b* standard deviation, minimum volume of the color clouds and amount of white residue
left. Moreover, we have also computed the CIEDE2000 color difference both before and after and
the cleaning processes, as well as the differences in L*, a* and b*, using the center of mass of the
color clouds.

The data extracted from the conducted comparisons confirm the difficulty of analyzing what are
the most effective processes on works of art. This is due primarily to the diversity of the materials
and the different response they have over time. A first visual analysis after applying the treatments
(Figure 4) allows us to state that the malachite color layer of Probe 1 is much more adhered than the
cinnabar layer applied on Probe 2. In this case, in addition to the influence the composition of the
pigment might have, the difference in adherence is due mainly to the binder used, as this is the element
which makes it adhere to the surface. Animal glue (Probe 1) is also a more stable and resistant binder
than gum Arabic (Probe 2), both initially and as time goes by. For this reason, it would be important to
analyze and consider the composition of the material and the consistency of the color layers previously
with the aim of selecting the most adequate treatments with regards to the materials.

This paper highlights the necessity to continue studying the effects of cleaning processes for
different problems and the importance this information has for restorers before starting restoration
intervention on works of art with these characteristics.
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